20.05.2014 Views

ES Vol 3 (Technical App)

ES Vol 3 (Technical App)

ES Vol 3 (Technical App)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

966<br />

Fauch Hill Wind Farm<br />

<strong>Technical</strong> <strong>App</strong>endix 9.6<br />

Candidate Turbine Specification<br />

Data


967<br />

Estimated Sound Power Level<br />

E-82 E3<br />

Page<br />

1 of 3<br />

Estimated<br />

Sound Power Level<br />

of the<br />

ENERCON E-82 E3<br />

Operational Mode I<br />

(Data Sheet)<br />

Imprint<br />

Publisher:<br />

Copyright:<br />

Content subject to<br />

change:<br />

ENERCON GmbH ▪ Dreekamp 5 ▪ 26605 Aurich ▪ Germany<br />

Phone: +49 4941 927-0<br />

Fax: +49 4941 927-109<br />

© ENERCON GmbH. Any reproduction, distribution and utilisation of this document as well as the<br />

communication of its contents to third parties without express authorisation is prohibited. Violators will<br />

be held liable for monetary damages. All rights reserved in the event of the grant of a patent, utility<br />

model or design.<br />

ENERCON GmbH reserves the right to change, improve and expand this document and the subject<br />

matter described herein at any time without prior notice.<br />

Revision<br />

Revision: 1.0<br />

Department: ENERCON GmbH / Site Assessment<br />

Glossary<br />

WEC<br />

WECs<br />

means an ENERCON wind energy converter.<br />

means more than one ENERCON wind energy converter.<br />

Document information:<br />

Author/Revisor/ date:<br />

<strong>App</strong>roved / date:<br />

Translator /date:<br />

Sch/ May 2010<br />

JSt/ May 2010<br />

© Copyright ENERCON GmbH. All rights reserved.<br />

Documentname SIAS-04-SPL E-82 E3 OM I 3MW Est Rev1_0-eng-eng.doc<br />

Revision /date:<br />

Rev 1.0 / May 2010


968<br />

Estimated Sound Power Level<br />

E-82 E3<br />

Page<br />

2 of 3<br />

Estimated Sound Power Level for the E-82 E3 with 3 MW rated<br />

power<br />

in relation to standardized wind speed v S at 10 m height<br />

hub height<br />

V s<br />

in 10 m height<br />

85 m 98 m 108 m<br />

5 m/s 98.0 dB(A) 98.4 dB(A) 98.7 dB(A)<br />

6 m/s 102.0 dB(A) 102.4 dB(A) 102.7 dB(A)<br />

7 m/s 105.0 dB(A) 105.3 dB(A) 105.5 dB(A)<br />

8 m/s 106.0 dB(A) 106.0 dB(A) 106.0 dB(A)<br />

9 m/s<br />

10 m/s<br />

95% rated power 106.0 dB(A) 106.0 dB(A) 106.0 dB(A)<br />

in relation to wind speed at hub height<br />

wind speed at hub<br />

height [m/s]<br />

7 8 9 10 11 12 13 14 15<br />

Sound Power Level<br />

[dB(A)]<br />

98.0 100.9 103.6 105.3 106.0 106.0 106.0 106.0 106<br />

1. The relation between the estimated sound power level and the standardized wind speed v S in<br />

10 m height as shown above is valid on the premise of a logarithmic wind profile with a roughness<br />

length of 0.05 m. The relation between the estimated sound power level and the wind speed at<br />

hub height applies for all hub heights. During the sound measurements the wind speeds are<br />

derived from the power output and the power curve of the WEC.<br />

2. An estimated tonal audibility of ΔL a,k ≤ 2 dB can be expected over the whole operational range<br />

(valid in the near vicinity of the turbine according to IEC 61 400 -11 ed. 2).<br />

3. The estimated sound power level values given in the table are valid for the Operational Mode I.<br />

The respective power curve is the calculated power curve E-82 E3 dated November 2009 (Rev.<br />

2.x).<br />

4. Due to the typical measurement uncertainties, if the sound power level is measured according to<br />

one of the accepted methods the measured values can differ from the values shown in this<br />

document in the range of +/- 1 dB.<br />

Document information:<br />

Author/Revisor/ date:<br />

<strong>App</strong>roved / date:<br />

Translator /date:<br />

Sch/ May 2010<br />

JSt/ May 2010<br />

© Copyright ENERCON GmbH. All rights reserved.<br />

Documentname SIAS-04-SPL E-82 E3 OM I 3MW Est Rev1_0-eng-eng.doc<br />

Revision /date:<br />

Rev 1.0 / May 2010


969<br />

Estimated Sound Power Level<br />

E-82 E3<br />

Page<br />

3 of 3<br />

Accepted measurement methods are:<br />

a) IEC 61400-11 ed. 2 („Wind turbine generator systems – Part 11: Acoustic noise measurement<br />

techniques; Second edition“), and<br />

b) the FGW-Guidelines („Technische Richtlinie für Windenergieanlagen – Teil 1: Bestimmung der<br />

Schallemissionswerte“, published by the association “Fördergesellschaft für Windenergie<br />

e.V.”, 18 th revision).<br />

If the difference between total noise and background noise during a measurement is less than<br />

6 dB a higher uncertainty must be considered.<br />

5. For noise-sensitive sites it is possible to operate the E-82 E3 with reduced rotational speed and<br />

reduced rated power during night time. The sound power levels resulting from such operational<br />

mode can be provided in a separate document upon request.<br />

6. The sound power level of a wind turbine depends on several factors such as but not limited to<br />

regular maintenance and day-to-day operation in compliance with the manufacturer’s operating<br />

instructions. Therefore, this data sheet can not, and is not intended to, constitute an express or<br />

implied warranty towards the customer that the E-82 E3 WEC will meet the exact sound power<br />

level values as shown in this document at any project specific site.<br />

Document information:<br />

Author/Revisor/ date:<br />

<strong>App</strong>roved / date:<br />

Translator /date:<br />

Sch/ May 2010<br />

JSt/ May 2010<br />

© Copyright ENERCON GmbH. All rights reserved.<br />

Documentname SIAS-04-SPL E-82 E3 OM I 3MW Est Rev1_0-eng-eng.doc<br />

Revision /date:<br />

Rev 1.0 / May 2010


970<br />

Müller-BBM GmbH<br />

Branch Office Gelsenkirchen<br />

Am Bugapark 1<br />

45899 Gelsenkirchen<br />

Germany<br />

Tel. +49 (209) 98308-0<br />

Fax +49 (209) 98308-11<br />

www.MuellerBBM.de<br />

Dipl.-Ing. (FH) Michael Köhl<br />

Tel. +49 (209) 98308-21<br />

Michael.Koehl@MuellerBBM.de<br />

2011-01-19<br />

M89 031/2 khl<br />

Sound emission measurement<br />

according to IEC 61400-11<br />

at a wind turbine of the type<br />

ENERCON E-82 E3<br />

located in 26632 Ihlow/Simonswolde<br />

(Germany)<br />

Test Report No. M 89 031/2<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC : 19. 01. 2011<br />

Client:<br />

Acoustic consultants:<br />

Enercon GmbH<br />

Dreekamp 5<br />

26605 Aurich<br />

Dipl.-Ing. (FH) Michael Köhl<br />

Dipl.-Ing. (FH) Marcus Paewinsky<br />

Date of the report: 19 January 2011<br />

Date of the tests: 24 August 2010<br />

Total number of pages:<br />

78 pages, thereof<br />

19 pages text,<br />

4 pages <strong>App</strong>endix A<br />

14 pages <strong>App</strong>endix B<br />

23 pages <strong>App</strong>endix C<br />

4 pages <strong>App</strong>endix D<br />

3 pages <strong>App</strong>endix E and<br />

11 pages <strong>App</strong>endix F<br />

Certified quality management system according to ISO 9001<br />

Müller-BBM GmbH<br />

Accredited testing laboratory according to ISO/IEC 17025 Branch Office Gelsenkirchen, HRB München 86143<br />

Managing directors: Horst Christian Gass<br />

Bernd Grözinger, Dr. Carl-Christian Hantschk<br />

Dr. Edwin Schorer, Norbert Suritsch


971<br />

Table of contents<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Summary 4<br />

1 Task 5<br />

2 References 5<br />

3 Description of the wind turbine 6<br />

3.1 Surroundings of the investigated WT 6<br />

3.2 <strong>Technical</strong> data of the WT 6<br />

4 Execution of the measurements 7<br />

4.1 Time of the measurements 7<br />

4.2 Description of the measuring set-up 7<br />

4.3 Measuring equipment 8<br />

4.4 Measured parameters 9<br />

4.5 Execution of the measurements 9<br />

5 Evaluation and results regarding the sound emission of the WT 11<br />

5.1 Measurement of the wind speed 11<br />

5.1.1 Determination of the standardised wind speed from the measured<br />

electric power 11<br />

5.1.2 Determination of the standardised wind speed from the<br />

measurements with the anemometer 13<br />

5.2 Equivalent continuous sound pressure level during operation of the<br />

WT 13<br />

5.3 Equivalent continuous sound pressure level during standstill of the<br />

WT 14<br />

5.4 Equivalent continuous sound pressure levels with background noise<br />

correction 14<br />

5.5 Sound power level of the WT as a function of the standardised wind<br />

speed 14<br />

5.6 Sound power level of the WT 16<br />

5.7 Sound power level of the WT related to the normalized wind speed in<br />

hub height 16<br />

5.8 Tonal components of the WT noise 17<br />

5.9 Summarized results 17<br />

5.10 Remarks regarding computational accuracy and rounding 17


972<br />

6 Measuring uncertainty 18<br />

6.1 Influences on site 18<br />

6.2 Measuring uncertainty type A and B 18<br />

6.3 Total measuring uncertainty 18<br />

7 <strong>App</strong>arent sound power level related to other hub heights 19<br />

<strong>App</strong>endices<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Layout plan and photos<br />

Documentation of measurement<br />

Results of the evaluation<br />

Calculated performance curve, performance curve used for<br />

the evaluation (linearized), certificate of the manufacturer<br />

Master sheet noise<br />

<strong>App</strong>arent sound power level related to other hub heights<br />

(hub heights: 78 m, 85 m, 98 m, 108 m and 138 m)<br />

89031_02_Pbe_1E.DOC:19. 01. 2011


973<br />

Summary<br />

For the company Enercon GmbH, sound emission measurements at a wind turbine<br />

(WT) of the type ENERCON E-82 E3 with a hub height of 98 m were carried out in<br />

26632 Ihlow/Simonswolde, Germany.<br />

The sound emission measurements were carried out on 24 th August 2010 according<br />

to DIN EN 61400-11 (German version of IEC 61400-11) with the WT operated with a<br />

maximum electric power of 3000 kW and a maximum rotational speed from 6 rpm to<br />

18 rpm.<br />

Hereby a maximum sound power level of L WA = 105.4 dB(A) was determined in the<br />

standardised wind class of 10 m/s, which was calculated from the electrical power<br />

data of the WT.<br />

Due to the noise impression on site no tonal or impulsive noise emitted by the wind<br />

turbine components was audible. An evaluation of impulsivity therefore was not<br />

applied. But to verify the noise impression related to the tonality, an evaluation of<br />

tonality according to IEC 61400-11 in combination with DIN 45681 was performed.<br />

The results have shown that no tone adjustments K TN in the vicinity of the WT were<br />

necessary.<br />

For the uncertainty of the sound emission data, a value of U C = 0.8 dB was determined<br />

according to IEC 61400-11.<br />

Responsible for the technical content:<br />

Dipl.-Ing. (FH) Michael Köhl<br />

Telephone: ++49(0)209 98308-21<br />

MÜLLER-BBM<br />

Accredited Test Laboratory<br />

according to ISO/IEC 17025<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

DAP-PL-2465.10


974<br />

1 Task<br />

For the company Enercon GmbH, sound emission measurements at a wind turbine<br />

(WT) of the type ENERCON E-82 E3 with a hub height of 98 m are to be performed<br />

in 26632 Ihlow/Simonswolde, Germany.<br />

The measuring set-up shall meet the requirements of DIN EN 61400-11 (German<br />

version of IEC 61400-11) with the WT operating with a maximum electric power of<br />

3000 kW and a maximum rotational speed up to 18 rpm. Figure A 1 in <strong>App</strong>endix A<br />

shows a layout plan with the position of the WT.<br />

2 References<br />

[1] IEC TS 61400-11 Wind turbines. Part 11: Acoustic noise measurement<br />

techniques. November 2002.<br />

[2] IEC TS 61400-14 Wind turbines - Part 14: Declaration of apparent sound power<br />

level and tonality values. March 2005.<br />

[3] DIN EN 61400-11: Wind turbine generator systems – Part 11: Acoustic noise<br />

measurement techniques. March 2007.<br />

[4] DIN 45681: Determination of tonal components of noise and determination of a<br />

tone adjustment for the assessment of noise immissions. March 2005.<br />

[5] DIN EN 61672 - 1 (IEC 61672-1:2002): Sound level meters . Part 1:<br />

Specifications (IEC 61672-1:2002); German version EN 61672-1:2003.<br />

[6] DIN EN 60942 (IEC 60942:2003): Sound calibrators (IEC 60942:2003);<br />

German version EN 60942:2003.<br />

[7] DIN 1333: Presentation of numerical data. February 1992.<br />

[8] Fördergesellschaft Windenergie e.V:<br />

Technische Richtlinien für Windenergieanlagen (FGW-Richtlinie) , Teil 1:<br />

Bestimmung der Schallemissionswerte, Revision 18, Stand 01.02.2008.<br />

[9] Enercon GmbH:<br />

E-mails of the Site Assessment department with certificate of the manufacturer,<br />

performance curve for 3000 kW, extract from minute average values of the WT<br />

plant Enercon E-82 E3; Aurich, August and September 2010.<br />

89031_02_Pbe_1E.DOC:19. 01. 2011


975<br />

3 Description of the wind turbine<br />

3.1 Surroundings of the investigated WT<br />

The surroundings of the investigated WT are shown in the Figures A 2 to A 4 in<br />

<strong>App</strong>endix A.<br />

As can be taken from the photos, the surroundings are characterized by agriculture.<br />

Within a large radius of the WT, the surrounding area is relatively even.<br />

3.2 <strong>Technical</strong> data of the WT<br />

The WT is a gearless machine, which is operated in partial load with variable speed<br />

and individual pitch control. The following specifications are valid:<br />

Manufacturer:<br />

Type:<br />

Enercon GmbH, Dreekamp 5, 26605 Aurich<br />

ENERCON E-82 E3<br />

Serial No. : 82001<br />

Data of the WT:<br />

Rated power: 3000 kW, horizontal axis wind turbine<br />

Height of the rotor centre above the ground: H = 98 m<br />

Switch-on wind speed: 2.5 m/s<br />

Rated wind speed: 16 m/s<br />

Pitch power control, electric drive<br />

Tower material: concrete<br />

Rotor:<br />

Generator:<br />

Rotor diameter: D = 82 m<br />

Upwind turbine with active pitch control, in partial load operation with<br />

variable speed of 6 to 18 rpm<br />

Independent control system for each rotor blade<br />

Distance between rotor centre and tower centre line: 4.62 m<br />

E-82 E3<br />

Gear unit:<br />

The plant is designed without any gear unit.<br />

The short version of the manufacturer’s certificate is shown on figure D 3 in<br />

<strong>App</strong>endix D.<br />

89031_02_Pbe_1E.DOC:19. 01. 2011


976<br />

4 Execution of the measurements<br />

4.1 Time of the measurements<br />

The measurements were carried out on 24 August 2010 between 03:50 p.m. and<br />

08:28 p.m..<br />

4.2 Description of the measuring set-up<br />

According to [1], for the sound emission measurements the microphone was installed<br />

on a sound-reflecting board made of aluminium. The dimensions of the board are:<br />

Diameter 1.1 m,<br />

Thickness 3.0 mm.<br />

According to [1], the reference point must be on the lee side of the WT in an angle of<br />

± 15° with regard to the wind direction during the measurements. This position was<br />

observed (see Figure A 2 in <strong>App</strong>endix A).<br />

The wind direction was controlled before any single measurement and the position of<br />

the measuring board was adjusted along the prepared distance-line, if necessary.<br />

The microphone was protected against wind-induced noise by means of two windscreens.<br />

For the first windscreen, one half of the original B&K foam ball with a diameter<br />

of 90 mm was used. The second windscreen was a set-up developed by Müller-<br />

BBM (see Figure A 4 in <strong>App</strong>endix A). The frequency response of this screen had<br />

been checked in Müller-BBM’s reverberation chamber. It resulted from this test that a<br />

frequency response correction was required for the evaluated frequency range which<br />

was taken into account during the further evaluations.<br />

According to [1], the reference point for sound measurements must have a distance<br />

to the tower centreline of the WT of R O = H + D/2 (permissible tolerance: ± 20 %). For<br />

the hub height of H = 98,4 m and the rotor diameter of D = 82 m it follows that<br />

R O = 139,4 m. Thus, taking into consideration the tolerance, the reference point must<br />

be located at a distance of R O = 111,5 m up to R O = 167,3 m. With a distance of<br />

R O = 153,8 m between reference point and the tower centreline of the WT, the requirement<br />

stated in [1] was fulfilled.<br />

With a distance between tower centreline and centre of rotor of R T - R f = 4.62 m and<br />

the vertical height difference between reference point and tower foundation of 0 m, an<br />

inclination angle φ = 31.9° results. Thus, the requirement of 25°≤ φ ≤ 40° according to<br />

[1] was fulfilled.<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

According to [1], an anemometer has to be installed in headwind direction in front of<br />

the WT at a height of between 10 m and hub height. The distance to the rotor level<br />

must be between 2*D and 4*D. Due to the described procedures in [8] related to WT<br />

with higher hub heights it is acceptable to set up the mast closer to the WT.


