22.05.2014 Views

奈米科學介紹 - 中研院物理研究所

奈米科學介紹 - 中研院物理研究所

奈米科學介紹 - 中研院物理研究所

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nano Sci<br />

Lab<br />

<br />

http://www.phys.sinica.edu.tw/~nano/


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

http://www.phys.sinica.edu.tw/~nano/


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

<br />

√ √ √<br />

√ √ √<br />

√ √<br />

√ √<br />

√ √<br />

<br />

√<br />

√ √<br />

<br />

√<br />

√ √<br />

() √ √<br />

1


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

1


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

Liangti Qu et al.<br />

Science 322 (2008)<br />

238.


Nano Sci<br />

Lab<br />

<br />

Liangti Qu et al.<br />

Science 322 (2008)<br />

238.


Nano Sci<br />

Lab<br />

<br />

1 (nanometer) = 1 ( 10 -9 m)<br />

DNA


Nano Sci<br />

Lab<br />

<br />

1 (nanometer) = 1 ( 10 -9 m)<br />

DNA


Nano Sci<br />

Lab<br />

<br />

1 (nanometer) = 1 ( 10 -9 m)<br />

<br />

DNA


Nano Sci<br />

Lab<br />

<br />

1 (nanometer) = 1 ( 10 -9 m)<br />

<br />

<br />

DNA


Nano Sci<br />

Lab<br />

<br />

<br />

1 (nanometer) = 1 ( 10 -9 m)<br />

<br />

<br />

DNA


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

1<br />

1<br />

1


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The convergence of top-down and bottom-up<br />

production techniques (Whatmore 2001)


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

,<br />

,


Nano Sci<br />

Lab<br />

<br />

STM <br />

: Eigler et al. ’90<br />

: Hosoki et al. ‘91<br />

5 nm<br />

D.M. Eigler, IBM, Amaden


Nano Sci<br />

Lab<br />

<br />

STM <br />

: Eigler et al. ’90<br />

: Hosoki et al. ‘91<br />

5 nm<br />

D.M. Eigler, IBM, Amaden


Nano Sci<br />

Lab<br />

<br />

Size


Nano Sci<br />

Lab<br />

<br />

Size


Nano Sci<br />

Lab<br />

<br />

100<br />

<br />

75<br />

50<br />

25<br />

0<br />

0 13 25 38 50<br />

(nm)


Nano Sci<br />

Lab<br />

<br />

(Reproduced from Quantum Dot Co.)


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

1931 Ernst Ruska <br />

1959 Feynman “There is plenty of room at the bottom”<br />

<br />

1962 Kubo <br />

1980 Drexler


Nano Sci<br />

Lab<br />

<br />

1931 Ernst Ruska <br />

1959 Feynman “There is plenty of room at the bottom”<br />

<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985 Binnig and Quate (AFM)<br />

1990 Eigler STM


History of Electron Microscopy<br />

!! 1931- Ernst Ruska co-invents the electron microscope.<br />

•! 1938- 10nm resolution reached.<br />

•! 1940- 2.4 nm resolution.<br />

•! 1945- 1.0nm resolution achieved.<br />

!! 1981- Gerd Binning and Heinrich Rohrer invent the scanning<br />

tunneling electron microscope (STM).<br />

!! 1986- The Atomic Force Microscope was developed in collaboration<br />

between IBM and Stanford University.<br />

Nano Sci<br />

Lab


History of Electron Microscopy<br />

Ernst Ruska<br />

!! 1931- Ernst Ruska co-invents the electron microscope.<br />

•! 1938- 10nm resolution reached.<br />

•! 1940- 2.4 nm resolution.<br />

•! 1945- 1.0nm resolution achieved.<br />

!! 1981- Gerd Binning and Heinrich Rohrer invent the scanning<br />

tunneling electron microscope (STM).<br />

!! 1986- The Atomic Force Microscope was developed in collaboration<br />

between IBM and Stanford University.<br />

Nano Sci<br />

Lab


History of Electron Microscopy<br />

Ernst Ruska<br />

!! 1931- Ernst Ruska co-invents the electron microscope.<br />

•! 1938- 10nm resolution reached.<br />

•! 1940- 2.4 nm resolution.<br />

•! 1945- 1.0nm resolution achieved.<br />

!! 1981- Gerd Binning and Heinrich Rohrer invent the scanning<br />

tunneling electron microscope (STM).<br />

!! 1986- The Atomic Force Microscope was developed in collaboration<br />

between IBM and Stanford University.<br />

Nano Sci<br />

Lab


• Å <br />

<br />

δ:Rayleigh <br />

λ:<br />

µ:(refractive index)<br />

β:<br />

µSinβ:Numerical Aperature~1<br />

• 0.1~0.2mm ()<br />

• ~3000Å (1000)


