22.05.2014 Views

生活與物理-奈米生技 - 中研院物理研究所

生活與物理-奈米生技 - 中研院物理研究所

生活與物理-奈米生技 - 中研院物理研究所

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(cfchou@phys.sinica.edu.tw)<br />

NCCU<br />

12/19/08


or


10 -2 m<br />

1 cm<br />

10 mm<br />

Head of a pin<br />

1-2 mm<br />

The Challenge<br />

Ant<br />

~ 5 mm<br />

10 -3 m<br />

1,000,000 nanometers =<br />

1 millimeter (mm)<br />

Dust mite<br />

200 µm<br />

Human hair<br />

~ 60-120 µm wide<br />

Red blood cells<br />

(~7-8 µm)<br />

~10 nm diameter<br />

Fly ash<br />

~ 10-20 µm<br />

ATP synthase<br />

Nanoworld<br />

Microworld<br />

10 -4 m<br />

10 -5 m<br />

10 -6 m<br />

10 -7 m<br />

10 -8 m<br />

Ultraviolet Visible Infrared<br />

Microwave<br />

0.1 mm<br />

100 µm<br />

0.01 mm<br />

10 µm<br />

1,000 nanometers =<br />

1 micrometer (µm)<br />

0.1 µm<br />

100 nm<br />

0.01 µm<br />

10 nm<br />

Pollen grain<br />

Red blood cells<br />

Zone plate x-ray “lens”<br />

Outer ring spacing ~35 nm<br />

Self-assembled,<br />

Nature-inspired structure<br />

Many 10s of nm<br />

MicroElectroMechanical<br />

(MEMS) devices<br />

10 -100 µm wide<br />

Nanotube electrode<br />

O<br />

O<br />

S<br />

O<br />

O<br />

O<br />

O O O O O O O<br />

O<br />

S<br />

O<br />

S<br />

O<br />

S<br />

O<br />

S<br />

P O O<br />

Fabricate and combine<br />

nanoscale building<br />

blocks to make useful<br />

devices, e.g., a<br />

photosynthetic reaction<br />

center with integral<br />

semiconductor storage.<br />

O<br />

O<br />

S<br />

O<br />

O<br />

S<br />

O<br />

S<br />

DNA<br />

~2-1/2 nm diameter<br />

Atoms of silicon<br />

spacing 0.078 nm<br />

10 -9 m<br />

10 -10 m<br />

Soft x-ray<br />

1 nanometer (nm)<br />

0.1 nm<br />

Quantum corral of 48 iron atoms on copper surface<br />

positioned one at a time with an STM tip<br />

Corral diameter 14 nm<br />

Carbon<br />

buckyball<br />

~1 nm<br />

diameter<br />

Carbon nanotube<br />

~1.3 nm diameter<br />

<br />

Office of Basic Energy Sciences<br />

Office of Science, U.S. DOE<br />

Version 05-26-06, pmd


Nanotechnology’s Probable Business Impact<br />

(CA, 2005)


DNA <br />

Watson-Crick <br />

DNA


Cell and Molecules <br />

1 bp = 3.4 Å (0.2 e - )<br />

Dia. = 2 nm<br />

1 helical pitch = 10 bp<br />

http://accessexcellence.org/RC/VL/GG/comparative.html


Reynolds number<br />

<br />

Typical values of Reynolds number<br />

* Spermatozoa ~ 1×10 −2<br />

* Blood flow in brain ~ 1×10 2<br />

* Blood flow in aorta ~ 1×10 3<br />

For water, µ = 0.01 cm 2 /s <br />

D h (µm) v (cm/s) Re (D h v/µ) <br />

100 0.1 0.1<br />

100 100<br />

200 0.1 0.2<br />

100 200<br />

500 0.1 0.5<br />

100 500<br />

Onset of turbulent flow ~ 2.3×10 3 for pipe flow to 10 6 for boundary layers<br />