977<br />

Because of a technical failure with the mast no data were recorded with the wind<br />

speed indicator and the wind direction indicator. Instead of that the meteorological<br />

data of the equipment of an adjacent met mast were collected. This met mast is<br />

erected in a distance of approx. 142 m south of the E-82 E3. On figure A 3 in <strong>App</strong>endix<br />

A the met mast is depicted.<br />

The indicators on top of this met mast, in a height of 30 m above ground, are calibrated<br />

and therefore suitable for any further evaluation.<br />

4.3 Measuring equipment<br />

The measuring equipment used for the measurements on site and for the evaluation<br />

in the laboratory is listed in Table 1.<br />

Table 1.<br />

Equipment for measurement and evaluation<br />

Name Manufacturer Type Serial No.<br />

Precision sound analyser Brüel & Kjaer 2260 2131750<br />

Microphone Brüel & Kjaer 4189 2097077<br />

Calibrator Brüel & Kjaer 4231 1821239<br />

Windscreen, primary Brüel & Kjaer UA0237 -<br />

Windscreen, secondary Müller-BBM - -<br />

Anemometer<br />

Wind speed indicator<br />

Wind direction indicator<br />

Deutsche Windguard<br />

Deutsche Windguard<br />

TFC adv.<br />

TFC<br />

06101657<br />

0408408<br />

Weather station Conrad BAR 899 HG 1006147<br />

Barometer Brüel & Kjaer UZ003 -<br />

Thermometer - - -<br />

Notebook Dell Latitude E6400 -<br />

Mobile measuring system<br />

Measuring and evaluation<br />

software<br />

Müller-BBM Vibro-<br />

Akustik Systeme<br />

GmbH<br />

Müller-BBM Vibro-<br />

Akustik Systeme<br />

GmbH<br />

PAK-Mobil MKII -<br />

PAK Version 5.5<br />

Evaluation software Müller-BBM WEA_DaV Version 1.2f<br />

Laser range finder Leica LRF 1200 scan 1136324<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

The applied precision sound analyser, the accompanying microphone and the calibrator<br />

were calibrated and fulfill the requirements of class 1 according to DIN EN 61672<br />

[5] (precision sound analyser) respectively DIN EN 60942 [6] (calibrator).<br />

The acoustic measuring chain was calibrated before the measurements.<br />

The calibration was checked and confirmed after the measurements. All measuring<br />

and evaluation devices are checked regularly in our own calibration laboratory. They<br />

meet the requirements on measuring and evaluation equipment stated in [1].


978<br />

4.4 Measured parameters<br />

During the measurements, the following quantities were recorded and digitally saved<br />

by the PAK multi-channel measuring system as a function of time:<br />

• Sound pressure level at the reference point (parallel recording and saving by a<br />

calibrated sound analyser)<br />

• Wind speed and direction measured with the wind indicators of Müller-BBM<br />

• Wind speed recorded with the anemometer of the WT<br />

• Electric power P m and rotational speed measured at the WT<br />

In addition, the atmospheric pressure p and the air temperature T K at the beginning of<br />

each test series was taken from the weather station and documented.<br />

4.5 Execution of the measurements<br />

At the time of the measurements, the E-82 E3 was operated with a maximum electric<br />

power of 3000 kW. For this operational mode as well as for standstill of the WT, the<br />

following measuring times were realized:<br />

- WT in operation with a maximum electric power of 3000 kW: 95 minutes<br />

- WT during standstill, i.e. background noise measurements: 80 minutes<br />

The following Table 2 gives an overview of the test runs and the observed weather<br />

conditions during the measurements. The stated 10 s averages of the wind speed<br />

and wind direction were determined from the data recorded with the wind speed and<br />

wind direction indicators of the met mast in a height of 30 m.<br />

Table 2.<br />

Summary of the test runs considered in the evaluation, with accompanying<br />

weather conditions<br />

Test<br />

No.<br />

Operational<br />

mode of<br />

the WT<br />

Time<br />

Weather station<br />

Temperature<br />

in °C<br />

Atmospheric<br />

pressure<br />

in hPa<br />

Anemometer at a height of 30 m<br />

Wind direction in ° Wind speed in m/s<br />

Minimum<br />

Maximum<br />

Average<br />

Minimum<br />

Maximum<br />

Average<br />

M_01<br />

Standstill<br />

15:50 -<br />

16:20<br />

20 1003 -- -- -- 9 17 13<br />

M_03<br />

3000 kW<br />

16:33-<br />

16:41<br />

20 1003 -- -- -- 11 17 15<br />

M_04<br />

3000 kW<br />

17:05 -<br />

17:35<br />

20 1003 -- -- -- 8 18 13<br />

M_05<br />

3000 kW<br />

17:44 -<br />

17:58<br />

19 1003 219 273 251 7 18 12<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M_06<br />

M_07<br />

M_08<br />

M_09<br />

3000 kW<br />

3000 kW<br />

Standstill<br />

Standstill<br />

18:05-<br />

18:21<br />

18:25-<br />

18:52<br />

19:44-<br />

20:14<br />

20:38-<br />

20:58<br />

18 1002 224 266 242 7 15 11<br />

16 1000 198 261 234 8 17 12<br />

15 1000 201 267 233 8 14 11<br />

13 1000 199 245 219 6 11 8


979<br />

The above-mentioned test runs are documented in detail in the Figures B 1 to B 13 in<br />

<strong>App</strong>endix B. The time slices which were excluded from the evaluation because of<br />

disturbing background noise are marked with a grey shade. If required, further disturbing<br />

background noise was cut out in the laboratory during the evaluation.<br />

Enercon provided the operating data of the investigated WT for the day measurement<br />

with [9]. These data are shown in Figure C 21 in <strong>App</strong>endix C.<br />

Table 3.<br />

Number of 10 s intervals recorded during the measurements, which were used for<br />

the evaluation<br />

Test No.<br />

Standardised wind class, m/s<br />

7 8 9 10<br />

WT in operation<br />

M_03 -- -- 2 6<br />

M_04 7 31 31 19<br />

M_05 11 3 17 16<br />

M_06 10 25 31 17<br />

M_07 6 18 51 31<br />

total 34 77 132 89<br />

Standstill of the WT<br />

M_01 -- 6 27 39<br />

M_08 22 59 50 26<br />

M_09 61 19 3 --<br />

Total 83 84 80 65<br />

According to [1], measuring data for each wind speed class with a total measuring<br />

time of 180 s should be determined for the evaluation.<br />

As shown in the above Table 3, during the measurements with the WT in operation<br />

as well as the measurements while the WT was in standstill, a sufficient number of<br />

10 s averages according to [1] was determined in the wind classes 7 m/s to 10 m/s.<br />

In the wind classes 6 m/s an insufficient number of 10 s averages was determined<br />

and therefore these values are not shown in Table 3.<br />

89031_02_Pbe_1E.DOC:19. 01. 2011


980<br />

5 Evaluation and results regarding the sound emission of the WT<br />

The most important target of the evaluation is to describe the sound emission of the<br />

WT as a function of wind speed. According to IEC 61400-11 [1], the so-called<br />

“standardised wind speed V S ” should be used as a reference value. This is the wind<br />

speed converted to reference conditions (at a height of 10 m and a roughness length<br />

of 0.05 m) assuming a logarithmic wind profile.<br />

According to [1], the measured wind speed range can be divided into wind classes<br />

with a width of 1 m/s. These wind classes have to be arranged symmetrically and not<br />

overlapping to integer values of wind speed.<br />

The first step in the evaluation consists in determining this standardised wind speed,<br />

which can then be correlated with the other measuring data.<br />

5.1 Measurement of the wind speed<br />

According to [1], the wind speed should be determined either<br />

1. from the generated power output and the performance curve of the WT or<br />

2. from the measurement with an anemometer.<br />

Method 1 is obligatory for measurements within the scope of a certification or declaration<br />

of sound emission values.<br />

For background noise measurements during standstill of the WT, the wind speed is<br />

determined from values measured by means of the anemometer at a height of 12 m.<br />

In the following chapters, both methods are described.<br />

5.1.1 Determination of the standardised wind speed from the measured electric<br />

power<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

The standardised wind speed V S during operation of the WT is determined according<br />

to the method described as preferable according to [1] from the measured electric<br />

power of the WT and the performance curve of the WT. The performance curve of the<br />

WT illustrates the relation of the wind speed V Z at the height of the rotor centre and<br />

the electric power P n generated by the WT for atmospheric standard conditions of<br />

15°C and 101.3 kPa. The power curve was submitted by the manufacturer Enercon in<br />

[9]. It is a calculated power output curve and is shown in the form of a diagram and a<br />

table in Figure D 1 in <strong>App</strong>endix D. For further evaluation, the power curve is approximated<br />

by a linearization of the individual data points. This linearization is shown in<br />

Figure D 2 in <strong>App</strong>endix D.<br />

As the investigated WT has an active pitch control, no correction of the measured<br />

electric power P m to the atmospheric standard conditions is required for the evaluation.<br />

Instead, according to [1] the measured power is used for the standardised electric<br />

power:<br />

P n = P m (1)


981<br />

For systems with active pitch control, the wind speed V D determined from the performance<br />

curve must be corrected to the standard climatic conditions according to<br />

equation (4) from [1].<br />

V H<br />

V D<br />

T ref<br />

T k<br />

p<br />

p ref<br />

1<br />

3<br />

⎛ p ⎞<br />

ref<br />

⋅Tk<br />

V = ⋅<br />

⎜<br />

⎟<br />

H<br />

VD<br />

in m/s (2)<br />

⎝ p ⋅Tref<br />

⎠<br />

corrected wind speed in hub height in m/s<br />

wind speed derived from performance curve in m/s<br />

= 288 K, temperature at standard conditions<br />

measured temperature in K<br />

measured atmospheric pressure in kPa<br />

= 101.3 kPa, atmospheric pressure at standard conditions<br />

With the weather data from the measurements, the following equation results:<br />

V H = V D ⋅ 1,001 (for T min ) und V H = V D ⋅ 1,009 (for T max )<br />

According to [1], the wind speed V Z in hub height, which results from the performance<br />

curve for P n , can be converted to the standardised wind speed V S by applying the<br />

following equation:<br />

V<br />

S<br />

= V<br />

Z<br />

⎡ ⎛ z<br />

⋅⎢ln<br />

⎜<br />

⎢⎣<br />

⎝ z0<br />

ref<br />

ref<br />

⎞ ⎛<br />

⎟⋅ln<br />

⎜<br />

⎠ ⎝<br />

H<br />

z<br />

O<br />

⎞⎤<br />

⎡ ⎛<br />

⎟⎥:<br />

⎢ln<br />

⎜<br />

⎠⎥⎦<br />

⎢⎣<br />

⎝<br />

H<br />

z<br />

0ref<br />

⎞ ⎛<br />

⎟⋅ln<br />

⎜<br />

⎠ ⎝<br />

z<br />

z<br />

O<br />

⎞⎤<br />

⎟⎥<br />

⎠⎥⎦<br />

in m/s (3)<br />

V S<br />

standardised wind speed at a height of 10 m<br />

V Z<br />

wind speed in hub height; in this case, the wind speed at hub height V H<br />

derived from the power curve and corrected to standard conditions<br />

z<br />

ref<br />

reference height of 10 m<br />

z 0 ref<br />

reference roughness length of 0.05 m<br />

H<br />

z<br />

z<br />

0<br />

hub height, in this case H = 98,4 m above the ground<br />

height of the anemometer, here z = H<br />

roughness length at the measuring position, here z 0 = 0.05 m<br />

For the existing geometry of the WT, the following equation results:<br />

V S = V z ⋅ 0.699<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

In all, the conversion of V D via V H to V S results in the following equation:<br />

V S = V D ⋅ 0,699 (for T min ) und V S = V D ⋅ 0,705 (for T max )<br />

Using the conversion factors for the standardised wind speed and standardised<br />

power, a polynomial results, which describes the connection between measured<br />

electric power P m and the standardised wind speed V S .<br />

The corresponding corrections were considered in the evaluation.


982<br />

5.1.2 Determination of the standardised wind speed from the measurements<br />

with the anemometer<br />

According to [1], for the determination of the wind speed during the background noise<br />

measurements and perhaps in some cases for the WT noise measurements, the<br />

results of the wind speed measurements with the anemometer of Müller-BBM should<br />

be used.<br />

Corresponding to the method described in section 6.1.1, the wind speed data V z recorded<br />

with the equipment on top of the adjacent met mast (z = 30.0 m above the<br />

ground) should be converted to the standardised wind speed V S according to equation<br />

(3).<br />

V S = V Z ⋅ 0,828<br />

5.2 Equivalent continuous sound pressure level during operation of the WT<br />

Based on [1], the noise behaviour of a WT during emission measurements should be<br />

recorded and documented for the standardised wind speeds between 6 m/s and<br />

10 m/s.<br />

These standardised wind speeds are derived from the generated power by means of<br />

the power curve. In the present case, the rated power is 3000 kW.<br />

According to [1], if 95 % of the rated power is obtained below the standardised wind<br />

class of 10 m/s, the measured values above 95 % of the rated power have to be<br />

corrected with the so-called nacelle anemometer. In this method, for all measuring<br />

data between 5 % and 95 % of the rated power of the WT, a linear regression between<br />

the wind speed V n recorded with the nacelle anemometer and the wind speed<br />

in hub height V H - determined from the electric power of the WT - is carried out. With<br />

the determined regression, the data of the nacelle anemometer, which are above<br />

95 % of the rated power, are corrected.<br />

The data pairs of the wind speed V H determined from the electric power of the WT<br />

and the wind speed V n recorded with the nacelle anemometer, which are used for<br />

calculating the regression, are shown in Figure C 1 in <strong>App</strong>endix C.<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Figure C 2 <strong>App</strong>endix C gives an overview of the measured data used for the evaluation<br />

of the investigated WT. In the diagram showing the determined sound pressure<br />

levels depending on the standardised wind speed (at the bottom on the left in Figure<br />

C 2), those sound pressure levels are shown, which were measured directly and<br />

averaged over a period of 10 seconds. 10 seconds averages were used instead of 1<br />

minute averages to maximise the precision and it is consistent with the procedures<br />

described in [8]. All measuring data shown in the diagram were used for calculating<br />

the regression.<br />

Table 4 on page 15 shows the relation between the standardised wind speed and the<br />

electric power of the WT, which was determined from the measurements.


983<br />

The results listed in Table 4 show that on the two days of measurements during normal<br />

operation of the WT, an electric power of approx. 2750 kW was achieved in the<br />

standardised wind class of 10 m/s. 95 % of the rated power of the WT (i.e. 2850 kW)<br />

are achieved for a standardised wind speed of approx. 10.5 m/s.<br />

5.3 Equivalent continuous sound pressure level during standstill of the WT<br />

During standstill of the WT, the standardised wind speed is determined from measurements<br />

with the anemometer of Müller-BBM. Apart from that, the evaluation for standstill<br />

of the WT is carried out in the same way as for operation of the WT. Table 4 on<br />

page 15 shows the results of the evaluation for standstill of the WT. They describe the<br />

wind-induced background noise and the disturbing noise at the reference position,<br />

which could not be suppressed.<br />

5.4 Equivalent continuous sound pressure levels with background noise correction<br />

In order to determine the sound pressure levels caused only by the WT, according to<br />

section 8.2 of [1] the measuring results during operation of the WT have to be corrected<br />

with the measuring results during standstill.<br />

This background noise correction results in values L S for the energy-equivalent continuous<br />

sound pressure levels caused only by the WT at the reference position.<br />

If the equivalent continuous sound pressure levels of the background noise L n during<br />

the measurements are by more than 6 dB below the levels L S+n (noise of the WT including<br />

background noise), the background noise correction is made according to<br />

equation (8) from [1]. For these measurements, this applies to the wind classes 7 m/s<br />

to 10 m/s. Within that correction a κ -factor of 1,0 – which is used for the correction of<br />

the measured wind speed - was applied.<br />

Table 4 shows the corresponding values.<br />

5.5 Sound power level of the WT as a function of the standardised wind speed<br />

According to [1], the sound power level L WA,k of the WT is calculated from the sound<br />

pressure level at the reference position with background noise correction L Aeq,c,k<br />

according to the following equation:<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

2<br />

⎛ 4 π R ⎞<br />

1<br />

L WA,k = L Aeq,c,k - 6 + 10 lg<br />

⎜<br />

⎟ in dB(A) (4)<br />

⎝ S0<br />

⎠<br />

L Aeq,c,k A-weighted sound pressure level measured at reference conditions and<br />

with background noise correction for integer wind speed values; according<br />

to [1], this value corresponds to L S in Table 4.<br />

R 1<br />

diagonal distance between rotor centre and microphone;<br />

R 1 consists of the distance between rotor centre and tower centreline,<br />

the distance between tower centreline and reference position and the<br />

vertical distance between the reference position and the rotor flange<br />

centre<br />

S 0 reference area S 0 = 1 m 2


984<br />

With the following dimensions/heights<br />

• vertical distance between reference position and WT foundation: 0,0 m<br />

• distance between rotor centre and the tower centreline: 4.62 m<br />

• horizontal distance between microphone and the tower- outer face : 150.0 m<br />

• diameter of the tower base: 7.5 m<br />

• hub height: 98.4 m<br />

for the diagonal distance between rotor centre and microphone a value of<br />

R 1 = 186.4 m<br />

results, and for the relation between L WA and L Aeq,c,k the following equation:<br />

L WA = L Aeq,c,k + 50.4 dB(A)<br />

Thus, for operation of the WT, the sound power levels L WA,k listed in Table 4 can be<br />

calculated.<br />

Table 4.<br />

Evaluation in summary<br />

Wind<br />

class<br />

V s in<br />

m/s<br />

Standard<br />

-ised<br />

power P n<br />

in kW<br />

Rotational<br />

speed<br />

[rpm]<br />

WT and<br />

background<br />

noise (L S+n )<br />

L Aeq in dB(A)<br />

Background<br />

noise<br />

(L n ) L Aeq<br />

in dB(A)<br />

Power curve: 3000 kW (mode 1)<br />

Corrected<br />

level (L S )<br />

L Aeq,c, k<br />

in dB(A)<br />

<strong>App</strong>arent<br />

Soundpower<br />

level<br />

L WA,k<br />

in dB(A)<br />

7 1586,2 16,0 ** 54,3 39,7 54,1 104,5<br />

8 2035,2 16,4 ** 54,4 42,5 54,1 104,5<br />

9 2447,0 16,8 ** 54,9 45,4 54,4 104,8<br />

10 2747,0 17,2 ** 55,8 48,2 55,0 105,4<br />

10,5 * 2850,0 17,3 ** 55,9 49,6 54,7 105,1<br />

* Wind speed at 95 % rated power<br />

** derived from the recorded data<br />

The data listed in Table 4 were determined from the regression analyses required<br />

according to [1], i.e.:<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

- fourth-degree regression for the WT noise<br />

- linear regression for background noise<br />

The individual data points and the calculated regression analyses are shown in<br />

Figure C 3 in <strong>App</strong>endix C. The sound pressure levels determined at more than 95 %<br />

of the rated power are marked in the figure, as required according to [1].