“”(?)<br />

<br />

• Å <br />

<br />

δ:Rayleigh <br />

λ:<br />

µ:(refractive index)<br />

β:<br />

µSinβ:Numerical Aperature~1<br />

• 0.1~0.2mm ()<br />

• ~3000Å (1000)


“”(?)<br />

<br />

• Å <br />

<br />

E (kev)<br />

λ(Å)<br />

δ:Rayleigh <br />

λ:<br />

100 0.037<br />

200 0.025<br />

300 0.0196<br />

400 0.0169<br />

µ:(refractive index)<br />

β:<br />

µSinβ:Numerical Aperature~1<br />

• 0.1~0.2mm ()<br />

• ~3000Å (1000)


TEM


TEM


TEM


Nano Sci<br />

Lab<br />

<br />

(Scanning Tunneling Microscopy)


Nano Sci<br />

Lab<br />

<br />

(Scanning Tunneling Microscopy)


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

D.M. Eigler<br />

IBM, Amaden


Nano Sci<br />

Lab<br />

<br />

100 nm<br />

10 nm


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

Scanning Thermal


Nano Sci<br />

Lab<br />

<br />

Scanning Thermal<br />

Scanning Hall Probe


Nano Sci<br />

Lab<br />

<br />

Scanning Thermal<br />

Scanning Hall Probe<br />

Scanning Optical


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

AFM


Nano Sci<br />

Lab<br />

AFM


Nano Sci<br />

Lab<br />

<br />

1959 Feynman “There is plenty of room at the<br />

bottom”<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985Binnig and Quate (AFM)<br />

1990 Eigler STM


Nano Sci<br />

Lab<br />

<br />

1959 Feynman “There is plenty of room at the<br />

bottom”<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985Binnig and Quate (AFM)<br />

1990 Eigler STM<br />

1985 Curl, Kroto and Smalley (C 60 )<br />

1988 Fe/Cr (GMR)<br />

1991 Iijima (Carbon Nano Tubes)


Nano Sci<br />

Lab<br />

Fullerenes<br />

C 60 C 70 RbC 60


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Steel: 100-200 GPa<br />

Carbon nanotube: 1–4 TPa


Nano Sci<br />

Lab<br />

<br />

SiC/SiO2 Nanocable<br />

ZnO Nanobelts<br />

Science 281, 973 (1998)<br />

ZnO Nanowires<br />

Science 291, 1947 (2001)<br />

GaN Nanowire<br />

FET<br />

Science 292, 1897 (2001)<br />

Nano Lett. 2, 101 (2002)


Nano Sci<br />

Lab<br />

<br />

S. Fan et al., Science 283, 512 (1999).


Nano Sci<br />

Lab<br />

<br />

~30 kV<br />

~30 kV


Nano Sci<br />

Lab<br />

<br />

1959 Feynman “There is plenty of room at the<br />

bottom”<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985Binnig and Quate (AFM)<br />

1990 Eigler STM<br />

1985 Curl, Kroto and Smalley (C 60 )<br />

1988Fe/Cr (GMR)<br />

1991 Iijima (Carbon Nano Tubes)


Nano Sci<br />

Lab<br />

<br />

1959 Feynman “There is plenty of room at the<br />

bottom”<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985Binnig and Quate (AFM)<br />

