22.05.2014 Views

PH2100 Formula Sheet - Physics

PH2100 Formula Sheet - Physics

PH2100 Formula Sheet - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PH2100</strong> <strong>Formula</strong> <strong>Sheet</strong> Knight<br />

Concepts of Motion<br />

distance traveled<br />

average speed = time interval spent traveling<br />

<br />

∆ r = rf<br />

−ri<br />

<br />

∆r<br />

vavg<br />

= ∆ t<br />

<br />

∆v<br />

aavg<br />

= ∆ t<br />

Kinematics: The Mathematics of Motion<br />

For Motion in a Straight Line:<br />

ds<br />

vs<br />

= = slope of position-time graph<br />

dt<br />

dvs<br />

as<br />

= = slope of velocity-time graph<br />

dt<br />

tf<br />

⎧area under velocity curve<br />

sf = si + ∫ vsdt = si<br />

+⎨<br />

ti<br />

⎩ from ti<br />

to tf<br />

tf<br />

⎧area under acceleration curve<br />

vfs = vi s<br />

+ ∫ asdt = vi<br />

s<br />

+ ⎨<br />

ti<br />

⎩from<br />

ti<br />

to tf<br />

Uniform Motion:<br />

s = s + v ∆t<br />

f<br />

i<br />

Uniformly Accelerated Motion:<br />

v = v + a ∆t<br />

fs is s<br />

1<br />

f i is<br />

2<br />

v = v + 2a ∆s<br />

2 2<br />

fs is s<br />

s<br />

s<br />

( )<br />

s = s + v ∆ t+ a ∆t<br />

Motion on an Inclined Plane : a =± gsinθ<br />

Vectors and Coordinate Systems<br />

2<br />

s<br />

Force and Motion<br />

1 <br />

a = Fnet<br />

m<br />

<br />

where F = F + F + F + ...<br />

net 1 2 3<br />

Dynamics I: Motion Along a Line<br />

<br />

F = F = ma<br />

( µ<br />

sn, direction as necessary to prevent motion)<br />

( µ<br />

kn, direction opposite the motion)<br />

( µ n, direction opposite the motion)<br />

Need additional help? Then visit the <strong>Physics</strong> Learning Center located in 228 Fisher. Walk-in hours are Sunday<br />