985<br />

5.6 Sound power level of the WT<br />

As already described in section 5.2, the noise behaviour of a WT shall be determined<br />

by means of sound emission measurements in the range of the standardised wind<br />

speeds between 6 m/s and 10 m/s.<br />

In the present case, sound power levels at the investigated WT could be determined<br />

in the wind classes of 7 m/s to 10 m/s.<br />

Figures C 5 to C 8 in <strong>App</strong>endix C show the corresponding sound power level spectra<br />

in 1/3 octave bandwidth for the standardised wind classes 7 m/s to 10 m/s. The<br />

sound power levels in 1/3 octave and octave bandwidth are stated in a table beside<br />

the 1/3 octave spectrum.<br />

Based on these measurements and evaluations, a maximum sound power level for<br />

the investigated WT of<br />

results.<br />

L WA = 105.4 dB(A)<br />

5.7 Sound power level of the WT related to the normalized wind speed in hub<br />

height<br />

In table 5 are listed the sound power levels related to the wind speed V H in hub height<br />

based on the results in table 4. The data used for the calculation of the sound power<br />

level are depicted in figure C 4 in <strong>App</strong>endix C.<br />

Table 5. Sound power level of the WT related to the normalized wind speed in hub height<br />

and 10 m height<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Wind speed in hub<br />

height V H<br />

in m/s<br />

Wind speed in 10 m<br />

height V S *<br />

in m/s<br />

Sound power level<br />

L WA,k<br />

in dB(A)<br />

10,0 7,0 104,4<br />

10,5 7,3 104,5<br />

11,0 7,7 104,5<br />

11,5 8,0 104,4<br />

12,0 8,4 104,5<br />

12,5 8,7 104,5<br />

13,0 9,1 104,7<br />

13,5 9,4 104,9<br />

14,0 9,8 105,1<br />

14,5 10,1 105,1<br />

15,0 10,5 104,8<br />

(*) The wind speed in 10 m height is derived by the division of the values of V H with the<br />

divisor ≈ 0,7 (see section 5.1.1).


986<br />

5.8 Tonal components of the WT noise<br />

According to [1] and [3], for the determination of tonal components 12 narrowband<br />

spectra have to be evaluated for a period of 10 seconds each. From these 12 spectra,<br />

the tone adjustment is determined as the average of the single values.<br />

The evaluated spectra are shown in Figures C 9 to C 14 in <strong>App</strong>endix C. Owing to the<br />

measuring data at hand, the evaluation of tonal components according to [1] in combination<br />

with [4] was carried out for the wind classes 7 to 10 m/s. Figures C 17 to C 20<br />

in <strong>App</strong>endix C show the comprehensive evaluation for each wind class.<br />

Finally no tone adjustments K TN in the vicinity of the WT were determined.<br />

5.9 Summarized results<br />

The following Table 5 shows the summarized results of the evaluation.<br />

Table 6. <strong>App</strong>arent sound power levels and Tone adjustment<br />

Wind<br />

class V s<br />

in m/s<br />

Power<br />

P n in kW<br />

Sound power level<br />

L WA in dB(A)<br />

Tone adjustment<br />

K TN in dB<br />

7 1586,2 104,5 0<br />

8 2035,2 104,5 0<br />

9 2447,0 104,8 0<br />

10 2747,0 105,4 0<br />

Thus, the apparent maximum sound power level of the WT at a standardised wind<br />

speed of 10 m/s is<br />

L WA = 105.4 dB(A).<br />

The summarized results are also listed in the master sheet “noise” in the appendix E.<br />

5.10 Remarks regarding computational accuracy and rounding<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

In this test report, all final results for level data are stated rounded to one position<br />

after the decimal point, taking into consideration the rounding regulations stated in<br />

DIN 1333, sheet 2 (February 1992). However, the calculations are performed by<br />

using all positions after the decimal point. Thus, it is guaranteed that no additional<br />

mistakes will occur by rounding.


987<br />

6 Measuring uncertainty<br />

6.1 Influences on site<br />

The influences on site on the noise measurements in the area of the base plate are<br />

estimated to be “very low” owing to the direct influence of the WT and owing to the<br />

distance to the nearest vegetation.<br />

6.2 Measuring uncertainty type A and B<br />

According to Annex D of [1] in combination with [8], the measuring uncertainty for the<br />

sound power level of the WT depending on the wind speed is calculated as follows:<br />

- Measuring uncertainty U A,s for the measured values L Aeq during operation of the<br />

WT was estimated to 0,2 dB.<br />

- For the measuring uncertainties U B1 to U B9 the typical values stated in Table D.1<br />

in [1] are applied:<br />

• calibration<br />

• measuring device<br />

• sound-reflecting board<br />

• measuring distance<br />

• impedance<br />

• turbulence<br />

U B1 = 0.2 dB<br />

U B2 = 0.2 dB<br />

U B3 = 0.3 dB<br />

U B4 = 0.1 dB<br />

U B5 = 0.1 dB<br />

U B6 = 0.4 dB<br />

• wind speed U B7 = 0.2 dB (calculated from the power output<br />

of the WT)<br />

• direction<br />

U B8 = 0.3 dB<br />

• background noise U B9 = 0.3 dB (see Table 4)<br />

6.3 Total measuring uncertainty<br />

For the combined total measuring uncertainty U c , according to [1] the following equation<br />

is valid:<br />

2 2 2<br />

U<br />

C<br />

= U<br />

A<br />

+ UB1<br />

+ UB2<br />

+ ... + UB<br />

2<br />

9<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Thus, for the total sound power level L WA a total measuring uncertainty of U C = 0.8 dB<br />

results.


988<br />

7 <strong>App</strong>arent sound power level related to other hub heights<br />

The determined apparent sound power levels of the investigated wind turbine can be<br />

converted to another hub height for a wind turbine of the same type. A method for<br />

calculating the corresponding values for different hub heights is described in [2] as<br />

well as in [8]. For this purpose the functional relation between the sound pressure<br />

levels and the wind speed value at 10 m, in fact the regression coefficients, is used<br />

(compare Figure C 3 in <strong>App</strong>endix C).<br />

The results of the aforementioned conversion of the determined apparent sound<br />

power levels to other hub heights are listed in table 7.<br />

Tabelle 7. <strong>App</strong>arent sound power levels related to other hub heights<br />

hub height<br />

L WA,P<br />

wind speed V 10, ref<br />

6 m/s 7 m/s 8 m/s 9 m/s 10 m/s v 10,ref,95% L WA,P,95% Pnenn<br />

78 m L WA,P -- 104,5 dB(A) 104,5 dB(A) 104,7 dB(A) 105,3 dB(A) 10,8 m/s --<br />

85 m L WA,P -- 104,5 dB(A) 104,5 dB(A) 104,7 dB(A) 105,3 dB(A) 10,7 m/s --<br />

98 m L WA,P -- 104,5 dB(A) 104,5 dB(A) 104,8 dB(A) 105,4 dB(A) 10,5 m/s 105,1 dB(A)<br />

108 m L WA,P -- 104,5 dB(A) 104,5 dB(A) 104,9 dB(A) 105,4 dB(A) 10,4 m/s 105,1 dB(A)<br />

138 m L WA,P -- 104,5 dB(A) 104,5 dB(A) 105,1 dB(A) 105,4 dB(A) * 10,0 m/s 105,4 dB(A)<br />

(*) wind speed value at 10 m corresponding to 95 % of rated power<br />

The extracts with the values for the different hub heights are pictured in <strong>App</strong>endix F.<br />

89031_02_Pbe_1E.DOC:19. 01. 2011


989<br />

<strong>App</strong>endix A<br />

Layout plan and photos<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

<strong>App</strong>endix A Page 1


990<br />

reference point<br />

anemometer<br />

Wind direction:<br />

westsouthwest<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Figure A 1. Layout of the windfarm and the measuring positions at the WT (plan not true to<br />

scale)


991<br />

Figure A 2. View from the measuring board to the WT<br />

met mast<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Figure A 3. View to the met mast


992<br />

Windscreen and measuring board<br />

Figure A 4. microphone (inside the secondary windscreen)<br />

with surroundings (grass)<br />

89031_02_Pbe_1E.DOC:19. 01. 2011


993<br />

<strong>App</strong>endix B<br />

Documentation of the measurements<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

<strong>App</strong>endix B Page 1


994<br />

VV2<br />

5.0<br />

measurement m_01_p 24.08.2010 15:50:58 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: Standstill<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

1.6<br />

1.8<br />

1.7<br />

min:<br />

max:<br />

average<br />

9.2<br />

16.5<br />

12.8 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

2.5<br />

21.1<br />

10.1<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 1. Relevant measuring data of the measurement m_01


995<br />

VV2<br />

5.0<br />

measurement m_03_p 24.08.2010 16:33:23 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

-2.2<br />

2.7<br />

2.5<br />

min:<br />

max:<br />

average<br />

10.9<br />

17.1<br />

14.6 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

3.6<br />

18.3<br />

14.7<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 2. Relevant measuring data of the measurement m_03


996<br />

measurement m_03_p 24.08.2010 16:33:23 Uhr M89031 Simonswolde designation: 82001<br />

background noise (marked)<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

VV2 dB(A)<br />

5.0<br />

sound pressure reference position<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

2.5k<br />

2k<br />

1.6k<br />

1.25k<br />

1k<br />

800<br />

630<br />

500<br />

400<br />

315<br />

250<br />

200<br />

160<br />

125<br />

100<br />

80<br />

63<br />

Hz<br />

sound pressure level reference position<br />

dB(A)<br />

45<br />

50<br />

40<br />

20<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 s<br />

1/min<br />

power output WT<br />

40 4000 kW<br />

rotional speed<br />

40<br />

35<br />

30<br />

25<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 3. Relevant measuring data and Campbell-Plot of the measurement m_03


997<br />

VV2<br />

5.0<br />

measurement m_04_p 24.08.2010 17:05:22 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

2.7<br />

2.7<br />

2.7<br />

min:<br />

max:<br />

average<br />

8.3<br />

17.6<br />

12.5 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

8.1<br />

18.6<br />

13.5<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 4. Relevant measuring data of the measurement m_04


998<br />

measurement m_04_p 24.08.2010 17:05:22 Uhr M89031 Simonswolde designation: 82001<br />

background noise (marked)<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

VV2 dB(A)<br />

5.0<br />

sound pressure reference position<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

2.5k<br />

2k<br />

1.6k<br />

1.25k<br />

1k<br />

800<br />

630<br />

500<br />

400<br />

315<br />

250<br />

200<br />

160<br />

125<br />

100<br />

80<br />

63<br />

Hz<br />

sound pressure level reference position<br />

dB(A)<br />

45<br />

50<br />

40<br />

20<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 s<br />

1/min<br />

power output WT<br />

40 4000 kW<br />

rotional speed<br />

40<br />

35<br />

30<br />

25<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 5. Relevant measuring data and Campbell-Plot of the measurement m_04


999<br />

VV2<br />

5.0<br />

measurement m_05_p 24.08.2010 17:44:36 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

219.2<br />

272.7<br />

250.5<br />

min:<br />

max:<br />

average<br />

7.3<br />

18.0<br />

12.4 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

8.1<br />

21.1<br />

14.3<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 6. Relevant measuring data of the measurement m_04


1000<br />

measurement m_05_p 24.08.2010 17:44:36 Uhr M89031 Simonswolde designation: 82001<br />

background noise (marked)<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

VV2 dB(A)<br />

5.0<br />

sound pressure reference position<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

2.5k<br />

2k<br />

1.6k<br />

1.25k<br />

1k<br />

800<br />

630<br />

500<br />

400<br />

315<br />

250<br />

200<br />

160<br />

125<br />

100<br />

80<br />

63<br />

Hz<br />

sound pressure level reference position<br />

dB(A)<br />

45<br />

50<br />

40<br />

20<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 s<br />

1/min<br />

power output WT<br />

40 4000 kW<br />

rotional speed<br />

40<br />

35<br />

30<br />

25<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 7. Relevant measuring data and Campbell-Plot of the measurement m_05


1001<br />

VV2<br />

5.0<br />

measurement m_06_p 24.08.2010 18:05:17 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

223.6<br />

266.3<br />

242.3<br />

min:<br />

max:<br />

average<br />

7.2<br />

14.9<br />

11.0 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

8.3<br />

17.1<br />

12.5<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 8. Relevant measuring data of the measurement m_06


1002<br />

measurement m_06_p 24.08.2010 18:05:17 Uhr M89031 Simonswolde designation: 82001<br />

background noise (marked)<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

VV2 dB(A)<br />

5.0<br />

sound pressure reference position<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

2.5k<br />

2k<br />

1.6k<br />

1.25k<br />

1k<br />

800<br />

630<br />

500<br />

400<br />

315<br />

250<br />

200<br />

160<br />

125<br />

100<br />

80<br />

63<br />

Hz<br />

sound pressure level reference position<br />

dB(A)<br />

45<br />

50<br />

40<br />

20<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 s<br />

1/min<br />

power output WT<br />

40 4000 kW<br />

rotional speed<br />

40<br />

35<br />

30<br />

25<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 9. Relevant measuring data and Campbell-Plot of the measurement m_06


1003<br />

VV2<br />

5.0<br />

measurement m_07_p 24.08.2010 18:25:01 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

198.0<br />

260.6<br />

233.6<br />

min:<br />

max:<br />

average<br />

7.9<br />

17.1<br />

11.6 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

8.8<br />

19.2<br />

13.5<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 10. Relevant measuring data of the measurement m_07


1004<br />

measurement m_07_p 24.08.2010 18:25:01 Uhr M89031 Simonswolde designation: 82001<br />

background noise (marked)<br />

ENERCON E-82 E3 operation state: 3000 kW<br />

VV2 dB(A)<br />

5.0<br />

sound pressure reference position<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

2.5k<br />

2k<br />

1.6k<br />

1.25k<br />

1k<br />

800<br />

630<br />

500<br />

400<br />

315<br />

250<br />

200<br />

160<br />

125<br />

100<br />

80<br />

63<br />

Hz<br />

sound pressure level reference position<br />

dB(A)<br />

45<br />

50<br />

40<br />

20<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 s<br />

1/min<br />

power output WT<br />

40 4000 kW<br />

rotional speed<br />

40<br />

35<br />

30<br />

25<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 11. Relevant measuring data and Campbell-Plot of the measurement m_07


1005<br />

VV2<br />

5.0<br />

measurement m_08_p 24.08.2010 19:44:43 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: Standstill<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

200.9<br />

267.1<br />

233.0<br />

min:<br />

max:<br />

average<br />

8.1<br />

14.1<br />

10.5 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

1.8<br />

17.1<br />

7.8<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 12. Relevant measuring data of the measurement m_08


1006<br />

VV2<br />

5.0<br />

measurement m_09_p 24.08.2010 20:38:02 h<br />

background noise (marked)<br />

dB(A)<br />

sound pressure level reference position<br />

M89031 Simonswolde designation: 82001<br />

ENERCON E-82 E3 operation state: Standstill<br />

4.5<br />

60<br />

4.0<br />

3.5<br />

3.0<br />

50<br />

2.5<br />

2.0<br />

198.5<br />

244.8<br />

218.8<br />

min:<br />

max:<br />

average<br />

6.0<br />

11.2<br />

8.4 :<br />

s<br />

40<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

wind direction Müller-BBM anemometer<br />

360 degree<br />

270<br />

180<br />

90<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

20 m/s wind speed WT<br />

wind speed Müller-BBM anemometer<br />

15<br />

1.7<br />

13.8<br />

6.8<br />

min:<br />

max:<br />

average:<br />

10<br />

5<br />

s<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

1/min<br />

40 4000 kW<br />

power output WT rotational speed<br />

30<br />

3000<br />

20<br />

2000<br />

10<br />

1000<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

s<br />

0 0<br />

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800<br />

Figure B 13. Relevant measuring data of the measurement m_09


1007<br />

<strong>App</strong>endix C<br />

Results of the evaluation<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

<strong>App</strong>endix C Page 1


1008<br />

WT-type: ENERCON E-82 E3 designation: 82001<br />

WT-location: Simonswolde<br />

measuring date: 24.08.2010<br />

operation state: 3000 kW<br />

data points for determination of regression between VH and Vn (nacelle anemometer method)<br />

VH [m/s]<br />

20<br />

15<br />

10<br />

5<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Vn [m/s]<br />

Figure C 1. Pair of variates to determine the regression between VH and Vn


1009<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89031 WT-type: ENERCON E-82 E3 Serial No.: 82001<br />

WEA_DaV data base (parameters):<br />

Operation mode: 3000 kW Micropos: Ro<br />

WT derived from power ouput data, background noise according to VZ,10-second-average<br />

s<br />

measuring intervall Hz<br />

1/3 octave spectra total noise<br />

dB(A)<br />

50<br />

1/10 windclass<br />

1200<br />

6.3k<br />

1/1 windclass<br />

900<br />

4k<br />

2.5k<br />

45<br />

600<br />

1.6k<br />

300<br />

1k<br />

0<br />

6 7 8 9 10<br />

630<br />

40<br />

dB(A)<br />

sound pressure level<br />

400<br />

35<br />

total noise<br />

250<br />

regression<br />

160<br />

60<br />

measurement<br />

avg 1/10 wc<br />

100<br />

30<br />

avg 1/1 wc<br />

63<br />

40<br />

25<br />

6 7 8 9 10<br />

Hz<br />

1/3 octave spectra background noise<br />

dB(A)<br />

50<br />

6.3k<br />

50<br />

4k<br />

background noise<br />

regression 2.5k<br />

45<br />

measurement 1.6k<br />

avg 1/10 wc<br />

avg 1/1 wc 1k<br />

40<br />

630<br />

40<br />

400<br />

35<br />

250<br />

30<br />

6 7 8 9 10<br />

standardised windclass in<br />

160<br />

100<br />

63<br />

40<br />

6 7 8 9 10<br />

standardised windclass in m/s<br />

Figure C 2. Summary of the data used for the evaluation for WT at the reference point, average values and regressions<br />

30<br />

25


1010<br />

WT-type: ENERCON E-82 E3 designation: 82001<br />

WT-location: Simonswolde<br />

date of measurement: 24.08.2010<br />

operation state: Enercon E-82 E3<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

equivalent continuous sound pressure level LAeq in dB(A)<br />

10-seconds-average<br />

70<br />

60<br />

50<br />

40<br />

evaluated sound pressure level at the reference position and calculated regressions<br />

total noise:<br />

data points up to 95 % rated power<br />

data points over 95 % rated power (corrected)<br />

regression WT noise<br />

background noise:<br />

data points background noise<br />

regression<br />

regression coefficients: A 0 A 1 A 2 A 3 A 4<br />

(x 0 ) (x 1 ) (x 2 ) (x 3 ) (x 4 )<br />

total noise L S+n -262,22651 154,63493 -28,131348 2,2522682 -0,06677678<br />

background noise L n 19,602273 2,8288279<br />

background noise, kappa-corrected L n 19,602273 2,8288279<br />

30<br />

5 6 7 8 9 10 11<br />

standardised wind speed v10 in m/s<br />

Figure C 3. Correlation between the sound pressure level and the standardised wind speed for the reference point and calculated regressions


1011<br />

WT-type: Enercon E-82 E3<br />

Measurement at WT 1 (Serial number: 82001) in 26632 Ihlow/Simonswolde, Germany<br />

date: 24.08.2010; rated power: 3.000 kW<br />

Evaluated sound pressure levels at the reference position and calculated regressions<br />

