Preclinical Pop PK C.. - Pharsight Corporation

Preclinical Pop PK C.. - Pharsight Corporation Preclinical Pop PK C.. - Pharsight Corporation

pharsight.com
from pharsight.com More from this publisher

<strong>Pop</strong> <strong>PK</strong> Analysis in Juvenile Rats: <strong>Preclinical</strong> Case Study<br />

04-Sep-2008<br />

Mark L.J. Reimer, PhD<br />

Senior Director, <strong>Preclinical</strong> Development<br />

mreimer@pharsight.com<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Overview<br />

1. Project Background<br />

• Challenge<br />

• Approach<br />

2. Building the Model<br />

• Base <strong>Pop</strong>ulation <strong>PK</strong> Model<br />

• Search for covariates<br />

• Forward addition<br />

• Backward deletion<br />

• Final model equations and parameters<br />

3. Optimal Sampling Strategy<br />

• Partial derivative approach<br />

• Modeling & simulation<br />

• Evaluation of sparse sampling strategies<br />

4. Conclusions and Acknowledgements<br />

slide 2<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Project Background<br />

Large molecule biological<br />

• Recombinant protein in preclinical (ADME/T) development<br />

• Selective to targets implicated in genetic metabolic disorder<br />

Challenge<br />

• 13-week repeat dose tox study in juvenile rats<br />

• Daily IV dosing @ 3 non-zero dose levels<br />

• N=9 per sex per dose in TK arm<br />

• Blood samples collected on Day 1, 28, 56, and 91<br />

• What are the optimum (minimum) number of rats and sampling<br />

times needed in order to reliably assess exposure in TK arm?<br />

Approach<br />

• Develop a population <strong>PK</strong> model based on existing rich and sparse<br />

IV data collected in previous studies<br />

• Propose an optimal sampling strategy (OSS)<br />

• Perform Bayesian analysis on sparse sample set to evaluate<br />

exposure in 13-week tox study (in progress)<br />

slide 3<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Rich Sampling vs. Sparse Sampling Strategies<br />

Rich Sampling (TK Study)<br />

Concentration<br />

Exposure<br />

Time (h)<br />

Sparse Sampling (Tox Study)<br />

Concentration<br />

Exposure<br />

Time (h)<br />

If we know the population statistics (mean and variance) as<br />

developed from the rich sampling TK studies, we can use the<br />

model to fit sparse serum concentration data and derive the<br />

entire drug exposure from as little as a single time point.<br />

slide 4<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Building the Model<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Existing <strong>PK</strong> data<br />

Data from three existing studies are merged<br />

• Study 1 (MD; sparse; one tp 24h post dose every week)<br />

• Study 2 (SD & MD; sparse; 7 tp over 72h; Day 1 & 28)<br />

• Study 3 (SD; rich; 10 tp over 72h)<br />

1000<br />

800<br />

600<br />

Linear<br />

10 3.0 9<br />

9<br />

7<br />

5<br />

4<br />

3<br />

2<br />

10 2.0 9<br />

7<br />

5<br />

4<br />

3<br />

2<br />

Semi-Log<br />

DV<br />

400<br />

DV<br />

10 1.0 9<br />

7<br />

5<br />

4<br />

3<br />

2<br />

200<br />

0<br />

10 0.0 9<br />

7<br />

5<br />

4<br />

3<br />

2<br />

0 10 20 30 40 50 60 70<br />

TIME<br />

10 -1.0<br />

10 30 50 70<br />

TIME<br />

slide 6<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Model Selection<br />