* Typical pitch in Major League Baseball ~ 2×10 5<br />

* Person swimming ~ 4×10 6<br />

* Blue Whale ~ 3×10 8<br />

* A large ship (RMS Queen Elizabeth 2) ~ 5×10 9


Laminar Flow -movie


Cavitation Microstreaming<br />

• Flow streaming around bubbles in an acoustic field<br />

• Optimized mixing conditions (waveform, amplitude, etc.)<br />

PZT<br />

PZT<br />

bubble<br />

microstreaming<br />

f<br />

=<br />

3γP<br />

o<br />

/<br />

2πa<br />

ρ<br />

R. Liu et al., Anal. Chem. 2003<br />

Now (10 sec for 100 uL)<br />

5 kHz, 40 Vpp, square wave


Manufacturing and prototyping<br />

Fabrication methods Device components Assays Integrated<br />

solutions<br />

Valves<br />

Channel hyb<br />

Multi-layer devices<br />

Molding, embossing, NanoImprinting<br />

Pumps<br />

Amplification - PCR<br />

Multi-functional cartridges<br />

Mixers<br />

NIL Mask, 70 nm<br />

Cell and DNA capture<br />

Amplification-<br />

Detection<br />

On Chip


Integrated cartridge for low abundance bacteria detection<br />

Crude Sample<br />

Target cell capture<br />

Cell Isolation<br />

/enrichment<br />

Objective: Integrate whole sample prep with microarray<br />

for low abundance bacteria detection from blood (1 mL)<br />

Cell Cell purification Lysis<br />

DNA Cell Isolation Lysis<br />

Amplification PCR<br />

Hybridization Separation<br />

Detection<br />

Answer<br />

Successfully demonstrated cell capture + purification + lysis + PCR<br />

+ detection of 1000 E. coli K12 cells / 1mL sheep blood<br />

Liu RH, Yang JN, et al. ANAL. CHEM. 76, 1824 (2004)


DNA Microarray (


DNA <br />

Probe DNA<br />

Substrate<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

Substrate<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

A<br />

T<br />

T<br />

G<br />

G<br />

C<br />

C<br />

T<br />

G<br />

G<br />

A<br />

Optical/E-chem<br />

Labeling<br />

Signal DNA<br />

A<br />

G<br />

G<br />

A<br />

G<br />

T<br />

A<br />

C<br />

G<br />

A<br />

A<br />

T<br />

A<br />

A<br />

C<br />

C<br />

G<br />

G<br />

A<br />

C<br />

C<br />

T<br />

Target DNA<br />

T<br />

C<br />

C<br />

T<br />

C<br />

A<br />

T<br />

G<br />

C<br />

T<br />

T


Introduction to the F1-ATPase <br />

• ATPase: Produce and hydrolyze ATP<br />

• F1 Complex: α 3 β 3 hexamer and γ subunit<br />

• γ subunit ( > 12nm) rotates due to the conversion of chemical to<br />

mechanical energy (efficiency 80-100%, torgue 120-150<br />

pN·nm). <br />

Soong et al., Science 290, 1555 (2000)


Biomotor-based single molecular sensors<br />

DNA<br />

streptavidin<br />

γ<br />

target DNA<br />

Au nanobar<br />

probe DNA signaling DNA<br />

F1-ATPase<br />

β<br />

α<br />

β<br />

α<br />

His-tag<br />

C.F. Chou et al.,<br />

US patent 6,989,235 (2006)


DEP for Manipulation of Biomolecules<br />

<br />

• Dielectrophoresis (DEP) is a phenomenon in which a<br />

force is exerted on a dielectric particle in a non-uniform<br />

electric field – <br />

<br />

<br />

Force acting on<br />

polarizable particles:<br />

Sphere of radius r,<br />

ε m = 80 for water<br />

C.F. Chou et al.,<br />

Biophysical Journal (2002)<br />

• DEP is a technique which can be used to separate cells<br />

or molecules based on their difference in polarizability


Our Approach: Electrodeless DEP<br />

()<br />

Advantages ():<br />

1) Simpler fabrication process ()<br />

2) Structure chemically inert ()<br />

3) High E fields without risk of electrolysis ()


Molecular Trap ()<br />

Field focusing mostly occurs<br />

at the tips of constriction<br />

<br />

<br />

→ Increase of molecule<br />

concentration in the trap


368 bp DNA<br />

EDEP devicce<br />

<br />

啓<br />

C.F. Chou et al., Biophys. J. 83: 2170 (2002);<br />

US Patent # 6,824,664 (2004)


-movie


EDEP Array for Cell Trapping<br />

E. coli<br />

um constriction,<br />

10 um deep<br />

50-2M Hz, 100 Vpp/cm<br />

Buffer salt concentration:<br />

up to 100 mM<br />

Enrichment ~ 10 3-4<br />

C. F. Chou, F. Zenhausern (2003) IEEE Eng. Med. Biol. Mag. Nov/Dec. 62-67.


EDEP Array for Cell Trapping/Separation<br />

E. coli (+DEP) RBC (-DEP)<br />

C. F. Chou, F. Zenhausern (2003) IEEE Eng. Med. Biol. Mag. Nov/Dec. 62-67.


Stretching of DNA with buffer flow


Hydrodynamic flow<br />

DNA <br />

Elongation flow<br />

Molecular combing<br />

Perkins et al. Science (1995)<br />

Optical tweezers<br />

Perkins et al. Science (1997)<br />

Bensimon, Science (1997)<br />

Electrohydrodynamic flow<br />

S. Chu; S. Block (1994-5)<br />

Bakajin et al. PRL (1998)