75<br />

equivalent sound pressure level L Aeq in dB(A),<br />

10 seconds average<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

values up to 95 % rated power<br />

values over 95 % rated power<br />

values background noise<br />

Polynomisch (values up to 95 % rated power)<br />

Linear (values background noise)<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

35<br />

regression coefficients: A 0 A 1 A 2 A 3 A 4<br />

(x 0 ) (x 1 ) (x 2 ) (x 3 ) (x 4 )<br />

total noise L S+n -334,665035 131,021173 -16,4472166 0,9097728 -0,0186668<br />

30<br />

background noise, kappa-corrected L n 20,7298216 1,9490448<br />

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

standardised wind speed V H in m/s<br />

Figure C 4. Correlation between the sound pressure level and the standardised wind speed for the reference point and calculated regressions


1012<br />

WT-type: ENERCON E-82 E3 Serial No.: 82001<br />

WT-location: Simonswolde operation mode: 3000 kW<br />

date of measurement: 24.08.2010<br />

110<br />

100<br />

sound power level at the integer windclass 7 m/s<br />

Sum (A)<br />

1/3 octave<br />

frequency<br />

(Hz)<br />

octave<br />

frequency<br />

(Hz)<br />

1/3 octave<br />

band level<br />

dB(A)<br />

octave<br />

band level<br />

dB(A)<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound power level in dB re 10 pW<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16 31.5 63 125 250 500 1k 2k 4k 8k<br />

frequency, Hz<br />

sound power level: 104.5 dB(A)<br />

89031_20100824 m_07_p<br />

50 77,9<br />

63 63 82,3<br />

80 86,1<br />

100 88,6<br />

125 125 90,2<br />

160 91<br />

200 93,6<br />

250 250 95,4<br />

315 95,6<br />

400 93,3<br />

500 500 94,2<br />

630 94,4<br />

800 92,7<br />

1k 1k 91,8<br />

1,25k 90,4<br />

1,6k 91,1<br />

2k 2k 89,3<br />

2,5k 86,3<br />

3,15k 85,3<br />

4k 4k 82,7<br />

5k 80,5<br />

6,3k 74,8<br />

8k 8k 76,5<br />

10k 73,4<br />

Figure C 5. Sound power level for the wind class 7 m/s in third-octave bandwidth (diagram and table) and<br />

in octave bandwidth (table)<br />

88,1<br />

94,8<br />

99,7<br />

98,8<br />

96,5<br />

94,1<br />

88,0<br />

79,9


1013<br />

WT-type: ENERCON E-82 E3 Serial No.: 82001<br />

WT-location: Simonswolde operation mode: 3000 kW<br />

date of measurement: 24.08.2010<br />

110<br />

sound power level at the integer windclass 8 m/s<br />

Sum (A)<br />

1/3 octave<br />

frequency<br />

(Hz)<br />

octave<br />

frequency<br />

(Hz)<br />

1/3 octave<br />

band level<br />

dB(A)<br />

octave<br />

band level<br />

dB(A)<br />

100<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound power level in dB re 10 pW<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16 31.5 63 125 250 500 1k 2k 4k 8k<br />

frequency, Hz<br />

sound power level: 104.5 dB(A)<br />

89031_20100824 m_07_p<br />

50 79,9<br />

63 63 83,7<br />

80 86,8<br />

100 89,1<br />

125 125 89,5<br />

160 92,9<br />

200 95,3<br />

250 250 96<br />

315 94,1<br />

400 95,2<br />

500 500 95,2<br />

630 92,9<br />

800 91,2<br />

1k 1k 89,4<br />

1,25k 90,3<br />

1,6k 88,6<br />

2k 2k 86<br />

2,5k 84,5<br />

3,15k 81,8<br />

4k 4k 77,7<br />

5k 74,1<br />

6,3k 78,2<br />

8k 8k 63,4<br />

10k 63,6<br />

Figure C 6. Sound power level for the wind class 8 m/s in third-octave bandwidth (diagram and table) and<br />

in octave bandwidth (table)<br />

89,1<br />

95,6<br />

100,0<br />

99,3<br />

95,1<br />

91,5<br />

83,7<br />

78,5


1014<br />

WT-type: ENERCON E-82 E3 Serial No.: 82001<br />

WT-location: Simonswolde operation mode: 3000 kW<br />

date of measurement: 24.08.2010<br />

110<br />

100<br />

sound power level at the integer windclass 9 m/s<br />

Sum (A)<br />

1/3 octave<br />

frequency<br />

(Hz)<br />

octave<br />

frequency<br />

(Hz)<br />

1/3 octave<br />

band level<br />

dB(A)<br />

octave<br />

band level<br />

dB(A)<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound power level in dB re 10 pW<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16 31.5 63 125 250 500 1k 2k 4k 8k<br />

frequency, Hz<br />

sound power level: 104.8 dB(A)<br />

89031_20100824 m_07_p<br />

50 75,5<br />

63 63 79,1<br />

80 82,5<br />

100 85,7<br />

125 125 89,2<br />

160 88,6<br />

200 92,3<br />

250 250 95<br />

315 96<br />

400 94,5<br />

500 500 95,7<br />

630 96,1<br />

800 93,8<br />

1k 1k 91,7<br />

1,25k 89,7<br />

1,6k 90,5<br />

2k 2k 89,2<br />

2,5k 88,8<br />

3,15k 86,3<br />

4k 4k 83,9<br />

5k 79,4<br />

6,3k 76,2<br />

8k 8k 80,5<br />

10k 75,8<br />

Figure C 7. Sound power level for the wind class 9 m/s in third-octave bandwidth (diagram and table) and<br />

in octave bandwidth (table)<br />

84,7<br />

92,9<br />

99,5<br />

100,3<br />

96,8<br />

94,3<br />

88,8<br />

82,8


1015<br />

WT-type: ENERCON E-82 E3 Serial No.: 82001<br />

WT-location: Simonswolde operation mode: 3000 kW<br />

date of measurement: 24.08.2010<br />

110<br />

sound power level at the integer windclass 10 m/s<br />

Sum (A)<br />

1/3 octave<br />

frequency<br />

(Hz)<br />

octave<br />

frequency<br />

(Hz)<br />

1/3 octave<br />

band level<br />

dB(A)<br />

octave<br />

band level<br />

dB(A)<br />

100<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound power level in dB re 10 pW<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16 31.5 63 125 250 500 1k 2k 4k 8k<br />

frequency, Hz<br />

sound power level: 105.4 dB(A)<br />

89031_20100824 m_07_p<br />

50 76,5<br />

63 63 80,3<br />

80 83,7<br />

100 86<br />

125 125 89,5<br />

160 88,9<br />

200 92,3<br />

250 250 94,9<br />

315 95,9<br />

400 94,7<br />

500 500 96,3<br />

630 96,9<br />

800 94,8<br />

1k 1k 92,8<br />

1,25k 91<br />

1,6k 91,7<br />

2k 2k 90,4<br />

2,5k 90,1<br />

3,15k 89,2<br />

4k 4k 85,6<br />

5k 82,1<br />

6,3k 79,5<br />

8k 8k 82,4<br />

10k 72,7<br />

Figure C 8. Sound power level for the wind class 10 m/s in third-octave bandwidth (diagram and table) and<br />

in octave bandwidth (table)<br />

85,9<br />

93,2<br />

99,4<br />

100,8<br />

97,9<br />

95,6<br />

91,3<br />

84,5


1016<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 7 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 40 to 50 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 50 to 60 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 60 to 70 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 70 to 80 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 80 to 90 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 90 to 100 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 9. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 7 m/s


1017<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 7 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_06_p 0.0 to 3000.0 Hz<br />

time intervall: 60 to 70 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_06_p 0.0 to 3000.0 Hz<br />

time intervall: 70 to 80 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_06_p 0.0 to 3000.0 Hz<br />

time intervall: 80 to 90 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_06_p 0.0 to 3000.0 Hz<br />

time intervall: 90 to 100 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_06_p 0.0 to 3000.0 Hz<br />

time intervall: 210 to 220 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_06_p 0.0 to 3000.0 Hz<br />

time intervall: 220 to 230 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 10. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 7 m/s


1018<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 8 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_05_p 0.0 to 3000.0 Hz<br />

time intervall: 180 to 190 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 90 to 100 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 250.5 to 260.5 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 300.5 to 310.5 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 330.5 to 340.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 370.5 to 380.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 11. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 8 m/s


1019<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 8 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 400.5 to 410.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 410.5 to 420.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 490.5 to 500.5 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 500.5 to 510.5 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 520.5 to 530.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 1550.5 to 1560.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 12. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 8 m/s


1020<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 9 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 170 to 180 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 270 to 280 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 330 to 340 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 690 to 700 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 700 to 710 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 740 to 750 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 13. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 9 m/s


1021<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 9 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 750 to 760 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 810 to 820 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 950 to 960 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 1260 to 1270 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 1370 to 1380 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 1660 to 1670 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 14. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 9 m/s


1022<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 10 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 20 to 30 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 440.5 to 450.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 860.5 to 870.5 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 1530.5 to 1540.5 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 1670.5 to 1680.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_04_p 0.0 to 3000.0 Hz<br />

time intervall: 1760.5 to 1770.5 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 15. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 10 m/s


1023<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Evaluation tonality for the integer windclass 10 m/s operation mode:3000 kW<br />

WT-location: Simonswolde Serial No.: 82001<br />

WEA-type: ENERCON E-82 E3<br />

measurement: sound pressure reference position<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 60 to 70 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q]APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 220 to 230 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 710 to 720 s<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

A-weighted sound pressure level in dB re dB(A) [2e-5Pa]<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 990 to 1000 s<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 1610 to 1620 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

[avg] Average [Q] APS spectra<br />

m_07_p 0.0 to 3000.0 Hz<br />

time intervall: 1620 to 1630 s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

frequency, Hz<br />

Figure C 16. Narrowband spectra (Δf = 2 Hz) of the WT-noise at the standardised wind speed of 10 m/s


1024<br />

Project No.: M89 031<br />

WT type<br />

E-82 E3<br />

Location<br />

Simonswolde<br />

Rated power<br />

3000 kW<br />

Wind class<br />

7 m/s<br />

Frequency resolution: 2 Hz<br />

Frequency range: 90 bis 2772 Hz<br />

Averaged Delta_L:<br />

-10 dB<br />

Tone adjustment: 0 dB<br />

Uncertainty: --<br />

Spectrum<br />

1: 89031_20100824_m_05_p_40_50_PAK<br />

Frequency<br />

delta_L<br />

Characteristic<br />

FG<br />

FgStart FgEnd Ls LT LG av uncertainty<br />

[Hz] [dB] [Hz] [Hz] [dB(A)] [dB(A)] [dB(A)] [dB] [dB]<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

2: 89031_20100824_m_05_p_50_60_PAK<br />

3: 89031_20100824_m_05_p_60_70_PAK<br />

4: 89031_20100824_m_05_p_70_80_PAK<br />

5: 89031_20100824_m_05_p_80_90_PAK<br />

6: 89031_20100824_m_05_p_90_100_PAK<br />

7: 89031_20100824_m_06_p_60_70_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

8: 89031_20100824_m_06_p_70_80_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9: 89031_20100824_m_06_p_80_90_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

10: 89031_20100824_m_06_p_90_100_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

11: 89031_20100824_m_06_p_210_220_PAK<br />

12: 89031_20100824_m_06_p_220_230_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

Figure C 17. Results of the evaluation of tonality for the wind class 7 m/s


1025<br />

Project No.: M89 031<br />

WT type<br />

E-82 E3<br />

Location<br />

Simonswolde<br />

Rated power<br />

3000 kW<br />

Wind class<br />

8 m/s<br />

Frequency resolution:<br />

Frequency range:<br />

Averaged Delta_L:<br />

Tone adjustment:<br />

Uncertainty:<br />

Spectrum<br />

1: 89031_20100824_m_04_p_90_100_PAK<br />

2: 89031_20100824_m_04_p_250.5_260.5_PAK<br />

3: 89031_20100824_m_04_p_300.5_310.5_PAK<br />

4: 89031_20100824_m_04_p_330.5_340.5_PAK<br />

5: 89031_20100824_m_04_p_370.5_380.5_PAK<br />

6: 89031_20100824_m_04_p_400.5_410.5_PAK<br />

7: 89031_20100824_m_04_p_410.5_420.5_PAK<br />

8: 89031_20100824_m_04_p_490.5_500.5_PAK<br />

2 Hz<br />

90 bis 2772 Hz<br />

-7.38 dB<br />

0 dB<br />

2.68 dB<br />

Frequency delta_L Characteristic FG FgStart FgEnd Ls LT LG av uncertainty<br />

[Hz] [dB] [Hz] [Hz] [dB(A)] [dB(A)] [dB(A)] [dB] [dB]<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

98 0,39 Ton gefunden 60 160 25,79 41,19 42,81 -2,01 2,68<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9: 89031_20100824_m_04_p_500.5_510.5_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

10: 89031_20100824_m_04_p_520.5_530.5_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

11: 89031_20100824_m_04_p_1550.5_1560.5_PAK<br />

12: 89031_20100824_m_05_p_180_190_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

Figure C 18. Results of the evaluation of tonality for the wind class 8 m/s


1026<br />

Project No.: M89 031<br />

WT type<br />

E-82 E3<br />

Location<br />

Simonswolde<br />

Rated power<br />

3000 kW<br />

Wind class<br />

9 m/s<br />

Frequency resolution:<br />

Frequency range:<br />

Averaged Delta_L:<br />

Tone adjustment:<br />

Uncertainty:<br />

Spectrum<br />

1: 89031_20100824_m_07_p_170_180_PAK<br />

2: 89031_20100824_m_07_p_270_280_PAK<br />

3: 89031_20100824_m_07_p_330_340_PAK<br />

4: 89031_20100824_m_07_p_690_700_PAK<br />

5: 89031_20100824_m_07_p_700_710_PAK<br />

6: 89031_20100824_m_07_p_740_750_PAK<br />

7: 89031_20100824_m_07_p_750_760_PAK<br />

8: 89031_20100824_m_07_p_810_820_PAK<br />

2 Hz<br />

90 bis 2772 Hz<br />

-7.24 dB<br />

0 dB<br />

2.93 dB<br />

Frequency delta_L Characteristic FG FgStart FgEnd Ls LT LG av uncertainty<br />

[Hz] [dB] [Hz] [Hz] [dB(A)] [dB(A)] [dB(A)] [dB] [dB]<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

786 0,67 Ton gefunden 720 858 26,24 42,76 44,70 -2,61 2,93<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9: 89031_20100824_m_07_p_950_960_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

10: 89031_20100824_m_07_p_1260_1270_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

11: 89031_20100824_m_07_p_1370_1380_PAK<br />

12: 89031_20100824_m_07_p_1660_1670_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

Figure C 19. Results of the evaluation of tonality for the wind class 9 m/s


1027<br />

Project No.: M89 031<br />

WT type<br />

E-82 E3<br />

Location<br />

Simonswolde<br />

Rated power<br />

3000 kW<br />

Wind class<br />

10 m/s<br />

Frequency resolution:<br />

Frequency range:<br />

Averaged Delta_L:<br />

Tone adjustment:<br />

Uncertainty:<br />

Spectrum<br />

1: 89031_20100824_m_04_p_20_30_PAK<br />

2: 89031_20100824_m_04_p_440.5_450.5_PAK<br />

3: 89031_20100824_m_04_p_860.5_870.5_PAK<br />

4: 89031_20100824_m_04_p_1530.5_1540.5_PAK<br />

5: 89031_20100824_m_04_p_1670.5_1680.5_PAK<br />

6: 89031_20100824_m_04_p_1760.5_1770.5_PAK<br />

7: 89031_20100824_m_07_p_60_70_PAK<br />

8: 89031_20100824_m_07_p_220_230_PAK<br />

2 Hz<br />

90 bis 2772 Hz<br />

-4.72 dB<br />

0 dB<br />

1.55 dB<br />

Frequency delta_L Characteristic FG FgStart FgEnd Ls LT LG av uncertainty<br />

[Hz] [dB] [Hz] [Hz] [dB(A)] [dB(A)] [dB(A)] [dB] [dB]<br />

2000 1,48 1856 2156 15,58 35,32 37,36 -3,51 2,36<br />

2002 2,15 1858 2158 14,81 35,22 36,59 -3,52 2,06<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

9: 89031_20100824_m_07_p_710_720_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

10: 89031_20100824_m_07_p_990_1000_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

11: 89031_20100824_m_07_p_1610_1620_PAK<br />

12: 89031_20100824_m_07_p_1620_1630_PAK<br />

-- -- keine Töne gefunden -- -- -- -- -- -- --<br />

Figure C 20. Results of the evaluation of tonality for the wind class 10 m/s


Recorded data from the tested wind turbine E-82 E3 (Serial-No.: 82001)<br />

at the location 26632 Ihlow/Simonswolde, Germany<br />

date of measurement: 24.08.2010<br />

1-minute-averagee<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

15:00<br />

15:15<br />

15:30<br />

15:45<br />

16:00<br />

16:15<br />

16:30<br />

16:45<br />

17:00<br />

17:15<br />

17:30<br />

17:45<br />

18:00<br />

18:15<br />

18:30<br />

18:45<br />

19:00<br />

19:15<br />

19:30<br />

elektr. Leistung [kW], Gondelposition absolut [°]<br />

19:45<br />

20:00<br />

20:15<br />

20:30<br />

20:45<br />

Uhrzeit<br />

50<br />

45<br />

40<br />

35<br />

Windgeschwindigkeit [m/s], Drehzahl [1/min]<br />

1028<br />

power output average nacelle position absolute<br />

rotation speed average wind speed average<br />

Figure C 21. System data recorded from the 2010-08-24 as one-minute average values<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

9031_02_Pbe_1E.DOC:19. 01. 2011


1029<br />

Scatterplot -rotational speed via electrical power output-<br />

Measurements at the tested E-82 E3 (Serial number: 82001)<br />

located in 26632 Ihlow/Simonswolde, Germany from the date 24.08.2010<br />

rated power: 3000 kW<br />

25,00<br />

23,00<br />

measurement_m_3 measurement_m_4 measurement_m_5<br />

measurement_m_6<br />

measurement_m_7<br />

21,00<br />

Drehzahl [1/min]<br />

19,00<br />

17,00<br />

15,00<br />

13,00<br />

11,00<br />

9,00<br />

7,00<br />

9031_02_Pbe_1E.DOC:19. 01. 2011<br />

5,00<br />

1000 1500 2000 2500 3000<br />

el. Leistung [kW]<br />

Figure C 22. Scatterplot of the measurements in 26632 Ihlow/Simonswolde, Germany


1030<br />

<strong>App</strong>endix D<br />

Calculated power curve,<br />

power curve used for the evaluation (linearized),<br />

certificate of the manufacturer<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