1990 Eigler STM<br />

1985 Curl, Kroto and Smalley (C 60 )<br />

1988Fe/Cr (GMR)<br />

1991 Iijima (Carbon Nano Tubes)<br />

1998 Dekker <br />

1999 Lieber


Three-dimensional microelectromechanical devices<br />

Nano Sci<br />

Lab


Three-dimensional microelectromechanical devices<br />

Super growth<br />

Alligned SWNT films<br />

Bottom up<br />

Liquid induced<br />

densification<br />

Top down<br />

CNT wafer<br />

Processing by lithography<br />

Integrated planar and 3D devices<br />

Nano Sci<br />

Lab


Three-dimensional microelectromechanical devices<br />

10 –5<br />

Current (A)<br />

10 –7<br />

10 –9<br />

10 –11<br />

OFF<br />

ON<br />

10 –13<br />

0<br />

20<br />

40<br />

60<br />

Gate bias (V)<br />

OFF<br />

S<br />

ON<br />

y<br />

G<br />

C<br />

3.6 µm<br />

L<br />

x<br />

D<br />

170 nm<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

S.J. Tans et al.,<br />

Nature 393, 49 (1998).


Nano Sci<br />

Lab<br />

RAM<br />

T. Rueckes et al.,<br />

Science 289, 94 (2000).


Nano Sci<br />

Lab<br />

<br />

P. Kim and C.M. Lieber,<br />

Science 286, 2148 (1999).


Prof. Zettl<br />

<br />

A.M. Fennimore et al. Nature 424, 408 (2003).<br />

<br />

Nano Sci<br />

Lab


Prof. Zettl<br />

<br />

A.M. Fennimore et al. Nature 424, 408 (2003).<br />

<br />

Nano Sci<br />

Lab


Prof. Zettl<br />

<br />

A.M. Fennimore et al. Nature 424, 408 (2003).<br />

<br />

Nano Sci<br />

Lab


Prof. Zettl<br />

<br />

A.M. Fennimore et al. Nature 424, 408 (2003).<br />

<br />

Nano Sci<br />

Lab


Prof. Zettl<br />

<br />

A.M. Fennimore et al. Nature 424, 408 (2003).<br />

<br />

Nano Sci<br />

Lab


Nano letters<br />

Nano Sci<br />

Lab


Nanotube radio<br />

Nano letters<br />

Nano Sci<br />

Lab


Nanotube radio<br />

Nano letters<br />

Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

DNA


Nano Sci<br />

Lab<br />

<br />

1959 Feynman “There is plenty of room at the<br />

bottom”<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985Binnig and Quate (AFM)<br />

1990 Eigler STM<br />

1985 Curl, Kroto and Smalley (C 60 )<br />

1988Fe/Cr (GMR)<br />

1991 Iijima (Carbon Nano Tubes)<br />

1998Dekker <br />

1999 Lieber


Nano Sci<br />

Lab<br />

<br />

1959 Feynman “There is plenty of room at the<br />

bottom”<br />

1962 Kubo <br />

1980 Drexler <br />

1981 Binnig and Rohrer (STM)<br />

1985Binnig and Quate (AFM)<br />

1990 Eigler STM<br />

1985 Curl, Kroto and Smalley (C 60 )<br />

1988Fe/Cr (GMR)<br />

1991 Iijima (Carbon Nano Tubes)<br />

1998Dekker <br />

1999 Lieber <br />

2000 <br />

2002 <br />

2003 – 2009


Nano Sci<br />

Lab<br />

<br />

http://nano-taiwan.sinica.edu.tw/<br />

http://www.nano.edu.tw/main.aspx<br />

2003 - 2009 2009 - 2015


Nano Sci<br />

Lab<br />

<br />

∞<br />

8<br />

<br />

nano<br />

http://proj3.moeaidb.gov.tw/nanomark/


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

59


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

59


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

59


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

59


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

59


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

59


(www.phys.sinica.edu.tw/~nano/)<br />

HRTEM x1 UHV-TEM x1 VT UHV-STM x7(∞ )RT UHV-STM x2<br />

(∞ ) AFM x∞SEM UHV-FIM x1 UHV-FEM x1<br />

UHV-<br />

59


Single-Atom Tip


Single-Atom Tip


Single-Atom Tip


Single-Atom Tip<br />

T.Y. Fu et al.<br />

PRB64, 113401 (2001).<br />

H.S. Kuo et al.<br />

Nano Letters (2004)<br />

Atom perfect & chemically inert Pd-covered W(111)-base<br />

pyramid. Thermally stable up to ~1000 K


Single-Atom Tip<br />

Traditional<br />

T.Y. Fu et al.<br />

PRB64, 113401 (2001).<br />

H.S. Kuo et al.<br />

Nano Letters (2004)<br />

Ideal charged<br />

particle point source<br />

Atom perfect & chemically inert Pd-covered W(111)-base<br />

pyramid. Thermally stable up to ~1000 K


Nano Sci<br />

Lab<br />

<br />

12<br />

29 37<br />

127<br />

Y.P. Chiu et al., Phys. Rev. Lett. 97, 165504 (2006)