Based on prior knowledge and overall plasma concentration<br />

vs. time curve relationships, a two-compartment IV bolus<br />

model was selected<br />

Blood sample<br />

IV Bolus<br />

Vc<br />

Q<br />

Vp<br />

CL<br />

slide 7<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


NONMEM Analysis<br />

The dataset was analyzed using NONMEM v6 (non-linear mixedeffects<br />

modeling) software (with Wings For NONMEM v6)<br />

Three different error models were tested:<br />

Proportional : Y = a*F MOF = 2591<br />

Additive: Y = b + F MOF = 4162<br />

Proportional + Additive: Y = F + F*a + b MOF = 2536<br />

<br />

MOF = Minimum Objective Function<br />

(a measure of the goodness-of-fit to the data)<br />

slide 8<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Structural Model Goodness-of-Fit Plots<br />

Observed Concentration (ng/mL)<br />

0 200 400 600 800<br />

<strong>Pop</strong>ulation Weighted Residual<br />

-5 0 5<br />

<strong>Pop</strong>ulation Weighted Residual<br />

-5 0 5<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

0 20 40 60<br />

<strong>Pop</strong>ulation Predicted Concentration (ng/mL)<br />

<strong>Pop</strong>ulation Predicted Concentration (ng/mL)<br />

T ime Post Dose (h)<br />

Observed Concentration (ng/mL)<br />

0 200 400 600 800<br />

Individual Weighted Residual<br />

-10 -5 0 5 10<br />

Individual Weighted Residual<br />

-6 -4 -2 0 2 4 6<br />

0 200 400 600 800<br />

0 200 400 600 800<br />

0 20 40 60<br />

Individual Predicted Concentration (ng/mL)<br />

Individual Predicted Concentration (ng/mL)<br />

T ime Post Dose (h)<br />

slide 9<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Covariate Addition<br />

An allometric scaling model was used to assess the effect of body<br />

weight (BW) on the <strong>PK</strong> parameters<br />

CL BW = CL*(BW/0.250) b<br />

● This covariate was successively added to the <strong>PK</strong> parameters to<br />

determine if the net result was a better fit of the observed data<br />

● A covariate effect on the <strong>PK</strong> parameter was retained when there<br />

was a significant improvement in goodness-of-fit (i.e. a decrease in<br />

the absolute MOF value)<br />

slide 10<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Covariate Search: Forward Addition<br />

∆MOF ≥ 4 for statistical significance<br />

Structure<br />

MOF<br />

∆MOF<br />

BASE<br />

+BW on CL<br />

+BW on Q<br />

2536<br />

2179<br />

2474<br />

357<br />

<br />

+BW on Vc<br />

2742<br />

+BW on Vp<br />

2572<br />

BW on CL (b=1)<br />

+BW on Q<br />

+BW on Vc<br />

2179<br />

2010<br />

2146<br />

169<br />

<br />

+BW on Vp<br />

2055<br />

BW on CL, Q<br />

2010<br />

slide 11<br />

+BW on Vc<br />

+BW on Vp<br />

BW on CL, Q, Vp<br />

+BW on Vc<br />

2009<br />

1965<br />

45<br />

1965<br />

1940<br />

25<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Covariate Search: Backward Deletion<br />

∆MOF ≤ 10 for statistical significance<br />

Structure<br />

MOF<br />

∆MOF<br />

FULL<br />

-BW on CL<br />

-BW on Q<br />

-BW on Vc<br />

-BW on Vp<br />

1940<br />

2379<br />

1997<br />

2009<br />

1965<br />

439<br />

57<br />

69<br />

25<br />

X<br />

X<br />

X<br />

X<br />

No covariates can be removed without a significant<br />

deterioration in goodness-of-fit (i.e. increase in MOF value),<br />

therefore the full model includes an effect of BW on all four<br />

basic <strong>PK</strong> parameters<br />

The final model was relaxed (b on CL was unconstrained) and<br />

the data was refit (MOF = 1902)<br />

slide 12<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Final Model Equations<br />