7:00 – 9:00 p.m. and Monday through Thursday 3:00 - 9:00 p.m.<br />

net<br />

∑<br />

i<br />

i<br />

A Model for Friction :<br />

<br />

Static : fs<br />

≤<br />

<br />

Kinetic : fk<br />

=<br />

<br />

Rolling : fr<br />

=<br />

r<br />

<br />

1 2<br />

Drag : D ≈<br />

4<br />

Av , direction opposite the motion<br />

( )<br />

Dynamics II: Motion in a Plane<br />

<br />

r = xiˆ+<br />

yj ˆ<br />

<br />

dr dx<br />

ˆ<br />

dy<br />

v = = i + ˆj = v ˆ ˆ<br />

xi + vy<br />

j<br />

dt dt dt<br />

<br />

dv dv dv<br />

x y<br />

a = = iˆ+ ˆj = a ˆ ˆ<br />

xi + ay<br />

j<br />

dt dt dt<br />

F = F = ma<br />

( net )<br />

( )<br />

net<br />

x<br />

F = F = ma<br />

y<br />

∑<br />

∑<br />

Constant Acceleration :<br />

( ) ( )<br />

1<br />

2<br />

1<br />

2<br />

f<br />

=<br />

i<br />

+<br />

ix∆ +<br />

2 x<br />

∆<br />

f<br />

=<br />

i<br />

+<br />

iy∆ +<br />

2 y<br />

∆<br />

v = v + a ∆t<br />

fx ix x<br />

x<br />

y<br />

x<br />

y<br />

x x v t a t y y v t a t<br />

v = v + a ∆t<br />

fy iy y<br />

y<br />

Projectile Motion :<br />

1<br />

2<br />

A <br />

<br />

xf = xi + vi x∆ t yf = yi + viy∆t− g( ∆t<br />

2 )<br />

Ay<br />

= Ay<br />

ĵ<br />

vf x<br />

= vix = constant vf y<br />

= vi<br />

y<br />

−g∆t<br />

θ 2 2<br />

A ˆ<br />

vf y<br />

= viy<br />

−2g( yf<br />

− y )<br />

x<br />

= Axi<br />

i<br />

x<br />

y y′<br />

<br />

A= A ˆ ˆ<br />

x<br />

+ Ay = Axi + Ay<br />

j<br />

Relative Motion:<br />

<br />

In the figure above:<br />

rPS = rPS '<br />

+ vS ' St<br />

• P<br />

<br />

Ax<br />

= Acos<br />

θ Ay<br />

= Asinθ<br />

vPS = vPS '<br />

+ vS ' S<br />

S<br />

A<br />

2 2 −1⎛<br />

y ⎞<br />

′<br />

x′<br />

A= Ax<br />

+ Ay<br />

θ = tan<br />

<br />

⎜ ⎟<br />

⎝ A<br />

aPS<br />

= aPS<br />

'<br />

S<br />

x ⎠<br />

x


Dynamics III: Motion in a Circle<br />

s<br />

θ =<br />

r<br />

∆θ<br />

average angular velocity = ∆ t<br />

dθ<br />

ω =<br />

dt<br />

v = ωr<br />

t<br />

Uniform Circular Motion :<br />

2πr<br />

2 π rad<br />

v = ω =<br />

T T<br />

θ = θ + ω ∆t<br />

f<br />

i<br />

2<br />

v 2<br />

ar<br />

= = ω r<br />

r<br />

Nonuniform Circular Motion (constant a ):<br />

dv<br />

at<br />

=<br />

dt<br />

at<br />

2<br />

θf = θi + ωi∆ t+ ( ∆t)<br />

2r<br />

at<br />

ωf<br />

= ωi<br />

+ ∆t<br />

r<br />

2<br />

mv<br />

2<br />

Fn<br />

et<br />

=<br />

r ∑ Fr<br />

= mar<br />

= = mω<br />

r<br />

r<br />

⎧0 uniform motion<br />

Fnet<br />

= F<br />

t ∑ t<br />

=⎨<br />

⎩ mat<br />

nonuniform motion<br />

( )<br />

( )<br />

( F )<br />

net<br />

z<br />

∑<br />

= F = 0<br />

z<br />

t<br />

Energy<br />

K =<br />

U<br />

g<br />

mech<br />

1<br />

2<br />

2<br />

f f i i<br />

1<br />

( Fsp ) =−k∆ s Us<br />

=<br />

2<br />

k( ∆s)<br />

s<br />

mv<br />

= mgy<br />

E = K + U<br />

K + U = K + U<br />

(conservation of mechanical energy)<br />

Perfectly Elastic 1-D Collisions ( m initially at rest):<br />

m − m 2m<br />

+ +<br />

1<br />

1 2 1<br />

( v ) = ( v ) ( v ) = ( v )<br />

Work<br />

fx 1 ix 1 fx 2<br />

ix<br />

m1 m2 m1 m2<br />

sf<br />

⎧<br />

⎪ Fds<br />

s<br />

=<br />

si<br />

area under the force-position curve<br />

W =<br />

∫<br />

⎨ ⎪<br />

<br />

<br />

⎩F⋅∆ r = F∆rcos θ if F is a constant force<br />

∆ K = W = W + W + W (work-kinetic energy theorem)<br />

net c diss ext<br />

f i c<br />

th micro micro<br />

th<br />

diss<br />

( i f)<br />

∆ U = U − U =−W<br />

→<br />

dU<br />

Fs<br />

=−<br />

ds<br />

E = K + U<br />

∆ E<br />

E<br />

sys<br />

= −W<br />

= K + U + E<br />

th<br />

Kf + Uf +∆ Eth = Ki + Ui + Wext<br />

dE<br />

dW <br />

= = = ⋅ =<br />

dt<br />

dt<br />

sys<br />

P P F v Fv<br />

2<br />

2<br />

cosθ<br />

Newton’s Third Law<br />

<br />

F<br />

A on B<br />

<br />

=−F<br />

B on A<br />

Impulse and Momentum<br />

<br />

p = mv<br />

f<br />

tf<br />

⎧<br />

⎪∫<br />

Fx<br />

t dt =<br />

ti<br />

( ) area under force curve<br />

J<br />

x<br />

= ⎨<br />

⎪⎩ Favg∆t<br />

∆ px<br />

= Jx<br />

(impulse-momentum theorem)<br />

<br />

P = p1+ p2 + p3+<br />

...<br />

<br />

P = P (conservation of momentum)<br />

i<br />

Newton’s Theory of Gravity<br />

GMm<br />

FM on m<br />

= Fm on M<br />

=<br />

2<br />

r<br />

GM<br />

gsurface =<br />

2<br />

R<br />

GM ⎛ 4π<br />

⎞<br />

Circular Orbit: v= T =⎜ ⎟r<br />

r ⎝GM<br />

⎠<br />

Physical Constants<br />

g = 9.80 m/s<br />

earth<br />

earth<br />

2<br />

G = 6.67 × 10 N ⋅m / kg<br />

M<br />

R<br />

= ×<br />

−11 2 2<br />

24<br />

5.98 10 kg<br />

= ×<br />

6<br />

6.37 10 m<br />

2<br />

2 3<br />

Need additional help? Then visit the <strong>Physics</strong> Learning Center located in 228 Fisher. Walk-in hours are Sunday<br />

7:00 – 9:00 p.m. and Monday through Thursday 3:00 - 9:00 p.m.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!