Nano Sci<br />

Lab<br />

<br />

35<br />

30<br />

Counting rate (%)<br />

10 nm<br />

25<br />

20<br />

15<br />

10<br />

5<br />

8<br />

6<br />

7<br />

10<br />

12<br />

19<br />

22<br />

24<br />

29<br />

34<br />

37<br />

40<br />

58<br />

0 20 40 60 80 100 120<br />

61<br />

91<br />

Ratio (%)<br />

60<br />

40<br />

20<br />

0<br />

127<br />

24 28 32 36 40<br />

Ag atom number N


Nano Sci<br />

Lab<br />

<br />

Counting rate (%)<br />

10 nm<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

8<br />

6<br />

7<br />

10<br />

12<br />

19<br />

22<br />

24<br />

29<br />

34<br />

37<br />

40<br />

Δ E = (E n+1<br />

+ E n-1<br />

) -2E n<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

58<br />

-0.05<br />

-0.10<br />

-0.15<br />

Ratio (%)<br />

60<br />

40 127<br />

Ag atom number<br />

20<br />

0 20 40 60 80 100 120<br />

61<br />

6<br />

8<br />

10<br />

91<br />

12<br />

0<br />

22 24<br />

5 10 15 20 25 30<br />

24 28 32 36 40<br />

29<br />

Ag atom number N


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />


Nano Sci<br />

Lab<br />


Nano Sci<br />

Lab<br />


• Nano-positioning


• Nano-positioning


• Nano-positioning


• Nano-positioning


Nano Sci<br />

Lab<br />

<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

Gold knife<br />

AFM tip<br />

Base pressure 2 x 10 -10 torr


Nano Sci<br />

Lab<br />

<br />

ChangYC<br />

Base pressure 2 x 10 -10 torr


Kondo Y.


Kondo Y.


Kondo Y.


Kondo Y.


SEM contamination<br />

CNT<br />

NanoSci<br />

Lab


SEM contamination<br />

CNT<br />

NanoSci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

8 nm


Nano Sci<br />

Lab<br />

8 nm


Nano Sci<br />

Lab<br />

NanoSci<br />

Lab


Nano Sci<br />

Lab<br />

first peeling<br />

NanoSci<br />

Lab


Nano Sci<br />

Lab<br />

second peeling<br />

first peeling<br />

NanoSci<br />

Lab


Nano Sci<br />

Lab<br />

ChangYC<br />

NanoSci<br />

Lab


The Mechanical Properties of MWNT


The Mechanical Properties of MWNT<br />

" = # 2<br />

i<br />

i<br />

8$<br />

( 1 D 2 2<br />

+ D )E 1 #<br />

L 2 %<br />

Science 283 (1999) 1513


Development of cantilever-based mass sensor


Development of cantilever-based mass sensor<br />

Year Authors Contribution Sensitivity<br />

1995 G. Y. Chen et al. propose the method of mass sensing ~0.6 pg<br />

1999 P. Poncharal et al. the first CNT-based mass sensor ~22 fg<br />

2003 X. D. Bai et al. dual-mode of ZnO resonance X<br />

2004 B. Ilic et al. derive the expression of a concentrated<br />

mass<br />

~6 ag<br />

2005 M. Nishio et al. the first zeptogram detection ~100 zg<br />

2005 S. Dohn et al. move the position of adsorbed particle ~60 pg<br />

2007 S. Dohn et al. Derive the expression of adsorbed<br />

mass position<br />

~60 pg<br />

★ fg(10 -15 ), ag(10 -18 ), zg(10 -21 )