DNA<br />

PMMA<br />

175 o C and 50 kg/cm 2<br />

(4.9×10 6 Pa), 5 min<br />

template<br />

300(w)x500(h) nm 300(w)x130(h) nm 75(w)x120(h) nm<br />

20um<br />

20um<br />

50um<br />

T5 phage DNA<br />

103 kb (35 µm)<br />

Channel dimension Stretched DNA length Percentage of stretching<br />

300nm x 700nm 6.2 ± 1.3 um 15%<br />

300nm x 500nm 12.7 ± 4.5 um 30%<br />

75nm x 120nm 39.8 ± 7.7 um 95%<br />

L.J. Guo, X. Cheng, C.F. Chou, Nano Lett. 4, 69 (2004)


DNA<br />

1D Nanochannels<br />

Micro-to-nano Interface<br />

Micro-to-nano<br />

Interface<br />

Nanochannel<br />

Interface<br />

PSQ<br />

Microchannel<br />

Fluid In<br />

Fluid Out<br />

Gu, Gupta, Chou, Wei,<br />

Lab Chip, 7, 1198 (2007)<br />

DNA strands going up the ramp in the<br />

interfaced area (movie)


DNA<br />

<br />

<br />

DNA<br />

<br />

DNA


- DNA


1. DNA, ~<br />

”entropy”<br />

f 1<br />

f 2<br />

d<br />

l p<br />

2. DNA,<br />

t=0 t


DNA <br />

Walter Gilbert<br />

Frederick Sanger<br />

• Year 1977<br />

• Maxem and Gilbert – “Chemical Cleavage Protocol”<br />

• Sanger – Dideoxy sequencing or chain termination method.<br />

• Gilbert and Sanger shared 1/2 Nobel Prize in 1980.<br />

• Sanger method is used widely because of its practicality.


Organism Genome size Size<br />

Status<br />

relative to<br />

<br />

human<br />

HIV-1 9,750 0.0003% complete 1985, Wain-Hobson,et.al.<br />

Mycoplasma genitalium 580,070 0.0171% complete 1995, TIGR<br />

Mycoplasma pneumoniae 816,394 0.0240% complete 1995, Univ. of Heidelberg<br />

Lyme disease spirochete 946,000 0.0278% complete 1997, TIGR<br />

Methanococcus jannaschii 1,664,974 0.0490% complete 1996, TIGR<br />

H. influenzae 1,830,137 0.0538% complete 1995, TIGR<br />

Mycobacterium tuberculosis 4,397,000 0.1293% complete 1998, Sanger Centre<br />

Escherichia coli 4,639,221 0.1364% complete 1997,Univ. of Wisc. + others<br />

Yeast, Baker's 12,067,280 0.3549% complete, 1996, Stanford Genome Center<br />

C. elegans 100,000,000 3% complete, 1999 Washington Univ. and Sanger Ctr.<br />

Fruit fly 180,000,000 5% complete, 2000 European and US groups<br />

Pufferfish, Japanese (Takifugu rubripes) 400,000,000 12% 90% complete, 2005<br />

Rice 400,000,000 12% complete, 2002 International Rice Genome Seq. Proj.<br />

Pig 2,700,000,000 79% Mapping complete – sequencing mid stages<br />

Rat 2,900,000,000 85% Draft assembly<br />

Cattle 3,000,000,000 88% Begun in April, 2003, draft assembly<br />

Mouse 3,000,000,000 88% Complete, 2002<br />

Rabbit 3,000,000,000 88%<br />

Human 3,400,000,000 1.0 Complete, 2001,2002,2003<br />

Onion 18,000,000,000 5.3<br />

Marbled lungfish 139,000,000,000 40.9<br />

Fern 160,000,000,000 47.1<br />

Amoeba proteus 290,000,000,000 85.3


DNA


Capillary (Array) Electrophoresis


Cost:<br />

~ $ 1M/genome<br />

Time: months<br />

goal<br />

Cost: $1,000/<br />

genome<br />

Time: hours


A single α-hemolysin channel (Ø =2.5 nm) embedded in a lipid bilayer


Dekker group, Nat. Mater. 2003<br />

D. Branton, J. Golovchenko, Harvard

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!