2 COMPARTMENT IV BOLUS<br />

<strong>PK</strong><br />

Primary Parameters<br />

TVCL=THETA(1)*(BW/0.25)**THETA(7) TYPICAL VALUE OF CL (L/h)<br />

CL=TVCL*EXP(ETA(1)) ;CL (POP+VAR) (L/H)<br />

TVQ=THETA(2)*(BW/0.25)**THETA(8) TYPICAL VALUE OF Q (L/h)<br />

Q=TVQ*EXP(ETA(2)) ;Q (POP+VAR) (L)<br />

TVV1=THETA(3)*(BW/0.25)**THETA(10) TYPICAL VALUE OF Vc (L)<br />

V1=TVV1*EXP(ETA(3)) ;Vc (POP+VAR) (L)<br />

TVV2=THETA(4)*(BW/0.25)**THETA(9) TYPICAL VALUE OF Vp (L)<br />

V2=TVV2*EXP(ETA(4)) ;Vp (POP+VAR) (L)<br />

Scaling Parameters<br />

S1=V1/1 Dose in mg conc in mg/L<br />

slide 13<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Final Model Equations<br />

Secondary Parameters<br />

K=CL/V1<br />

AUC=AMT/CL<br />

Cmax=AMT/V1<br />

Vss=V1+V2<br />

HLe=LOG(2)*Vss/CL<br />

Elimination rate (1/h)<br />

Post hoc AUC (mg*h/L)<br />

Post hoc Cmax (mg/L)<br />

Post hoc Vss (L)<br />

Post hoc Effective t1/2 (h)<br />

$ERROR<br />

IPRE=F<br />

PROP=IPRE*THETA(5)<br />

ADD=THETA(6)<br />

SD=SQRT(PROP*PROP+ADD*ADD)<br />

Y = IPRE+SD*ERR(1)<br />

IRES=DV-IPRE<br />

IWRE=IRES/SD<br />

DEFINITION OF IPRED<br />

DEFINITION OF PROPORTIONAL ERROR<br />

DEFINITION OF ADDITIONAL ERROR<br />

DEFINITION OF SD<br />

DEFINITION OF OBSERVED VALUE<br />

DEFINITION OF RESIDUAL<br />

DEFINITION OF WEIGHED RES<br />

slide 14<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Final Model Equations<br />