<strong>App</strong>endix D Page 1


1031<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Figure D 1. Power curve used for the evaluation


1032<br />

WT-type: ENERCON E-82 E3<br />

WT-location: Simonswolde<br />

measuring date: 24.08.2010<br />

power output curve used for evaluations (linearised)<br />

3500<br />

power in kW<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

0<br />

5 10 15 20<br />

wind speed in hub height in m/s<br />

Figure D 2. Linearization calculated from the power curve for 3000 kW


1033<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

Figure D 3. Certificate of the manufacturer (short version)


1034<br />

<strong>App</strong>endix E<br />

Master sheet noise<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

<strong>App</strong>endix E Page 1


1035<br />

Extract of test report page 1/2<br />

Master Sheet "Noise", according to "Technische Richtlinien für Windenergieanlagen,<br />

Teil 1: Bestimmung der Schallemissionswerte“<br />

Sound Power level L WA,P<br />

Extract of test report according to Annex C of [1]<br />

Extract of test report M89 031/2<br />

regarding noise emission of wind turbine (WT) Enercon E-82 E3<br />

General <strong>Technical</strong> specifications (manufacturer)<br />

Manufacturer:<br />

Enercon GmbH<br />

Rated power (generator): 3.000 kW<br />

Impulsivity (close-up range) K IN<br />

8 m/s 2035 kW --- dB<br />

Dreekamp 5 Rotor diameter: 82 m<br />

26605 Aurich Hub height above ground: 98 m<br />

Serial number:<br />

82001 Tower design: tube tower<br />

WT-location:<br />

RW:<br />

HW:<br />

2.592.266<br />

5.914.847<br />

material:<br />

Power control:<br />

concrete<br />

pitch<br />

Complementations of rotor (manufacturer) Complementations of gear and generator (manufacturer)<br />

blades:<br />

Enercon GmbH<br />

Manufacturer of gear:<br />

---<br />

Type of blades:<br />

E-82-2<br />

Type of gear:<br />

---<br />

Pitch angel: variable<br />

Manufacturer of generator:<br />

Enercon GmbH<br />

Number of blades: 3<br />

Type of generator:<br />

E-82 E3<br />

Rated speed(s)/speed range: 6 - 18 rpm (reduced)<br />

Rated speed(s)/speed range:<br />

6 - 18 rpm (reduced)<br />

test report of power curve:<br />

Enercon GmbH: Calculated output curve of the E-82 E3 Rev. 2.0<br />

Noise emission parameter<br />

Reference<br />

Noise emission<br />

values<br />

Remarks<br />

Standardized wind<br />

speed at 10 m above Electric power<br />

ground<br />

6 m/s -- kW -- dB(A)<br />

[3]<br />

7 m/s 1586 kW 104,5 dB(A)<br />

8 m/s 2035 kW 104,5 dB(A)<br />

9 m/s 2447 kW 104,8 dB(A)<br />

10 m/s 2747 kW 105,4 dB(A)<br />

10,5 m/s 2850,0 kW 105,1 dB(A)<br />

[4]<br />

6m/s --kW --dB<br />

[3]<br />

7 m/s 1586 kW 2,0 dB<br />

Tonality (close-up range) K TN<br />

8 m/s 2035 kW 1,0 dB<br />

9 m/s 2447 kW 0,0 dB<br />

10 m/s 2747 kW --- dB<br />

10,5 m/s 2850,0 kW --- dB<br />

[4]<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1586 kW --- dB<br />

9 m/s 2447 kW --- dB<br />

10 m/s 2747 kW --- dB<br />

10,5 m/s 2850,0 kW --- dB<br />

[4]<br />

one third octave sound power level at reference point v 10 = 6 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

octave sound power level at reference point v 10 = 6 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave --- --- --- --- --- --- --- ---<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

one third octave sound power level at reference point v 10 = 7 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 77,9 82,3 86,1 88,6 90,2 91,0 93,6 95,4 95,6 93,3 94,2 94,4<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 92,7 91,8 90,4 91,1 89,3 86,3 85,3 82,7 80,5 74,8 76,5 73,4<br />

octave sound power level at reference point v 10 = 7 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 88,1 94,8 99,7 98,8 96,5 94,1 88,0 79,9<br />

one third octave sound power level at reference point v 10 = 8 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 79,9 83,7 86,8 89,1 89,5 92,9 95,3 96,0 94,1 95,2 95,2 92,9<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 91,2 89,4 90,3 88,6 86,0 84,5 81,8 77,7 74,1 78,2 63,4 63,6<br />

octave sound power level at reference point v 10 = 8 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 89,1 95,6 100,0 99,3 95,1 91,5 83,7 78,5


1036<br />

page 2/2<br />

one third octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 75,5 79,1 82,5 85,7 89,2 88,6 92,3 95,0 96,0 94,5 95,7 96,1<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 93,8 91,7 89,7 90,5 89,2 88,8 86,3 83,9 79,4 76,2 80,5 75,8<br />

octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 84,7 92,9 99,5 100,3 96,8 94,3 88,8 82,8<br />

one third octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 76,5 80,3 83,7 86,0 89,5 88,9 92,3 94,9 95,9 94,7 96,3 96,9<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,8 92,8 91,0 91,7 90,4 90,1 89,2 85,6 82,1 79,5 82,4 72,7<br />

octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,9 93,2 99,4 100,8 97,9 95,6 91,3 84,5<br />

This test report extract is only valid with the manufacturer's certificate from 25.9.2010.<br />

The declarations in this extract are only valid in combination with the test report M89 031/2 from 10.1.2011 [5]<br />

(especially for calculations of sound propagation).<br />

Remarks:<br />

[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte<br />

Rev. 18 vom 01.02.2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)<br />

[2] IEC TS 61400-11 Wind turbines. Part 11: Acoustic noise measurement techniques. November 2002<br />

[3] In this windclass no values were determined<br />

[4] sound power level for the wind speed at 95 % rated power (v10 = 10,5 m/s) considering the conditions on the day of measurement, the power curve<br />

the above mentionted power curve and the hub height of the investigated WT<br />

[5] Müller-BBM testreport M89 031/2 10.1.2011<br />

Measured by: Müller-BBM GmbH<br />

branch office Gelsenkirchen<br />

Am Bugapark 1<br />

D-45 899 Gelsenkirchen<br />

Date of report: 2011-01-19<br />

______________________<br />

Dipl.-Ing. (FH) M. Köhl<br />

MÜLLER-BBM<br />

Accredited Testing Laboratory<br />

according to DIN EN ISO/IEC 17025<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

DGA-PL-2465.10


1037<br />

<strong>App</strong>endix F<br />

<strong>App</strong>arent sound power level related to other hub heights<br />

(hub heights: 78 m, 85 m, 98 m, 108 m and 138 m)<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

<strong>App</strong>endix F Page 1


1038<br />

Extract of test report page 1/2<br />

Master Sheet "Noise", according to "Technische Richtlinien für Windenergieanlagen,<br />

Teil 1: Bestimmung der Schallemissionswerte“<br />

Method of calculating apparent sound power level to another hub height according to Annex C of [1] and [2]<br />

Extract of test report M89 031/2<br />

regarding noise emission of wind turbine (WT) Enercon E-82 E3<br />

General <strong>Technical</strong> specifications (manufacturer)<br />

Manufacturer:<br />

Enercon GmbH<br />

Rated power (generator):<br />

3.000 kW<br />

Dreekamp 5 Rotor diameter: 82 m<br />

26605 Aurich Hub height above ground: 78 m<br />

Serial number:<br />

82001 Tower design: tube tower<br />

WT-location:<br />

RW:<br />

HW:<br />

2.592.266<br />

5.914.847<br />

material:<br />

Power control:<br />

concrete<br />

pitch<br />

Complementations of rotor (manufacturer) Complementations of gear and generator (manufacturer)<br />

blades:<br />

Enercon GmbH<br />

Manufacturer of gear:<br />

---<br />

Type of blades:<br />

E-82-2<br />

Type of gear:<br />

---<br />

Pitch angel: variabel<br />

Manufacturer of generator:<br />

Enercon GmbH<br />

Number of blades: 3<br />

Type of generator:<br />

E-82 E3<br />

Rated speed(s)/speed range: 6 - 18 rpm (mode I)<br />

Rated speed(s)/speed range:<br />

6 - 18 rpm (mode I)<br />

test report of power curve:<br />

Enercon GmbH: Calculated output curve of the E-82 E3 Rev. 2.0<br />

Reference<br />

Noise emission<br />

parameter<br />

Remarks<br />

Standardized wind<br />

speed at 10 m above Electric power<br />

ground<br />

6 m/s -- kW -- dB(A)<br />

[3]<br />

7 m/s 1463 kW 104,5 dB(A)<br />

Sound Power level L WA,P<br />

8 m/s 1909 kW 104,5 dB(A)<br />

9 m/s 2343 kW 104,7 dB(A)<br />

10 m/s 2670 kW 105,3 dB(A)<br />

10,8 m/s 2850 kW -- dB(A)<br />

[3]<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1463 kW --- dB<br />

Tonality (close-up range) K TN<br />

8 m/s 1909 kW --- dB<br />

9 m/s 2343 kW --- dB<br />

10 m/s 2670 kW --- dB<br />

10,8 m/s 2850 kW --- dB<br />

[3]<br />

Impulsivity (close-up range) K IN<br />

8 m/s 1909 kW --- dB<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1463 kW --- dB<br />

9 m/s 2343 kW --- dB<br />

10 m/s 2670 kW --- dB<br />

10,8 m/s 2850 kW --- dB<br />

[3]<br />

one third octave sound power level at reference point v 10 = 6 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

octave sound power level at reference point v 10 = 6 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave --- --- --- --- --- --- --- ---<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

one third octave sound power level at reference point v 10 = 7 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 77,8 82,2 86,0 88,5 90,1 90,9 93,5 95,3 95,5 93,2 94,1 94,3<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 92,6 91,7 90,3 91,0 89,2 86,2 85,2 82,6 80,4 74,7 76,4 73,3<br />

octave sound power level at reference point v 10 = 7 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 88,0 94,8 99,7 98,7 96,4 94,0 88,0 79,8<br />

one third octave sound power level at reference point v 10 = 8 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 79,9 83,7 86,8 89,1 89,5 92,9 95,3 96,0 94,1 95,2 95,2 92,9<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 91,2 89,4 90,3 88,6 86,0 84,5 81,8 77,7 74,1 78,2 63,4 63,6<br />

octave sound power level at reference point v 10 = 8 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 89,1 95,7 100,0 99,4 95,2 91,5 83,8 78,5


1039<br />

page 2/2<br />

one third octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 75,4 79,0 82,4 85,6 89,1 88,5 92,2 94,9 95,9 94,4 95,6 96,0<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 93,7 91,6 89,6 90,4 89,1 88,7 86,2 83,8 79,3 76,1 80,4 75,7<br />

octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 84,6 92,7 99,3 100,1 96,7 94,2 88,7 82,7<br />

one third octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 76,4 80,2 83,6 85,9 89,4 88,8 92,2 94,8 95,8 94,6 96,2 96,8<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,7 92,7 90,9 91,6 90,3 90,0 89,1 85,5 82,0 79,4 82,3 72,6<br />

octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,7 93,0 99,2 100,7 97,8 95,4 91,2 84,4<br />

This test report extract is only valid with the manufacturer's certificate from 25.9.2010.<br />

The declarations in this extract are only valid in combination with the test report M89 031/2 from 19.1.2011 [4]<br />

(especially for calculations of sound propagation).<br />

Remarks:<br />

[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte<br />

Rev. 18 vom 01. February 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)<br />

[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level und Tonality Values of Wind Turbines, 2005-03<br />

[3] In this windclass no values were determined<br />

[4] The working point of 95% of the rated power, for which the maximum sound power level was stated, is<br />

according to the reference power curve and the hub height of the measured WT under standardized<br />

meteorological conditions v10= 10,8 m/s<br />

[5] Müller-BBM testreport M89 031/2 from 19.1.2011<br />

Measured by: Müller-BBM GmbH<br />

branch office Gelsenkirchen<br />

Am Bugapark 1<br />

D-45 899 Gelsenkirchen<br />

Date of report: 2011-01-19<br />

______________________<br />

Dipl.-Ing. (FH) M. Köhl<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

MÜLLER-BBM<br />

Accredited Testing Laboratory<br />

according to DIN EN ISO/IEC 17025<br />

DGA-PL-2465.10


1040<br />

Extract of test report page 1/2<br />

Master Sheet "Noise", according to "Technische Richtlinien für Windenergieanlagen,<br />

Teil 1: Bestimmung der Schallemissionswerte“<br />

Method of calculating apparent sound power level to another hub height according to Annex C of [1] and [2]<br />

Extract of test report M89 031/2<br />

regarding noise emission of wind turbine (WT) Enercon E-82 E3<br />

General <strong>Technical</strong> specifications (manufacturer)<br />

Manufacturer:<br />

Enercon GmbH<br />

Rated power (generator):<br />

3.000 kW<br />

Dreekamp 5 Rotor diameter: 82 m<br />

26605 Aurich Hub height above ground: 85 m<br />

Serial number:<br />

82001 Tower design: tube tower<br />

WT-location:<br />

RW:<br />

HW:<br />

2.592.266<br />

5.914.847<br />

material:<br />

Power control:<br />

concrete<br />

pitch<br />

Complementations of rotor (manufacturer) Complementations of gear and generator (manufacturer)<br />

blades:<br />

Enercon GmbH<br />

Manufacturer of gear:<br />

---<br />

Type of blades:<br />

E-82-2<br />

Type of gear:<br />

---<br />

Pitch angel: variabel<br />

Manufacturer of generator:<br />

Enercon GmbH<br />

Number of blades: 3<br />

Type of generator:<br />

E-82 E3<br />

Rated speed(s)/speed range: 6 - 18 rpm (mode I)<br />

Rated speed(s)/speed range:<br />

6 - 18 rpm (mode I)<br />

test report of power curve:<br />

Enercon GmbH: Calculated output curve of the E-82 E3 Rev. 2.0<br />

Reference<br />

Noise emission<br />

parameter<br />

Remarks<br />

Standardized wind<br />

speed at 10 m above Electric power<br />

ground<br />

6 m/s -- kW -- dB(A)<br />

[3]<br />

7 m/s 1503 kW 104,5 dB(A)<br />

Sound Power level L WA,P<br />

8 m/s 1941 kW 104,5 dB(A)<br />

9 m/s 2370 kW 104,7 dB(A)<br />

10 m/s 2702 kW 105,3 dB(A)<br />

10,7 m/s 2850 kW -- dB(A)<br />

[3]<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1503 kW --- dB<br />

Tonality (close-up range) K TN<br />

8 m/s 1941 kW --- dB<br />

9 m/s 2370 kW --- dB<br />

10 m/s 2702 kW --- dB<br />

10,7 m/s 2850 kW --- dB<br />

[3]<br />

Impulsivity (close-up range) K IN<br />

8 m/s 1941 kW --- dB<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1503 kW --- dB<br />

9 m/s 2370 kW --- dB<br />

10 m/s 2702 kW --- dB<br />

10,7 m/s 2850 kW --- dB<br />

[3]<br />

one third octave sound power level at reference point v 10 = 6 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

octave sound power level at reference point v 10 = 6 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave --- --- --- --- --- --- --- ---<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

one third octave sound power level at reference point v 10 = 7 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 77,9 82,3 86,1 88,6 90,2 91,0 93,6 95,4 95,6 93,3 94,2 94,4<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 92,7 91,8 90,4 91,1 89,3 86,3 85,3 82,7 80,5 74,8 76,5 73,4<br />

octave sound power level at reference point v 10 = 7 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 88,0 94,8 99,7 98,7 96,5 94,1 88,0 79,8<br />

one third octave sound power level at reference point v 10 = 8 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 79,9 83,7 86,8 89,1 89,5 92,9 95,3 96,0 94,1 95,2 95,2 92,9<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 91,2 89,4 90,3 88,6 86,0 84,5 81,8 77,7 74,1 78,2 63,4 63,6<br />

octave sound power level at reference point v 10 = 8 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 89,1 95,7 100,0 99,4 95,2 91,5 83,8 78,5


1041<br />

page 2/2<br />

one third octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 75,4 79,0 82,4 85,6 89,1 88,5 92,2 94,9 95,9 94,4 95,6 96,0<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 93,7 91,6 89,6 90,4 89,1 88,7 86,2 83,8 79,3 76,1 80,4 75,7<br />

octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 84,6 92,8 99,4 100,2 96,8 94,3 88,7 82,8<br />

one third octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 76,4 80,2 83,6 85,9 89,4 88,8 92,2 94,8 95,8 94,6 96,2 96,8<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,7 92,7 90,9 91,6 90,3 90,0 89,1 85,5 82,0 79,4 82,3 72,6<br />

octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,8 93,1 99,3 100,7 97,8 95,5 91,2 84,4<br />

This test report extract is only valid with the manufacturer's certificate from 25.9.2010.<br />

The declarations in this extract are only valid in combination with the test report M89 031/2 from 19.1.2011 [4]<br />

(especially for calculations of sound propagation).<br />

Remarks:<br />

[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte<br />

Rev. 18 vom 01. February 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)<br />

[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level und Tonality Values of Wind Turbines, 2005-03<br />

[3] In this windclass no values were determined<br />

[4] The working point of 95% of the rated power, for which the maximum sound power level was stated, is<br />

according to the reference power curve and the hub height of the measured WT under standardized<br />

meteorological conditions v10= 10,7 m/s<br />

[5] Müller-BBM testreport M89 031/2 from 19.1.2011<br />

Measured by: Müller-BBM GmbH<br />

branch office Gelsenkirchen<br />

Am Bugapark 1<br />

D-45 899 Gelsenkirchen<br />

Date of report: 2011-01-19<br />

______________________<br />

Dipl.-Ing. (FH) M. Köhl<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

MÜLLER-BBM<br />

Accredited Testing Laboratory<br />

according to DIN EN ISO/IEC 17025<br />

DGA-PL-2465.10


1042<br />

Extract of test report page 1/2<br />

Master Sheet "Noise", according to "Technische Richtlinien für Windenergieanlagen,<br />

Teil 1: Bestimmung der Schallemissionswerte“<br />

Method of calculating apparent sound power level to another hub height according to Annex C of [1] and [2]<br />