Development of cantilever-based mass sensor<br />

Year Authors Contribution Sensitivity<br />

1995 G. Y. Chen et al. propose the method of mass sensing ~0.6 pg<br />

1999 P. Poncharal et al. the first CNT-based mass sensor ~22 fg<br />

2003 X. D. Bai et al. dual-mode of ZnO resonance X<br />

2004 B. Ilic et al. derive the expression of a concentrated<br />

mass<br />

~6 ag<br />

2005 M. Nishio et al. the first zeptogram detection ~100 zg<br />

2005 S. Dohn et al. move the position of adsorbed particle ~60 pg<br />

2007 S. Dohn et al. Derive the expression of adsorbed<br />

mass position<br />

~60 pg<br />

2008 Y. C. Chang et al. Atomic-resolution mass sensor<br />

★ fg(10 -15 ), ag(10 -18 ), zg(10 -21 )


Nano Sci<br />

Lab<br />

<br />

Y.-C. Chang et al., Small 4,2195 (2008).


3 nm<br />

Ag cluster<br />

6 nm<br />

Nano Sci<br />

Lab<br />

80 nm<br />

m ~ m 0 (Δf/2f 0 ) ~ 1.8x10 -19 g<br />

(mass of 1000 Ag atoms)<br />

Y.-C. Chang et al., Small 4,2195 (2008).


3 nm<br />

Ag cluster<br />

6 nm<br />

Nano Sci<br />

Lab<br />

80 nm<br />

m ~ m 0 (Δf/2f 0 ) ~ 1.8x10 -19 g<br />

(mass of 1000 Ag atoms)<br />

Q~1000<br />

~10 -22 g<br />

Y.-C. Chang et al., Small 4,2195 (2008).


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


CNT probe for SPM<br />

by OM 2003 by SEM 2004<br />

by TEM 2007<br />

by TEM 2008<br />

<br />

Y.-C. Chang et al., APL 82, 3541 (2003).


1. Nanoscale tip radii<br />

2. High aspect ratio<br />

3. Low tip-sample adhesion<br />

4. Highly robust<br />

...<br />

Carbon nanotube tip F EULER<br />

~ 6.38nN<br />

L~ 500nm, D~ 30nm<br />

Thermo-vibration of CNT probe<br />

X tip<br />

< 0.5nm, SWNT (L) < 100nm<br />

MWNT (L) < 1µm


Optimized CNT probe<br />

<br />

Y.-C. Chang et al., Nanotechnology 20,285307 (2009).


Optimized CNT probe<br />

<br />

Y.-C. Chang et al., Nanotechnology 20,285307 (2009).


Resolution & High aspect ratio<br />

Y. C. Chang et al., JJAP 43 7B, 4517 (2004).<br />

Y.-K. Chen, C.-H. Leng, H. Olivares, M.-H. Lee, Y.-C. Chang, PNAS 101, 10572 (2004).<br />

L.-H. Lee, C.-H. Leng, Y.-C. Chang et al., BBRC 323, 845 (2004).<br />

Y.-C. Chang et al., Biochemsitry 44, 6052 (2005).<br />

M.-H. Lee, Y.-C. Chang, JBC 280, 40980 (2005).<br />

L.-T. Chen, T.-P. Ko, Y.-C. Chang et al., Nucleic Acids Research 35,1787-1801(2007).<br />

PRL 103, 264301 (2009).


Resolution & High aspect ratio<br />

Y. C. Chang et al., JJAP 43 7B, 4517 (2004).<br />

Y.-K. Chen, C.-H. Leng, H. Olivares, M.-H. Lee, Y.-C. Chang, PNAS 101, 10572 (2004).<br />

L.-H. Lee, C.-H. Leng, Y.-C. Chang et al., BBRC 323, 845 (2004).<br />

Y.-C. Chang et al., Biochemsitry 44, 6052 (2005).<br />

M.-H. Lee, Y.-C. Chang, JBC 280, 40980 (2005).<br />

L.-T. Chen, T.-P. Ko, Y.-C. Chang et al., Nucleic Acids Research 35,1787-1801(2007).<br />

PRL 103, 264301 (2009).