<strong>Pop</strong>ulation Estimates<br />

THETA (0.001, 0.04) TVCL<br />

THETA (0.001, 0.1) TVQ<br />

THETA (0.001, 0.1) TVV1<br />

THETA (0.001, 0.5) TVV2<br />

Variability Estimates<br />

OMEGA 0.3 ETACL<br />

OMEGA 0.3 ETAQ<br />

OMEGA 0.3 ETAV1<br />

OMEGA 0.3 ETAV2<br />

Error Estimates<br />

THETA (0.01,0.3) ERRCV<br />

THETA (0.01,0.3) ERRSD<br />

Allometric exponent<br />

THETA (1) expb<br />

THETA (1) expc<br />

THETA (1) expd<br />

THETA (1) expe<br />

SIGMA 1 FIX EPS1<br />

ESTIMATION METHOD=1 INTERACTION<br />

MAXEVAL=9900 PRINT=10 POSTHOC<br />

COVARIANCE PRINT=E<br />

slide 15<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


0 20 40 60<br />

T ime Post Dose (h)<br />

0 20 40 60<br />

Full Model Goodness-of-Fit Plots<br />

Observed Concentration (ng/mL)<br />

0 200 400 600 800<br />

<strong>Pop</strong>ulation Weighted Residual<br />

-5 0 5<br />

<strong>Pop</strong>ulation Weighted Residual<br />

0 100 200 300 400 500<br />

0 100 200 300 400 500<br />

<strong>Pop</strong>ulation Predicted Concentration (ng/mL)<br />

T ime Post Dose (h)<br />

<strong>Pop</strong>ulation Predicted Concentration (ng/mL)<br />

Observed Concentration (ng/mL)<br />

0 200 400 600 800<br />

Individual Weighted Residual<br />

-6 -4 -2 0 2 4 6<br />

Individual Weighted Residual<br />

-5 0 5<br />

0 200 400 600 800<br />

0 200 400 600 800<br />

Individual Predicted Concentration (ng/mL)<br />

Individual Predicted Concentration (ng/mL)<br />

slide 16<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved<br />

-6 -4 -2 0 2 4 6


Final Model Parameters<br />

Parameter<br />

Value<br />

%Rel SE<br />

%BSV<br />

<strong>PK</strong><br />

CL (L/h)<br />

0.0163<br />

4.17<br />

26.4<br />

Q (L/h)<br />

0.0195<br />

15.6<br />

60.2<br />

Vc (L)<br />

0.0299<br />

9.87<br />

37.1<br />

Vp (L)<br />

0.15<br />

10.7<br />

23.1<br />

Allometric Exponent<br />

CL<br />

1.27<br />

3.57<br />

Q<br />

1.33<br />

12.4<br />

Vc<br />

0.794<br />

12.1<br />

Vp<br />

1.35<br />

6.3<br />

Residual Error<br />

Proportional (%)<br />

17.2<br />

19.1<br />

Additive (mg/L)<br />

0.118<br />

20.3<br />

slide 17<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Individual Predicted vs. Actual Concentrations<br />

25<br />

1000<br />

Linear Plot of Concentration vs. Time for Animal 397<br />

Semi-Log Plot of Concentration vs. Time for Animal 397<br />

Concentration (mg/L)<br />

20<br />

15<br />

10<br />

Model<br />

Observed<br />

Concentration (mg/L)<br />

100<br />

10<br />

1<br />

Model<br />

Observed<br />

5<br />

0.1<br />

0<br />

0.01<br />

0 6 12 18 24 30 36 42 48 54 60 66 72<br />

0 6 12 18 24 30 36 42 48 54 60 66 72<br />

Time (h)<br />

Time (h)<br />

Example of the fit of the model to the rich (10-time point) TK<br />

data for a single animal. Predicted values lie above and below<br />

observed, but there is no obvious bias.<br />

slide 18<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Optimal Sampling Strategy (OSS)<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Partial Derivatives in WinNonlin® (WNL)<br />

• As part of its modeling features, WinNonlin® (<strong>Pharsight</strong> <strong>Corporation</strong>)<br />

allows plotting of various partial derivatives which can be used to<br />

optimize sampling time points<br />

•The sensitivity of concentration values to a particular <strong>PK</strong> parameter<br />

increases as that parameter's partial derivative deviates from zero<br />

•Sampling in regions of greater sensitivity should result in more<br />

precise estimates for the <strong>PK</strong> parameter evaluation<br />

•The NONMEM population model was inputted into WNL and the partial<br />

derivatives for a rich sampling scenario were obtained<br />

●<br />

Time points included: 0, 0.083, 0.25, 0.5, 0.75, 1, 2, 3, 4… 72 h<br />

slide 20<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Partial Derivatives Results<br />

Vc<br />

CL<br />

Vp<br />

Q<br />

0.083h (Vc)<br />

slide 21<br />

0.5h (Q, Vp)<br />

1h (Q, Vp, Vc, CL)<br />

5h (Vc, Vp)<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Optimal Sample Size Model Validation<br />

STEP 1: Simulate a rich “true” dataset following SD (Day 1) and MD<br />

(Day 28, 56 and 91) using the model<br />

STEP 2: Determine “true” <strong>PK</strong> parameters (AUC, C max<br />

, t ½<br />

) derived from<br />

rich sampling using the model<br />

STEP 3: Evaluate predictive performance (degradation of <strong>PK</strong><br />

parameter estimates) of the model by comparing the <strong>PK</strong> evaluated in<br />