Extract of test report M89 031/2<br />

regarding noise emission of wind turbine (WT) Enercon E-82 E3<br />

General <strong>Technical</strong> specifications (manufacturer)<br />

Manufacturer:<br />

Enercon GmbH<br />

Rated power (generator):<br />

3.000 kW<br />

Dreekamp 5 Rotor diameter: 82 m<br />

26605 Aurich Hub height above ground: 98 m<br />

Serial number:<br />

82001 Tower design: tube tower<br />

WT-location:<br />

RW:<br />

HW:<br />

2.592.266<br />

5.914.847<br />

material:<br />

Power control:<br />

concrete<br />

pitch<br />

Complementations of rotor (manufacturer) Complementations of gear and generator (manufacturer)<br />

blades:<br />

Enercon GmbH<br />

Manufacturer of gear:<br />

---<br />

Type of blades:<br />

E-82-2<br />

Type of gear:<br />

---<br />

Pitch angel: variabel<br />

Manufacturer of generator:<br />

Enercon GmbH<br />

Number of blades: 3<br />

Type of generator:<br />

E-82 E3<br />

Rated speed(s)/speed range: 6 - 18 rpm (mode I)<br />

Rated speed(s)/speed range:<br />

6 - 18 rpm (mode I)<br />

test report of power curve:<br />

Enercon GmbH: Calculated output curve of the E-82 E3 Rev. 2.0<br />

Reference<br />

Noise emission<br />

parameter<br />

Remarks<br />

Standardized wind<br />

speed at 10 m above Electric power<br />

ground<br />

6 m/s -- kW -- dB(A)<br />

[3]<br />

7 m/s 1586 kW 104,5 dB(A)<br />

Sound Power level L WA,P<br />

8 m/s 2035 kW 104,5 dB(A)<br />

9 m/s 2447 kW 104,8 dB(A)<br />

10 m/s 2747 kW 105,4 dB(A)<br />

10,5 m/s 2850 kW 105,1 dB(A)<br />

[3]<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1586 kW --- dB<br />

Tonality (close-up range) K TN<br />

8 m/s 2035 kW --- dB<br />

9 m/s 2447 kW --- dB<br />

10 m/s 2747 kW --- dB<br />

10,5 m/s 2850 kW --- dB<br />

[3]<br />

Impulsivity (close-up range) K IN<br />

8 m/s 2035 kW --- dB<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1586 kW --- dB<br />

9 m/s 2447 kW --- dB<br />

10 m/s 2747 kW --- dB<br />

10,5 m/s 2850 kW --- dB<br />

[3]<br />

one third octave sound power level at reference point v 10 = 6 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

octave sound power level at reference point v 10 = 6 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave --- --- --- --- --- --- --- ---<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

one third octave sound power level at reference point v 10 = 7 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 77,9 82,3 86,1 88,6 90,2 91,0 93,6 95,4 95,6 93,3 94,2 94,4<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 92,7 91,8 90,4 91,1 89,3 86,3 85,3 82,7 80,5 74,8 76,5 73,4<br />

octave sound power level at reference point v 10 = 7 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 88,1 94,8 99,7 98,8 96,5 94,1 88,0 79,9<br />

one third octave sound power level at reference point v 10 = 8 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 79,9 83,7 86,8 89,1 89,5 92,9 95,3 96,0 94,1 95,2 95,2 92,9<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 91,2 89,4 90,3 88,6 86,0 84,5 81,8 77,7 74,1 78,2 63,4 63,6<br />

octave sound power level at reference point v 10 = 8 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 89,1 95,7 100,0 99,4 95,2 91,5 83,8 78,5


1043<br />

page 2/2<br />

one third octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 75,5 79,1 82,5 85,7 89,2 88,6 92,3 95,0 96,0 94,5 95,7 96,1<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 93,8 91,7 89,7 90,5 89,2 88,8 86,3 83,9 79,4 76,2 80,5 75,8<br />

octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 84,7 92,9 99,5 100,3 96,9 94,4 88,8 82,9<br />

one third octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 76,5 80,3 83,7 86,0 89,5 88,9 92,3 94,9 95,9 94,7 96,3 96,9<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,8 92,8 91,0 91,7 90,4 90,1 89,2 85,6 82,1 79,5 82,4 72,7<br />

octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,8 93,1 99,3 100,8 97,9 95,5 91,3 84,5<br />

This test report extract is only valid with the manufacturer's certificate from 25.9.2010.<br />

The declarations in this extract are only valid in combination with the test report M89 031/2 from 19.1.2011 [4]<br />

(especially for calculations of sound propagation).<br />

Remarks:<br />

[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte<br />

Rev. 18 vom 01. February 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)<br />

[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level und Tonality Values of Wind Turbines, 2005-03<br />

[3] In this windclass no values were determined<br />

[4] The working point of 95% of the rated power, for which the maximum sound power level was stated, is<br />

according to the reference power curve and the hub height of the measured WT under standardized<br />

meteorological conditions v10= 10,5 m/s<br />

[5] Müller-BBM testreport M89 031/2 from 19.1.2011<br />

Measured by: Müller-BBM GmbH<br />

branch office Gelsenkirchen<br />

Am Bugapark 1<br />

D-45 899 Gelsenkirchen<br />

Date of report: 2011-01-19<br />

______________________<br />

Dipl.-Ing. (FH) M. Köhl<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

MÜLLER-BBM<br />

Accredited Testing Laboratory<br />

according to DIN EN ISO/IEC 17025<br />

DGA-PL-2465.10


1044<br />

Extract of test report page 1/2<br />

Master Sheet "Noise", according to "Technische Richtlinien für Windenergieanlagen,<br />

Teil 1: Bestimmung der Schallemissionswerte“<br />

Method of calculating apparent sound power level to another hub height according to Annex C of [1] and [2]<br />

Extract of test report M89 031/2<br />

regarding noise emission of wind turbine (WT) Enercon E-82 E3<br />

General <strong>Technical</strong> specifications (manufacturer)<br />

Manufacturer:<br />

Enercon GmbH<br />

Rated power (generator):<br />

3.000 kW<br />

Dreekamp 5 Rotor diameter: 82 m<br />

26605 Aurich Hub height above ground: 108 m<br />

Serial number:<br />

82001 Tower design: tube tower<br />

WT-location:<br />

RW:<br />

HW:<br />

2.592.266<br />

5.914.847<br />

material:<br />

Power control:<br />

concrete<br />

pitch<br />

Complementations of rotor (manufacturer) Complementations of gear and generator (manufacturer)<br />

blades:<br />

Enercon GmbH<br />

Manufacturer of gear:<br />

---<br />

Type of blades:<br />

E-82-2<br />

Type of gear:<br />

---<br />

Pitch angel: variabel<br />

Manufacturer of generator:<br />

Enercon GmbH<br />

Number of blades: 3<br />

Type of generator:<br />

E-82 E3<br />

Rated speed(s)/speed range: 6 - 18 rpm (mode I)<br />

Rated speed(s)/speed range:<br />

6 - 18 rpm (mode I)<br />

test report of power curve:<br />

Enercon GmbH: Calculated output curve of the E-82 E3 Rev. 2.0<br />

Reference<br />

Noise emission<br />

parameter<br />

Remarks<br />

Standardized wind<br />

speed at 10 m above Electric power<br />

ground<br />

6 m/s -- kW -- dB(A)<br />

[3]<br />

7 m/s 1618 kW 104,5 dB(A)<br />

Sound Power level L WA,P<br />

8 m/s 2066 kW 104,5 dB(A)<br />

9 m/s 2472 kW 104,9 dB(A)<br />

10 m/s 2777 kW 105,4 dB(A)<br />

10,4 m/s 2850 kW 105,1 dB(A)<br />

[3]<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1618 kW --- dB<br />

Tonality (close-up range) K TN<br />

8 m/s 2066 kW --- dB<br />

9 m/s 2472 kW --- dB<br />

10 m/s 2777 kW --- dB<br />

10,4 m/s 2850 kW --- dB<br />

[3]<br />

Impulsivity (close-up range) K IN<br />

8 m/s 2066 kW --- dB<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1618 kW --- dB<br />

9 m/s 2472 kW --- dB<br />

10 m/s 2777 kW --- dB<br />

10,4 m/s 2850 kW --- dB<br />

[3]<br />

one third octave sound power level at reference point v 10 = 6 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

octave sound power level at reference point v 10 = 6 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave --- --- --- --- --- --- --- ---<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

one third octave sound power level at reference point v 10 = 7 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 77,9 82,3 86,1 88,6 90,2 91,0 93,6 95,4 95,6 93,3 94,2 94,4<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 92,7 91,8 90,4 91,1 89,3 86,3 85,3 82,7 80,5 74,8 76,5 73,4<br />

octave sound power level at reference point v 10 = 7 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 88,1 94,8 99,7 98,8 96,5 94,1 88,1 79,9<br />

one third octave sound power level at reference point v 10 = 8 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 79,9 83,7 86,8 89,1 89,5 92,9 95,3 96,0 94,1 95,2 95,2 92,9<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 91,2 89,4 90,3 88,6 86,0 84,5 81,8 77,7 74,1 78,2 63,4 63,6<br />

octave sound power level at reference point v 10 = 8 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 89,1 95,7 100,0 99,4 95,2 91,5 83,8 78,5


1045<br />

page 2/2<br />

one third octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 75,6 79,2 82,6 85,8 89,3 88,7 92,4 95,1 96,1 94,6 95,8 96,2<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 93,9 91,8 89,8 90,6 89,3 88,9 86,4 84,0 79,5 76,3 80,6 75,9<br />

octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 84,8 93,0 99,6 100,4 96,9 94,4 88,9 82,9<br />

one third octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 76,5 80,3 83,7 86,0 89,5 88,9 92,3 94,9 95,9 94,7 96,3 96,9<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,8 92,8 91,0 91,7 90,4 90,1 89,2 85,6 82,1 79,5 82,4 72,7<br />

octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,8 93,1 99,3 100,8 97,9 95,5 91,3 84,5<br />

This test report extract is only valid with the manufacturer's certificate from 25.9.2010.<br />

The declarations in this extract are only valid in combination with the test report M89 031/2 from 19.1.2011 [4]<br />

(especially for calculations of sound propagation).<br />

Remarks:<br />

[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte<br />

Rev. 18 vom 01. February 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)<br />

[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level und Tonality Values of Wind Turbines, 2005-03<br />

[3] In this windclass no values were determined<br />

[4] The working point of 95% of the rated power, for which the maximum sound power level was stated, is<br />

according to the reference power curve and the hub height of the measured WT under standardized<br />

meteorological conditions v10= 10,4 m/s<br />

[5] Müller-BBM testreport M89 031/2 from 19.1.2011<br />

Measured by: Müller-BBM GmbH<br />

branch office Gelsenkirchen<br />

Am Bugapark 1<br />

D-45 899 Gelsenkirchen<br />

Date of report: 2011-01-19<br />

______________________<br />

Dipl.-Ing. (FH) M. Köhl<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

MÜLLER-BBM<br />

Accredited Testing Laboratory<br />

according to DIN EN ISO/IEC 17025<br />

DGA-PL-2465.10


1046<br />

Extract of test report page 1/2<br />

Master Sheet "Noise", according to "Technische Richtlinien für Windenergieanlagen,<br />

Teil 1: Bestimmung der Schallemissionswerte“<br />

Method of calculating apparent sound power level to another hub height according to Annex C of [1] and [2]<br />

Extract of test report M89 031/2<br />

regarding noise emission of wind turbine (WT) Enercon E-82 E3<br />

General <strong>Technical</strong> specifications (manufacturer)<br />

Manufacturer:<br />

Enercon GmbH<br />

Rated power (generator):<br />

3.000 kW<br />

Dreekamp 5 Rotor diameter: 82 m<br />

26605 Aurich Hub height above ground: 138 m<br />

Serial number:<br />

82001 Tower design: tube tower<br />

WT-location:<br />

RW:<br />

HW:<br />

2.592.266<br />

5.914.847<br />

material:<br />

Power control:<br />

concrete<br />

pitch<br />

Complementations of rotor (manufacturer) Complementations of gear and generator (manufacturer)<br />

blades:<br />

Enercon GmbH<br />

Manufacturer of gear:<br />

---<br />

Type of blades:<br />

E-82-2<br />

Type of gear:<br />

---<br />

Pitch angel: variabel<br />

Manufacturer of generator:<br />

Enercon GmbH<br />

Number of blades: 3<br />

Type of generator:<br />

E-82 E3<br />

Rated speed(s)/speed range: 6 - 18 rpm (mode I)<br />

Rated speed(s)/speed range:<br />

6 - 18 rpm (mode I)<br />

test report of power curve:<br />

Enercon GmbH: Calculated output curve of the E-82 E3 Rev. 2.0<br />

Reference<br />

Noise emission<br />

parameter<br />

Remarks<br />

Standardized wind<br />

speed at 10 m above Electric power<br />

ground<br />

6 m/s -- kW -- dB(A)<br />

[3]<br />

7 m/s 1746 kW 104,5 dB(A)<br />

Sound Power level L WA,P<br />

8 m/s 2184 kW 104,5 dB(A)<br />

9 m/s 2590 kW 105,1 dB(A)<br />

10 m/s 2850 kW 105,4 dB(A)<br />

10,0 m/s 2850 kW 105,4 dB(A)<br />

[3]<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1746 kW --- dB<br />

Tonality (close-up range) K TN<br />

8 m/s 2184 kW --- dB<br />

9 m/s 2590 kW --- dB<br />

10 m/s 2850 kW --- dB<br />

10,0 m/s 2850 kW --- dB<br />

[3]<br />

Impulsivity (close-up range) K IN<br />

8 m/s 2184 kW --- dB<br />

6 m/s -- kW --- dB<br />

[3]<br />

7 m/s 1746 kW --- dB<br />

9 m/s 2590 kW --- dB<br />

10 m/s 2850 kW --- dB<br />

10,0 m/s 2850 kW --- dB<br />

[3]<br />

one third octave sound power level at reference point v 10 = 6 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave --- --- --- --- --- --- --- --- --- --- --- ---<br />

octave sound power level at reference point v 10 = 6 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave --- --- --- --- --- --- --- ---<br />

89031_02_Pbe_1E.DOC:19. 01. 2011<br />

one third octave sound power level at reference point v 10 = 7 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 77,9 82,3 86,1 88,6 90,2 91,0 93,6 95,4 95,6 93,3 94,2 94,4<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 92,7 91,8 90,4 91,1 89,3 86,3 85,3 82,7 80,5 74,8 76,5 73,4<br />

octave sound power level at reference point v 10 = 7 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 88,1 94,8 99,7 98,8 96,5 94,1 88,1 79,9<br />

one third octave sound power level at reference point v 10 = 8 m/s<br />

frequency 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P, 1/3 octave 80,0 83,8 86,9 89,2 89,6 93,0 95,4 96,1 94,2 95,3 95,3 93,0<br />

frequency 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P, 1/3 octave 91,3 89,5 90,4 88,7 86,1 84,6 81,9 77,8 74,2 78,3 63,5 63,7<br />

octave sound power level at reference point v 10 = 8 m/s<br />

frequency 63 125 250 500 1000 2000 4000 8000<br />

L WA,P, octave 89,2 95,7 100,1 99,4 95,2 91,6 83,8 78,6


1047<br />

page 2/2<br />

one third octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 75,8 79,4 82,8 86,0 89,5 88,9 92,6 95,3 96,3 94,8 96,0 96,4<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,1 92,0 90,0 90,8 89,5 89,1 86,6 84,2 79,7 76,5 80,8 76,1<br />

octave sound power level at reference point v 10 = 9 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,0 93,1 99,8 100,5 97,1 94,6 89,1 83,1<br />

one third octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 50 63 80 100 125 160 200 250 315 400 500 630<br />

L WA,P,Terz 76,5 80,3 83,7 86,0 89,5 88,9 92,3 94,9 95,9 94,7 96,3 96,9<br />

Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000<br />

L WA,P,Terz 94,8 92,8 91,0 91,7 90,4 90,1 89,2 85,6 82,1 79,5 82,4 72,7<br />

octave sound power level at reference point v 10 = 10 m/s<br />

Frequenz 63 125 250 500 1000 2000 4000 8000<br />

L WA,P,Terz 85,9 93,2 99,4 100,8 97,9 95,6 91,3 84,5<br />

This test report extract is only valid with the manufacturer's certificate from 25.9.2010.<br />

The declarations in this extract are only valid in combination with the test report M89 031/2 from 19.1.2011 [4]<br />

(especially for calculations of sound propagation).<br />

Remarks:<br />

[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte<br />

Rev. 18 vom 01. February 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)<br />

[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level und Tonality Values of Wind Turbines, 2005-03<br />

[3] In this windclass no values were determined<br />

[4] The working point of 95% of the rated power, for which the maximum sound power level was stated, is<br />

according to the reference power curve and the hub height of the measured WT under standardized<br />

meteorological conditions v10= 10 m/s<br />

[5] Müller-BBM testreport M89 031/2 from 19.1.2011<br />

Measured by: Müller-BBM GmbH<br />

branch office Gelsenkirchen<br />

Am Bugapark 1<br />

D-45 899 Gelsenkirchen<br />

Date of report: 2011-01-19<br />

______________________<br />

Dipl.-Ing. (FH) M. Köhl<br />

P:\khl\89\89031\M89031_02_Pbe_1E.DOC:19. 01. 2011<br />

M89 031/2 khl<br />

2011-01-19<br />

MÜLLER-BBM<br />

Accredited Testing Laboratory<br />

according to DIN EN ISO/IEC 17025<br />

DGA-PL-2465.10<br />

<strong>App</strong>endix F Page 11


1048<br />

Acoustic Emission, SWT-2.3-82 VS<br />

Document ID: E R WP-EN431-10-0000-0161-00<br />

PE / 2009.03.31<br />

Conveyed confidentially as trade secret<br />

SWT-2.3-82 VS<br />

Acoustic Emission<br />

Sound Power Levels<br />

The warranted sound power levels are presented with reference to the code IEC 61400-11:2002 with<br />

amendment 1 dated 2006-05 based on a hub height of 80 m and a roughness length of 0.05 m as described<br />

in the IEC code. The sound power levels (L WA ) presented are valid for the corresponding wind speeds<br />

referenced to a height of 10 m above ground level.<br />

Wind speed [m/s] 4 5 6 7 8 9 10 11 12<br />

Up to<br />

18<br />

Standard setting 90.3 98.5 103.2 104.5 104.5 104.5 104.5 104.5 104.5 104.5<br />

”Setting -1 dB” 90.3 98.5 102.6 103.5 103.5 103.5 103.5 103.5 103.5 103.5<br />

”Setting -2 dB” 90.3 98.5 101.9 102.5 102.5 102.5 102.5 102.5 102.5 102.5<br />

”Setting -3 dB” 90.3 98.4 101.2 101.5 101.5 101.5 101.5 101.5 101.5 101.5<br />

”Setting -4 dB” 90.3 97.8 100.2 100.5 100.5 100.5 100.5 100.5 100.5 100.5<br />

”Setting -5 dB” 90.3 97.4 99.2 99.5 99.5 99.5 99.5 99.5 99.5 99.5<br />

Tabel 1: Noise emission, L WA [dB(A) re 1 pW]<br />

Typical Octave Band<br />

Typical, not warranted octave band spectra are tabulated below for 6 and 8 m/s referenced to 10m height.<br />