Resolution & High aspect ratio<br />

Y. C. Chang et al., JJAP 43 7B, 4517 (2004).<br />

Y.-K. Chen, C.-H. Leng, H. Olivares, M.-H. Lee, Y.-C. Chang, PNAS 101, 10572 (2004).<br />

L.-H. Lee, C.-H. Leng, Y.-C. Chang et al., BBRC 323, 845 (2004).<br />

Y.-C. Chang et al., Biochemsitry 44, 6052 (2005).<br />

M.-H. Lee, Y.-C. Chang, JBC 280, 40980 (2005).<br />

L.-T. Chen, T.-P. Ko, Y.-C. Chang et al., Nucleic Acids Research 35,1787-1801(2007).<br />

PRL 103, 264301 (2009).<br />

<br />

DNA<br />

Dmc1


Highlighted in Nanotechweb:<br />

http://nanotechweb.org/cws/article/lab/39807


Highlighted in Nanotechweb:<br />

http://nanotechweb.org/cws/article/lab/39807


Electron Tomography


Escherichia coli RecA-dsDNA<br />

Y.-W. Chang, T.-P. Ko, C.-D. Lee, Y.-C. Chang et al., PLoS ONE 4, e4890 (2009)


Escherichia coli RecA-dsDNA<br />

left(or right)-handed helical filament?<br />

Y.-W. Chang, T.-P. Ko, C.-D. Lee, Y.-C. Chang et al., PLoS ONE 4, e4890 (2009)


Concept of tomography :<br />

Artifact due to projection<br />

?<br />

Drawing by John O’Brien, The New Yorker Magazine (1991)<br />

“Transmission Electron Microscopy”, David B. Willams


Concept of tomography :<br />

Artifact due to projection<br />

Drawing by John O’Brien, The New Yorker Magazine (1991)<br />

“Transmission Electron Microscopy”, David B. Willams


Concept of tomography :<br />

Artifact due to projection<br />

Drawing by John O’Brien, The New Yorker Magazine (1991)<br />

“Transmission Electron Microscopy”, David B. Willams


Electron Tomography-1<br />

Tilt series<br />

Electron source<br />

Condenser lens<br />

Electron beam<br />

specimen<br />

Objective lens<br />

Intermediate &<br />

Projector lens<br />

CCD Camera


Electron Tomography-1<br />

Tilt series<br />

Electron source<br />

Condenser lens<br />

optical axis<br />

Electron beam<br />

specimen<br />

Objective lens<br />

Intermediate &<br />

Projector lens<br />

Tilt axis<br />

CCD Camera<br />

Eu-centric height calibration is needed


Electron Tomography-1<br />

Tilt series<br />

Electron source<br />

Condenser lens<br />

optical axis<br />

Electron beam<br />

specimen<br />

Objective lens<br />

Intermediate &<br />

Projector lens<br />

Tilt axis<br />

CCD Camera<br />

Eu-centric height calibration is needed


Electron Tomography-1<br />

Tilt series<br />

Tilt specimen<br />

Focus correction<br />

Electron source<br />

Shift correction<br />

By Stage<br />

By Deflector<br />

optical axis<br />

Condenser lens<br />

Electron beam<br />

specimen<br />

Objective lens<br />

Acquire image<br />

Commercial software : Recorder ® (JEOL)<br />

XPlore3D ® (FEI)<br />

Tilt axis<br />

Intermediate &<br />

Projector lens<br />

CCD Camera<br />

<br />

Eu-centric height calibration is needed


Electron Tomography-1 Tilt series


Electron Tomography-1 Tilt series


10 nm


10 nm


Resolution of electron tomography


Resolution of electron tomography


Resolution of electron tomography


Resolution of electron tomography


Resolution of electron tomography


There is plenty of room for improvement<br />

1. More versatile reconstruction algorithms(incorporation of boundary conditions)<br />

2. Electron optics (aberration correction)<br />

3. Dual axis tilting (reduction of missing data)<br />

4. Better detectors (“single” electron detection for intermediate voltage microscopes)<br />

5. Contrast enhancement (Zernike-type phase plates)


There is plenty of room for improvement<br />

1. More versatile reconstruction algorithms(incorporation of boundary conditions)<br />

2. Electron optics (aberration correction)<br />

3. Dual axis tilting (reduction of missing data)<br />

4. Better detectors (“single” electron detection for intermediate voltage microscopes)<br />

5. Contrast enhancement (Zernike-type phase plates)


Electron Tomography-2<br />

Single particle


Electron Tomography-2<br />

Single particle


Electron Tomography-2<br />

Single particle


SPIDER:<br />

(System for Processing Image Data from<br />

Electron microscopy and Related fields)