STEP 2 (theoretical parameters) vs. a sparse simulated dataset (fitted<br />

parameters).<br />

The same simulated source data is used throughout. In STEP 2, rich<br />

data (13 time points) from the simulations are used. In STEP 3, sparse<br />

data (1-3 time points; based on the WNL partial derivative analysis)<br />

are used. The post hoc estimates from the model derived from the<br />

candidate sparse time points are compared to the “true” parameters.<br />

slide 22<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Simulations<br />

Actual sampling occasions, dose levels and dosing regimen from<br />

the 13-week tox study design were used.<br />

BW increases with respect to sampling occasions (Day 1 SD to Day<br />

91 MD) were simulated based on reference growth curve data. An<br />

E max (with baseline) model was used:<br />

For males:<br />

For females:<br />

⎛ (682-58) ⋅ Day<br />

BW (g) = 58+ ⎜<br />

⎝ Day + 64.2<br />

3.41<br />

3.41 3.41<br />

⎞<br />

⎟<br />

⎠<br />

⎛ (293-53) ⋅Day<br />

BW (g) = 53+ ⎜<br />

⎝ Day + 52.1<br />

3.44<br />

3.44 3.44<br />

⎞<br />

⎟<br />

⎠<br />

A variance component (BSV of 1%) was also added to account for<br />

inter-individual variation. This was assumed to remain relatively<br />

unchanged over time.<br />

slide 23<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Model Performance Evaluation<br />

N<br />

−1<br />

[ * ∑( i<br />

)]<br />

i=<br />

1<br />

MPE = N pe<br />

Bias<br />

N<br />

1<br />

−1 ∑<br />

2 2<br />

i<br />

i=<br />

1<br />

RMSE% = [ N * ( pe ) ]<br />

Precision<br />

pe = [( AUC ) − ( AUC )]/( AUC )<br />

predicted truevalue truevalue<br />

slide 24<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Sparse Sampling Strategy Evaluation for SD (Day 1)<br />

<br />

<br />

Precision remains relatively similar across sampling scenarios.<br />

Sampling 9 animals @ 0.5 h post dose offers the lowest overall bias in terms of<br />

AUC and half life.<br />

Sampling 3 animals @ 0.083, 0.5 and 1 h post dose offers low bias in all<br />

parameters, with slightly higher precision, when compared to the single point<br />

approach.<br />

slide 25<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Sparse Sampling Strategy Evaluation for MD<br />

<br />

For multiple doses, although the single 0.5 h time point gives lower absolute<br />

numbers, both approaches have overall similar bias and precision.<br />

The same sampling approach as selected in Day 1 can be used.<br />

<br />

slide 26<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Conclusions<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Conclusions<br />

•Building the Model<br />

● A population <strong>PK</strong> model was developed based on prior <strong>PK</strong>/TK knowledge<br />

● The effect of BW on <strong>PK</strong> parameters (CL, V c<br />

, V p<br />

, and Q) was established<br />

•Optimal Sampling Strategy<br />

● Sampling 3 animals @ 0.083, 0.5, and 1 h is recommended on Day 1<br />

● Sampling 9 animals @ 0.5 h would also lead to acceptable estimates<br />

● A single point sampling strategy was adopted for both SD and MD<br />

•Next Steps<br />

● Pending interim results from 13-week tox study, sparse sampling strategy<br />

will be re-evaluated and model adjusted (if required)<br />

slide 28<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved


Simulating the future based on past results<br />

• There is a growing use of in silico tools at both the preclinical and<br />

clinical ends of the drug discovery and delivery process<br />

• <strong>Pop</strong>ulation <strong>PK</strong> modeling & simulation can help to optimize preclinical<br />

sampling strategies, especially when faced with practical sampling<br />

challenges<br />

● “Trial & Error” approaches are too expensive<br />

• Cross-functional interaction between <strong>Pharsight</strong>’s preclinical and<br />

clinical teams to arrive at optimal study design<br />

• Acknowledgements<br />

● Dr. Martin Beliveau, Associate Scientist, Reporting and Analysis Service<br />

slide 29<br />

© <strong>Pharsight</strong> <strong>Corporation</strong> All Rights Reserved

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!