Octave band, center frequency [Hz] 63 125 250 500 1000 2000 4000 8000<br />

Standard setting 75.8 87.6 96.4 97.5 97.0 94.9 92.7 86.5<br />

”Setting -1 dB” 76.1 87.8 95.8 95.8 95.2 94.0 91.4 85.1<br />

”Setting -2 dB” 76.4 87.9 95.2 94.0 93.3 93.2 90.3 84.0<br />

”Setting -3 dB” 76.7 87.8 94.5 91.9 91.4 92.4 89.6 83.5<br />

”Setting -4 dB” 77.0 87.5 93.5 90.1 90.1 91.7 89.5 83.8<br />

”Setting -5 dB” 77.0 86.6 91.8 89.6 90.4 90.9 90.0 84.7<br />

Table 2: Typical octave band for 6 m/s<br />

Octave band, center frequency [Hz] 63 125 250 500 1000 2000 4000 8000<br />

Standard setting 77.8 87.8 96.5 98.6 98.9 96.3 94.4 88.6<br />

”Setting -1 dB” 77.6 87.3 95.4 97.3 97.9 95.4 93.8 88.1<br />

”Setting -2 dB” 77.6 87.0 94.3 96.1 97.0 94.5 93.3 87.6<br />

”Setting -3 dB” 77.5 86.6 93.1 94.7 96.0 93.5 92.8 87.2<br />

”Setting -4 dB” 77.4 86.2 91.9 93.3 95.0 92.6 92.3 86.7<br />

”Setting -5 dB” 77.1 85.6 90.7 92.1 93.8 91.5 91.5 86.0<br />

Table 3: Typical octave band for 8 m/s<br />

Noise Restricted Operation<br />

The lower sound power levels presented for ”Setting -1 dB”, ”Setting -2 dB”, ”Setting -3 dB”, ”Setting -4 dB”<br />

and ”Setting -5 dB” are achieved by controlling the SWT-2.3-82 VS wind turbine in a noise restricted mode of<br />

operation. This noise restricted mode of operation will, depending on the mode, have an impact on the power<br />

output of the turbine. Please contact Siemens for further information on this option.<br />

Siemens Wind Power A/S<br />

© All Rights Reserved 2009<br />

1 / 1<br />

SWT-2.3-82 VS 80m Acoustic Emission max extended version.doc


1049<br />

Sound Power Level E-82 E2<br />

Page<br />

1 of 3<br />

Sound Power Level<br />

of the<br />

ENERCON E-82 E2<br />

Operational Mode I<br />

(Data Sheet)<br />

Imprint<br />

Editor:<br />

ENERCON GmbH ▪ Dreekamp 5 ▪ 26605 Aurich ▪ Germany<br />

Telephone: 04941-927-0<br />

Fax: 04941-927-109<br />

Copyright: Unless otherwise specified in this document, the contents of this document are protected by copyright of<br />

ENERCON GmbH. All rights reserved. No use, including any copying or publishing, of this information is<br />

permitted without the prior written consent of ENERCON GmbH.<br />

Updates: ENERCON GmbH reserves the right to continuously update and modify this document and the items<br />

described therein at any time without prior notice.<br />

Revision<br />

Revision: 1.1<br />

Department: ENERCON GmbH / Site Assessment<br />

Glossary<br />

WEC<br />

WECs<br />

means an ENERCON wind energy converter.<br />

means more than one ENERCON wind energy converter.<br />

Document information:<br />

Author/Revisor/ date:<br />

<strong>App</strong>roved / date:<br />

Revision /date:<br />

Sr/ 2011-11<br />

RWo/ 2011-11<br />

1.1/ 2011-11<br />

Documentname<br />

© Copyright ENERCON GmbH. All rights reserved.<br />

SIAS-04-SPL E-82 E2 OM I 2,3MW Rev1_1-eng-eng.doc


1050<br />

Sound Power Level E-82 E2<br />

Page<br />

2 of 3<br />

Sound Power Level for the E-82 E2 with 2300 kW rated power<br />

hub height<br />

in relation to standardized wind speed v S at 10 m height<br />

V s<br />

in 10 m height<br />

78 m 85 m 98 m 108 m 138 m<br />

5 m/s 96,3 dB(A) 96.6 dB(A) 97.2 dB(A) 97.5 dB(A) 98.2 dB(A)<br />

6 m/s 100.7 dB(A) 101.0 dB(A) 101.6 dB(A) 101.9 dB(A) 102.6 dB(A)<br />

7 m/s 103.3 dB(A) 103.5 dB(A) 103.6 dB(A) 103.6 dB(A) 103.8 dB(A)<br />

8 m/s 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A)<br />

9 m/s 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A)<br />

10 m/s 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A)<br />

95% rated power 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A) 104.0 dB(A)<br />

Measured value at 95%<br />

rated power<br />

103,4 dB(A)<br />

KCE 209244-03.03<br />

104,1 dB(A)<br />

MBBM M95 777/1<br />

104,0 dB(A)<br />

KCE 211372-01.01<br />

in relation to wind speed at hub height<br />

wind speed at hub<br />

height [m/s]<br />

7 8 9 10 11 12 13 14 15<br />

Sound Power Level<br />

[dB(A)]<br />

96.6 99.9 102.6 103.5 104.0 104.0 104.0 104.0 104.0<br />

1. The relation between the sound power level and the standardized wind speed v S in 10 m height as<br />

shown above is valid on the premise of a logarithmic wind profile with a roughness length of<br />

0.05 m. The relation between the sound power level and the wind speed at hub height applies for<br />

all hub heights. During the sound measurements the wind speeds are derived from the power<br />

output and the power curve of the WEC.<br />

2. A tonal audibility of ΔL a,k ≤ 2 dB can be expected over the whole operational range (valid in the<br />

near vicinity of the turbine according to IEC 61 400 -11 ed. 2).<br />

Document information:<br />

Author/Revisor/ date:<br />

<strong>App</strong>roved / date:<br />

Revision /date:<br />

Sr/ 2011-11<br />

RWo/ 2011-11<br />

1.1/ 2011-11<br />

Documentname<br />

© Copyright ENERCON GmbH. All rights reserved.<br />

SIAS-04-SPL E-82 E2 OM I 2,3MW Rev1_1-eng-eng.doc


1051<br />

Sound Power Level E-82 E2<br />

Page<br />

3 of 3<br />

3. The sound power level values given in the table are valid for the Operational Mode I (defined via<br />

the rotational speed range of 6 – 18 rpm). The respective power curve is the calculated power<br />

curve E-82 E2 dated November 2009 (Rev. 3.x).<br />

4. The values displayed in the tables above are based on official and internal measurements of the<br />

sound power level. If available the official measured values are given in this document as a<br />

reference (in italic print). The extracts of the official measurements can be made available upon<br />

request. The values given in the measurement extracts do not replace the values given in this<br />

document. All measurements have been carried out according to the recommended German and<br />

international standards and guidelines as defined in the measurement reports, respectively.<br />

5. Due to the typical measurement uncertainties, if the sound power level is measured according to<br />

one of the accepted methods the measured values can differ from the values shown in this<br />

document in the range of +/- 1 dB.<br />

Accepted measurement methods are:<br />

a) IEC 61400-11 ed. 2 („Wind turbine generator systems – Part 11: Acoustic noise measurement<br />

techniques; Second edition“), and<br />

b) the FGW-Guidelines („Technische Richtlinie für Windenergieanlagen – Teil 1: Bestimmung der<br />

Schallemissionswerte“, published by the association “Fördergesellschaft für Windenergie<br />

e.V.”, 18 th revision).<br />

If the difference between total noise and background noise during a measurement is less than<br />

6 dB a higher uncertainty must be considered.<br />

6. For noise-sensitive sites it is possible to operate the E-82 E2 with reduced rotational speed and<br />

reduced rated power during night time. The sound power levels resulting from such operational<br />

mode can be provided in a separate document upon request.<br />

7. The sound power level of a wind turbine depends on several factors such as but not limited to<br />

regular maintenance and day-to-day operation in compliance with the manufacturer’s operating<br />

instructions. Therefore, this data sheet can not, and is not intended to, constitute an express or<br />

implied warranty towards the customer that the E-82 E2 WEC will meet the exact sound power<br />

level values as shown in this document at any project specific site.<br />

Document information:<br />

Author/Revisor/ date:<br />

<strong>App</strong>roved / date:<br />

Revision /date:<br />

Sr/ 2011-11<br />

RWo/ 2011-11<br />

1.1/ 2011-11<br />

Documentname<br />

© Copyright ENERCON GmbH. All rights reserved.<br />

SIAS-04-SPL E-82 E2 OM I 2,3MW Rev1_1-eng-eng.doc


1052<br />

Fauch Hill Wind Farm<br />

<strong>Technical</strong> <strong>App</strong>endix 9.7<br />

Calculated Grid Noise Map


1053


1054<br />

Fauch Hill Wind Farm<br />

<strong>Technical</strong> <strong>App</strong>endix 9.8<br />

Numerical ETSU R97 Noise<br />

Limits


1055.<br />

Fauch Hill Wind Farm<br />

<strong>App</strong>endix 9.8 - Numerical ETSU R97 Noise Limits<br />

<strong>App</strong>endix 9.8.1 - ETSU R97 Numerical Noise Limits - Daytime<br />

Site<br />

Site Location and Site<br />

ETSU R97 Daytime noise limits in dB L A90, 10min<br />

Description 4m/s 5m/s 6m/s 7m/s 8m/s 9m/s 10m/s 11m/s 12m/s<br />

M01 Cairns House 39 40 40 41 41 42 43 44 45<br />

M02 Crosswood Burn 43 44 45 47 48 50 51 52 53<br />

M03 Halfway House 39 39 39 41 42 45 48 52 56<br />

M04 Harperig 44 46 48 49 50 52 53 53 54<br />

M05 Mid Crosswood 38 38 39 41 43 45 48 51 55<br />

M06 Owl Barn 42 43 43 44 44 45 45 46 46<br />

M07 Aberlyn 41 42 43 45 48 50 53 57 60<br />

M08 Berry Knowe 38 38 39 41 43 46 49 52 56<br />

M09 Brook Bank 43 44 45 46 48 50 52 54 56<br />

M10 Colzium 38 38 38 40 42 45 48 51 54<br />

M11 Crosswood House 53 53 54 55 56 57 58 60 62<br />

M12 WesterCrosswood Hill 39 41 43 46 49 52 56 60 64<br />

M13<br />

M14<br />

M15<br />

Crosswood Hill<br />

(based upon M12 - Wester<br />

Crosswood Hill baseline data)<br />

The Beeches<br />

(based upon M12 - Wester<br />

Crosswood Hill baseline data)<br />

Little Moss Cottage<br />

(based upon M12 - Wester<br />

Crosswood Hill baseline data)<br />

39 41 43 46 49 52 56 60 64<br />

39 41 43 46 49 52 56 60 64<br />

39 41 43 46 49 52 56 60 64<br />

<strong>App</strong>endix 9.8 - ETSU R97 Noise Limits 24.1.2012 1


1056.<br />

Fauch Hill Wind Farm<br />

<strong>App</strong>endix 9.8 - Numerical ETSU R97 Noise Limits<br />

<strong>App</strong>endix 9.8.2 - ETSU R97 Numerical Noise Limits –Night-time<br />

Site<br />

Site Location and Site<br />

ETSU R97 Night-time noise limits in dB L A90, 10min<br />

Description 4m/s 5m/s 6m/s 7m/s 8m/s 9m/s 10m/s 11m/s 12m/s<br />

M01 Cairns House 43 43 43 43 43 43 43 43 43<br />

M02 Crosswood Burn 43 43 44 45 46 47 48 49 51<br />

M03 Halfway House 43 43 43 43 43 44 46 47 47<br />

M04 Harperig 43 43 46 49 51 54 56 59 62<br />

M05 Mid Crosswood 43 43 43 43 43 44 46 48 48<br />

M06 Owl Barn 43 43 43 43 44 46 48 50 52<br />

M07 Aberlyn 43 43 43 43 44 48 52 58 64<br />

M08 Berry Knowe 43 43 43 43 43 43 45 47 48<br />

M09 Brook Bank 43 43 43 45 47 49 50 51 52<br />

M10 Colzium 43 43 43 43 43 44 47 48 49<br />

M11 Crosswood House 53 53 53 54 54 55 56 58 61<br />

M12 WesterCrosswood Hill 43 43 43 43 46 49 51 52 52<br />

M13<br />

M14<br />

M15<br />

Crosswood Hill<br />

(based upon M12 - Wester<br />

Crosswood Hill baseline data)<br />

The Beeches<br />

(based upon M12 - Wester<br />

Crosswood Hill baseline data)<br />

Little Moss Cottage<br />

(based upon M12 - Wester<br />

Crosswood Hill baseline data)<br />

43 43 43 43 46 49 51 52 52<br />

43 43 43 43 46 49 51 52 52<br />

43 43 43 43 46 49 51 52 52<br />

<strong>App</strong>endix 9.8 - ETSU R97 Noise Limits 24.1.2012 2


Camilty Wind Farm<br />

Harburnhead <strong>ES</strong> Noise Chapter<br />

March 2013<br />

List of <strong>App</strong>endices<br />

Copyright Partnerships for Renewables Development Co. Ltd 2013 ©


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

12 NOISE<br />

12.1 INTRODUCTION<br />

This chapter evaluates the effects of noise from the proposed Harburnhead Windfarm (“the<br />

Development”) on nearby noise-sensitive receptors during construction, operation and<br />

decommissioning.<br />

The aim of the assessment is to predict the levels of noise potentially produced by the Development at<br />

the nearest noise sensitive receptors and assess these against relevant standards and guidelines.<br />

A glossary of acoustic terminology and a definition of terms are contained at the end of this chapter.<br />

The Noise <strong>Technical</strong> <strong>App</strong>endix, A12 in <strong>Vol</strong>ume II of the Environmental Statement (<strong>ES</strong>), presents further<br />

analysis, descriptions of methodologies and data used in this assessment.<br />

12.2 ASS<strong>ES</strong>SMENT METHODOLOGY AND SIGNIFICANCE CRITERIA<br />

12.2.1 Relevant Guidance (Operational Noise)<br />

The following guidance, legislation and information sources have been considered in carrying out this<br />

assessment:<br />

• the Scottish Government’s web-based planning information on onshore wind turbines (revised<br />

October 23 2011) 1 ;<br />

• Planning Advice Note 1/2011 (PAN 1/2011): Planning and Noise 2 ;<br />

• ETSU-R-97: The Assessment and Rating of Noise from Wind Farms 3 ;<br />

• Bowdler et al. 2009: Prediction and Assessment of Wind Turbine Noise 4 ;<br />

• ‘The measurement of low frequency noise at three UK wind farms’, Hayes McKenzie, The<br />

Department for Trade and Industry, URN 06/1412, 2006 5 ;<br />

• ‘Research into aerodynamic modulation of wind turbine noise’. Report by University of Salford, The<br />

Department for Business, Enterprise and Regulatory Reform, URN 07/1235, July 2007 6 ; and<br />

• ETSU W/13/00385/REP: A Critical <strong>App</strong>raisal of Wind Farm Noise Propagation 7 .<br />

Relevant Development Plan and other planning policies are set out in Chapter 5: Planning Policy of this<br />

<strong>ES</strong>.<br />

12.2.1.1 Scottish Government Planning Information on Onshore Wind<br />

The former Planning Advice Note 45 (PAN 45): Renewable Energy Technologies has been replaced with<br />

web-based information which provides advice to local authorities on the planning issues associated with<br />

windfarm development. With regard to noise from windfarms, it states that ETSU-R-97: The<br />

Assessment and Rating of Noise from Wind Farms:<br />

“...describes a framework for the measurement of wind farm noise, which should be followed by<br />

applicants and consultees, and used by planning authorities to assess and rate noise from wind<br />

energy developments, until such time as an update is available. This gives indicative noise levels<br />

thought to offer a reasonable degree of protection to wind farm neighbours, without placing<br />

unreasonable burdens on wind farm developers, and suggests appropriate noise conditions.”<br />

The information goes on to refer to Circular 10/1999 (now superseded) as setting out Government<br />

policy on the role of the planning system in controlling noise, and states that the PAN on Planning and<br />

1 http://www.scotland.gov.uk/Topics/Built-Environment/planning/National-Planning-Policy/themes/renewables/Onshore<br />

2 Planning Advice Note 1/2011: Planning and Noise, The Scottish Government, March 2011<br />

3 ETSU-R-97: The Assessment and Rating of Noise from Wind Farms, ETSU for the DTI, 1996.<br />

4 Bowdler et al. (2009). Prediction and Assessment of Wind Turbine Noise: Agreement about relevant factors for noise assessment<br />

from wind energy projects. Acoustic Bulletin, <strong>Vol</strong> 34 No2 March/April 2009, Institute of Acoustics.<br />

5 ‘The measurement of low frequency noise at three UK wind farms’, Hayes McKenzie, The Department for Trade and Industry, URN<br />

06/1412, 2006.<br />

6 Research into aerodynamic modulation of wind turbine noise’. Report by University of Salford, The Department for Business,<br />

Enterprise and Regulatory Reform, URN 07/1235, July 2007.<br />

7 ETSU W/13/00385/REP: A Critical <strong>App</strong>raisal of Wind Farm Noise Propagation, ETSU for the DTI 2000.<br />

Noise provides advice on the role of the planning system in helping to prevent and limit the adverse<br />

effects of noise.<br />

It also states that:<br />

“The most conclusive summary of the implications of low frequency wind farm noise for planning<br />

policy is given by the UK Government's statement regarding the findings of the Salford University<br />

report into Aerodynamic Modulation of Wind Turbine Noise. The report concludes that there is no<br />

evidence of health effects arising from infrasound or low frequency noise generated by wind<br />

turbines.”<br />

12.2.1.2 PAN 1/2011: Planning and Noise<br />

PAN 1/2011 supersedes Circular 10/1999 Planning and Noise and PAN 56: Planning and Noise and<br />

provides advice on the role of the planning system in helping to prevent and limit the adverse effects of<br />

noise. It promotes the principles of good acoustic design and the appropriate location of new<br />

potentially noisy development. An associated <strong>Technical</strong> Advice Note offers advice on the assessment of<br />

noise impact and includes details of the legislation, technical standards and codes of practice<br />

appropriate to specific noise issues.<br />

<strong>App</strong>endix 1 of the <strong>Technical</strong> Advice Note: Assessment of Noise describes the use of ETSU R 97 in the<br />

assessment of wind turbine noise. It also makes reference to the advice contained in Bowdler et al.<br />