SPIDER:<br />

(System for Processing Image Data from<br />

Electron microscopy and Related fields)


SPIDER:<br />

(System for Processing Image Data from<br />

Electron microscopy and Related fields)


SPIDER:<br />

(System for Processing Image Data from<br />

Electron microscopy and Related fields)


Pick Window Cull<br />

Align<br />

Projection<br />

SPIDER:<br />

(System for Processing Image Data from<br />

Electron microscopy and Related fields)


Pick Window Cull<br />

Align<br />

Projection<br />

SPIDER:<br />

(System for Processing Image Data from<br />

Electron microscopy and Related fields)


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.


Nano Sci<br />

Lab<br />

<br />

<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.



Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

1st transistor<br />

Quantum-dot<br />

turnstile<br />

Quantum corral<br />

Nanotube transistor<br />

One-atom contact<br />

1960<br />

1980 1990<br />

2000<br />

Century of<br />

Nanotechnology


Nano Sci<br />

Lab<br />

<br />

1st transistor<br />

Quantum-dot<br />

turnstile<br />

Quantum corral<br />

Nanotube transistor<br />

One-atom contact<br />

1960<br />

1980 1990<br />

2000<br />

Century of<br />

Nanotechnology


Nano Sci<br />

Lab<br />

<br />

Y. Huang et al. Science 294, 1313 (2001)<br />

A. Bachtold et al. Science 294, 1317 (2001)<br />

V c (5V)<br />

N-GaN<br />

Au<br />

R<br />

V 1 V 2<br />

V o<br />

“AND”<br />

V o<br />

V 2<br />

P-Si<br />

V c<br />

V 1<br />

Al<br />

J.H. Schon et al. Nature 413, 713 (2001) K.M. Roth et al. JVST B18, 2359 (2000)


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

Y. Cui et al. Science 293, 1289 (2001)


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

1


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

1950<br />

<br />

50003000<br />

1010<br />

<br />

110


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

(Adapted from National Institute for Resources and Environment, Japan http://www.nire.go.jp/<br />

eco_tec_e/hyouka_e.htm).


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab


Nano Sci<br />

Lab<br />

<br />

“Imagine a technology so powerful that it will allow such feats as<br />

desktop manufacturing, cellular repair, artificial intelligence,<br />

inexpensive space travel, clean and abundant energy, and<br />

environmental restoration; a technology so portable that<br />

everyone can reap its benefits; a technology so fundamental that<br />

it will radically change our economic and political systems; a<br />

technology so imminent that most of us will see its impact within<br />

our lifetimes. Such is the promise of Nanotechnology”. Kai Wu


Nano Sci<br />

Lab<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

“Imagine a technology so powerful that it will allow such feats as<br />

desktop manufacturing, cellular repair, artificial intelligence,<br />

inexpensive space travel, clean and abundant energy, and<br />

environmental restoration; a technology so portable that<br />

everyone can reap its benefits; a technology so fundamental that<br />

it will radically change our economic and political systems; a<br />

technology so imminent that most of us will see its impact within<br />

our lifetimes. Such is the promise of Nanotechnology”. Kai Wu


Nano Sci<br />

Lab<br />

<br />

1. Scientific American.<br />

2. Nanotechnology: Big Things from a Tiny World, A Publication of the<br />

National Nanotechnology Initiative.<br />

3. US National Report. (1999) WTEC Panel Report on Nanostructure<br />

Science and Technology RD Status and Trends in Nanoparticles,<br />

Nanostructured Materials, and Nanodevices.<br />

4. UK The Royal Society & The Royal Academy of Engineering<br />

Report. (2004) Nanoscience and nanotechnologies: opportunities and<br />

uncertainties.<br />

5. Report by National Institute for Occupational Safety and Health Report,<br />

(2009) Approaches to Safe Nanotechnology.<br />

http://diamond.iams.sinica.edu.tw/tamol/<br />

http://itri.loyola.edu/nano/final/<br />

http://www.nsf.gov/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!