(2009).<br />

12.2.1.3 ETSU-R-97<br />

ETSU-R-97 provides a framework for the assessment and rating of noise from wind turbine<br />

installations. It has become the accepted standard for windfarm developments in the UK, is<br />

recommended by Scottish Government Planning Advice and the methodology has therefore been<br />

adopted for the present assessment.<br />

Both background noise and noise from wind turbines typically vary with windspeed. According to<br />

ETSU-R-97, windfarm noise assessments should therefore consider the site-specific relationship<br />

between windspeed and background noise, along with the particular noise emission characteristics of<br />

the proposed wind turbines.<br />

ETSU-R-97 specifies the use of the L A90,10min descriptor for both background and wind turbine noise.<br />

Therefore, unless otherwise specified, all references to noise levels within this chapter relate to this<br />

descriptor. Similarly, all windspeeds referred to relate to a height of 10 m above ground level (AGL) at<br />

the location of the Development, standardised in accordance with Bowdler et al. (2009) or BS:EN (IEC)<br />

61400-11:2003 8 as appropriate, unless otherwise stated.<br />

The document recommends the application of external noise limits at the nearest noise-sensitive<br />

properties, to protect outside amenity and prevent sleep disturbance inside dwellings. These limits<br />

take the form of a 5 dB margin above the prevailing background noise level, except where background<br />

noise levels are lower than certain thresholds, where fixed lower limits apply. Separate limits apply for<br />

quiet daytime and night-time periods, as outlined below.<br />

During daytime, the guidance specifies limits designed to protect the amenity of residents whilst<br />

enjoying the external garden areas of their properties. The limits are based on the prevailing<br />

background noise level for ‘quiet daytime’ periods, defined in <strong>ES</strong>TU-R-97 as:<br />

• 18:00 – 23:00 every day;<br />

• 13:00 – 18:00 on Saturday; and<br />

• 07:00 – 18:00 on Sundays.<br />

ETSU-R-97 recommends that the fixed lower noise limit for daytime should be set within the range 35<br />

to 40 dB, L A90,10min , with the choice of value dependent on the following factors:<br />

• The number of dwellings in the neighbourhood of the Development;<br />

• The effect of the noise limits on the number of kWh (kilo Watt hours) generated; and<br />

8 BS EN (IEC). 61400-11:2003 Wind Turbine Generator Systems – Part 11: Acoustic Noise Measurement Techniques<br />

Enel Viento S.L<br />

November 2011 Page 12-1


Chapter 12<br />

Noise<br />

• The duration and level of exposure.<br />

Due to the low number of dwellings within close vicinity and the large amount of energy potentially<br />

generated, it is considered appropriate to assess the Development against a limit of 40dB(A) during the<br />

daytime period.<br />

Different standards apply at night, where potential sleep disturbance is the primary concern rather than<br />

the requirement to protect outdoor amenity. Night-time is considered to be all periods between 23:00<br />

and 07:00. A limit of 43 dB(A) is recommended for night-time at windspeeds or locations where the<br />

prevailing windspeed-related night-time background noise level is lower than 38 dB(A). At other times,<br />

the limit of 5dB above the prevailing windspeed-related background noise level applies. The value of<br />

night-time fixed lower limit was selected in order to ensure that internal noise levels remained below<br />

those considered to have the potential to cause sleep disturbance, taking account of the attenuation of<br />

noise when passing from outdoors to indoors, and making allowance for the presence of open<br />

windows.<br />

Where the occupier of the property has a financial interest in the Development, ETSU-R-97 states that<br />

the fixed lower noise limit for both daytime and night-time can be increased to 45 dB(A).<br />

12.2.1.4 Prediction and Assessment of Wind Turbine Noise<br />

An article in the March / April 2009 Edition of the Institute of Acoustics’ Acoustics Bulletin (Bowdler et<br />

al. 2009) sets out a number of preferred procedures for the prediction and assessment of windfarm<br />

noise and the form in which certain information should be presented to support an environmental noise<br />

assessment for a proposed windfarm development.<br />

The authors of the article included members of the Noise Working Group responsible for the<br />

preparation of ETSU-R-97, and acoustic specialists who advise developers, local authorities and third<br />

party interests. The recommendations in the article are intended to enhance the quality of windfarm<br />

noise assessments and usefully limit areas of disagreement between parties acting for developers and<br />

those acting for objectors, and supplement the recommendations of ETSU-R-97. The article is<br />

generally agreed to represent a statement of best practice on the specific aspects of windfarm noise<br />

assessments which it addresses and is specifically referred to in the <strong>Technical</strong> Advice Note which<br />

accompanies PAN 1/2011: Planning and Noise. The following issues were addressed by the article:<br />

• The acquisition of baseline data;<br />

• The prediction of wind turbine noise immission 9 level at receptors locations; and<br />

• The significance of low-frequency noise, infrasound and ground-borne vibration.<br />

12.2.1.4.1 Acquisition and Analysis of Background Noise Data (to account for wind shear)<br />

The recommendations of this article relate principally to the measurement and use of windspeed data,<br />

against which background noise measurements are correlated. The article recommends measuring<br />

windspeeds at two heights; H1 and H2, H1 being not less than 60% of the proposed turbine hub<br />

height and H2 being between 40% and 50% of the proposed hub height. For each ten minute period<br />

the mean windspeed measured at height H1 should be corrected to hub height using a specified<br />

procedure, which takes account of the wind shear conditions occurring during that 10-minute period. A<br />

standardised 10m-height windspeed is then calculated from this hub height windspeed using the<br />

procedure specified in BS EN 61400-11:2003 Section 8.1, which applies a standardised wind shear<br />

profile. This allows for the effects of variations between the wind shear characteristics of the site of<br />

the proposed turbines and the site on which noise emissions were measured to be eliminated.<br />

The above procedure has been followed in the assessment based upon windspeeds measured at<br />

heights of 30 m and 70 m, which represent the best available data for extrapolating wind speeds to the<br />

worst-case proposed hub height of 85 m.<br />

12.2.1.4.2 Prediction of Wind Turbine Noise Immission Levels<br />

Bowdler et al. 2009 recommends the use of the ISO 9613-2 10 method in calculating the levels of wind<br />

turbine noise at receptor locations (‘immission levels’), with the following specific measures:<br />

9 Literally incoming noise, i.e. the noise levels at receptor locations.<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

• the turbine sound power levels should be stated, and whether these are measured levels,<br />

measured levels with an allowance for measurement uncertainty, warranted levels or generic<br />

levels;<br />

• the atmospheric conditions assumed should be stated, with 10 o C and 70% Relative Humidity<br />

preferred;<br />

• the ground factor assumed should be either:<br />

(i)<br />

(ii)<br />

G=0 (hard ground), together with measured sound power levels; or<br />

G=0.5 (mixed ground); together with a receiver height of 4.0 m and either<br />

manufacturer’s warranted sound power levels, or measured sound power levels plus an<br />

allowance for measurement uncertainty.<br />

• barrier attenuation should not be included; and<br />

• the predicted noise levels (L Aeq,t ) may be converted to the required L A90,10min by subtracting 2 dB.<br />

Section12.2.4 details the turbine sound power levels used in the assessment and the assumptions<br />

made in the calculation of predicted noise immission levels.<br />

ISO 9613-2 provides a prediction of noise levels likely to occur under worst-case conditions; those<br />

favourable to the propagation of sound, i.e., down-wind or under a moderate, ground-based<br />

temperature inversion as often occurs at night (often referred to as stable atmospheric conditions).<br />

The specific measures recommended in Bowdler et al. 2009 have been shown to provide good<br />

correlation with levels of wind turbine noise measured at operational windfarms 11 .<br />

12.2.1.4.3 Low-frequency Noise, Infrasound and Ground-borne Vibration<br />

Bowdler et al. 2009 concludes that:<br />

“...there is no robust evidence that low frequency noise (including ‘infrasound’) or ground-borne<br />

vibration from wind farms generally has adverse effects on wind farm neighbours”.<br />

12.2.1.5 Low Frequency Noise<br />

A study 12 , published in 2006 by acoustic consultants Hayes McKenzie on the behalf of the DTI,<br />

investigated low frequency noise from windfarms. This study concluded that there is no evidence of<br />

health effects arising from infrasound or low frequency noise generated by wind turbines, but that<br />

complaints attributed to low frequency noise were in fact, possibly due to a phenomenon known as<br />

Amplitude Modulation (AM).<br />

12.2.1.6 Research into Amplitude Modulation<br />

A further study 13 was carried out on behalf of the Department for Business, Enterprise and Regulatory<br />

Reform (BERR) by the University of Salford, which investigated the incidence of noise complaints<br />

associated with windfarms and whether these were associated with AM. This report defined AM as<br />

aerodynamic noise from wind turbines with a greater degree of fluctuation than normal at blade<br />

passing frequency. Its aims were to ascertain the prevalence of AM on UK windfarm sites, to try to<br />

gain a better understanding of the likely causes, and to establish whether further research into AM is<br />

required.<br />

The study concluded that AM has occurred at only a small number (4 of 133) of windfarms in the UK,<br />

and only for between 7% and 15% of the time. It also states that, at present, the causes of AM are<br />

not well understood and that prediction of the effect is not currently possible. BERR has decided<br />

against conducting further research into the phenomenon at this stage, and no revision to the current<br />

guidelines (ETSU-R-97) on windfarm noise assessment has been recommended.<br />

10 ISO (1996). ISO 9613-2:1996 Acoustics – Attenuation of Sound During Propagation Outdoors – Part 2: General Method of<br />

Calculation<br />

11 Bullmore et al. (2009). Wind Farm Noise Predictions and Comparison with Measurements, Third International Meeting on Wind<br />

Turbine Noise, Aalborg, Denmark 17 – 19 June 2009<br />

12 ‘The measurement of low frequency noise at three UK wind farms’, Hayes Mckenzie, The Department for Trade and Industry,<br />

URN 06/1412, 2006.<br />

13 ‘Research into aerodynamic modulation of wind turbine noise’. Report by University of Salford, The Department for Business,<br />

Enterprise and Regulatory Reform, URN 07/1235, July 2007.<br />

Enel Viento S.L<br />

Page 12-2 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

12.2.1.7 Vibration<br />

Research undertaken by Snow in 1996 14 found that levels of ground-borne vibration 100 m from the<br />

nearest wind turbine were significantly below criteria for 'critical working areas' given by British<br />

Standard BS6472:1992 Evaluation of human exposure to vibration in buildings (1 Hz to 80 Hz), and<br />

were lower than limits specified for residential premises by an even greater margin.<br />

This chapter of the Environmental Statement (<strong>ES</strong>) sets out the overall approach that has been taken in<br />

undertaking the assessments of the likely environmental effects of the proposed Harburnhead<br />

Windfarm (hereafter referred to as the “Development”), detailing the relevant legislative framework.<br />

Ground-borne vibration from wind turbines can be detected using sophisticated instruments several<br />

kilometres from the windfarm site as reported by Keele University 15 . This report clearly shows that,<br />

although detectable using highly sensitive instruments, the magnitude of the vibration is orders of<br />

magnitude below the human level of perception and does not pose any risk to human health.<br />

12.2.1.8 Other Issues<br />

A recently published report by DEFRA 16 examines the use of statutory nuisance to deal with windfarm<br />

noise complaints where the enforcement of planning conditions has not resolved the complaints. As<br />

statutory nuisance operates within a separate mechanism to that of the EIA process, the findings of the<br />

report have not been considered further within the assessment. It is considered that by carrying out a<br />

noise assessment at the application/EIA stage, the likelihood of nuisance occurring is limited.<br />

12.2.2 Consultation<br />

Consultation was carried out with West Lothian Council’s Environmental Health Department in order to<br />

agree baseline noise monitoring locations. The Council was informed that baseline noise monitoring<br />

would be carried out in accordance with ETSU-R-97 at four representative locations around the site.<br />

Photographs and descriptions of the equipment in-situ were sent to the Environmental Health Officer<br />

(EHO) directly following the installation of equipment.<br />

12.2.3 Cumulative Noise Assessment<br />

ETSU-R-97 states that the assessment should take account of the effect of noise from all wind turbines<br />

that may affect a particular receptor. The existing developments of Pates Hill and Muirhall windfarms,<br />

and the proposed development of Harrows Law windfarm have the potential to cumulatively affect<br />

nearby receptors. The cumulative effects of Pates Hill, Muirhall and Harrows Law windfarms together<br />

with the Development are assessed in Section 12.4.3.<br />

12.2.4 Operational Noise Assessment Methodology<br />

In summary, the assessment process comprises:<br />

• identification of potential receptors, i.e. houses and other potentially noise-sensitive locations;<br />

• measurement of existing (baseline) background noise levels at a representative selection of the<br />

potential receptors;<br />

• establishment of limits for acceptable levels of wind turbine noise, based on the measured<br />

background noise and as specified in ETSU-R-97;<br />

• prediction of the likely levels of wind turbine noise received at each receptor; and<br />

• comparison of the predicted levels with the noise limits.<br />

From these identified receptors, background noise measurements were carried out at four<br />

representative locations, of which West Lothian Council’s Environmental Health Department was<br />

informed. No objections were received from the Council regarding the selected monitoring locations.<br />

The method of measuring background noise is described in ETSU-R-97, Chapter 7, and summarised in<br />

Section 12.3.3. In brief, it involves continuous measurement of both background noise levels at the<br />

receptors, and windspeeds at the location of the turbines for a period of at least one week. The<br />

resulting data is then sorted into quiet daytime and night-time periods and the relationship between<br />

windspeed and background noise established for each location.<br />

The method of predicting levels of wind turbine noise at receptors is discussed in Section 12.2.1.4.2.<br />

This method was applied to the calculation of both noise contour plots and individual receptor<br />

predictions for the assessment of noise from the Development and the assessment of cumulative noise.<br />

Additionally, a directivity function was applied for the prediction of cumulative noise, as discussed in<br />

Section 12.4.3.4.<br />

The candidate turbine for the purpose of the noise assessment is the Enercon E82 2.3 MW, with a hub<br />

height of 85 m, with the exception of turbines 8 and 9 which will have a hub height of 78 m as detailed<br />

in Chapter 4: Project Description of this <strong>ES</strong>. The manufacturer’s noise emission (sound power level)<br />

data at both hub heights and measurement test report data has been obtained for this turbine, which<br />

are included in <strong>Technical</strong> <strong>App</strong>endix A12.1 and summarised in Tables 12.1 and 12.2. Sound power level<br />

data provided by Enercon are guaranteed under the condition that a 1 dB uncertainty value is applied<br />

across all windspeeds. The sound power level data shown in Table 12.1 includes the specified<br />

uncertainty value. Sound power level data outside the range of windspeeds specified by the<br />

manufacturer have been extrapolated from the data provided.<br />

The guaranteed sound power levels provided by the manufacturer were modelled with a mixed ground<br />

(G=0.5) factor, in accordance with Bowdler et al. 2009. Whilst the choice of turbine ultimately installed<br />

will depend on various factors, the Enercon E82 turbine is representative of the range of turbines<br />

expected to be available.<br />

Table 12.1: Manufacturer’s Noise Emission Data, Enercon E82 2.3 MW<br />

Standardised 10 m Windspeed, ms -1<br />

4 5 6 7 8 9 10 11+<br />

Sound Power Level, dB, L WA<br />

Enercon E82, 78 m Hub 91.9 17 97.3 101.7 104.3 105.0 105.0 105.0 105.0 18<br />

Enercon E82, 85 m Hub 93.2 97.6 102.0 104.5 105.0 105.0 105.0 105.0<br />

It is standard practice to predict noise levels for a reference windspeed and to adjust these for other<br />

windspeeds, according to the variation in sound power level with windspeed. The noise spectrum for<br />

the Enercon E82 2.3 MW shown in Table 12.2 corresponding to the maximum sound power level at<br />

windspeeds between 4 and 10 ms -1 has been used as the source for modelling purposes. This was first<br />

adjusted to 105.0 dB(A) to obtain predicted noise levels valid for windspeeds between 8 and 10 ms -1 ,<br />

then further adjustments made to provide predictions for other windspeeds.<br />

Potential receptors in the area around the development were initially identified from Ordnance Survey<br />

1:25,000 Scale digital mapping and then confirmed as permanent dwellings using Ordnance Survey<br />

Address Layer 2 data; a database which combines Royal Mail address data with buildings identified on<br />

large-scale Ordnance Survey Mapping and provides addresses, descriptions and grid references.<br />

Information was also provided by the Development site’s landowners.<br />

14 ETSU (1997), Low Frequency Noise and Vibrations Measurement at a Modern Wind Farm, prepared by D J Snow.<br />

15 Microseismic and infrasound monitoring of low frequency noise and vibrations from wind farms: recommendations on the siting of<br />

wind farms in the vicinity of Eskdalemuir, Scotland”. Keele University, 2005<br />

16 NANR 277 – Wind Farm Noise: Statutory Nuisance Complaints Methodology, June 2011<br />

17 Sound power levels for windspeeds of 4 ms -1 have been extrapolated from the difference between the values at 5 and 6ms -1 .<br />

18 Sound power levels for windspeeds of 11 ms -1 and above have been assigned from the highest sound power level emission as<br />

detailed in document SIAS-04-SPL E-82 E2 OM 1 2,3MW Rev1_0-eng-eng.doc, provided in <strong>App</strong>endix A12.1<br />

Enel Viento S.L<br />

November 2011 Page 12-3


Chapter 12<br />

Noise<br />

Table 12.2: Octave Band Spectra of Enercon E82 2.3 MW<br />

Octave Band Frequency (Hz)<br />

63 125 250 500 1000 2000 4000 8000<br />

Sound Power Level, dB, L WA ,<br />

Spectrum measured in<br />

windspeed of 9 ms -1 86.7 94.7 94.4 97.0 98.8 93.9 81.6 73.5<br />

Above spectrum scaled<br />

88.4 96.4 96.1 98.7 100.5 95.6 83.3 75.2<br />

to 105.0 dB<br />

The Enercon E82 has the potential to operate in a range of reduced rated power modes, to control<br />

noise emissions across a range of windspeeds at which the turbine can operate. In order to comply<br />

with noise limits during daytime periods, it is necessary to operate turbines 1 and 3 in the reduced<br />

rated power mode of 1 MW, at standardised 10 m wind speeds of 6 and 7ms -1 . Table 12.3 details the<br />

noise emission of turbines 1 and 3 (both at 78 m hub height) whilst operating in this reduced mode,<br />

inclusive of a 1 dB(A) safety factor in order to guarantee the data provided by the manufacturer. The<br />

manufacturer’s noise emission data for reduced rated power modes is included in <strong>Technical</strong> <strong>App</strong>endix<br />

A12.1. During night-time periods, restrictions to standard turbine operations are not required.<br />

Table 12.3: Noise Emission Data, Enercon E82 - Noise Constrained Mode<br />

Standardised 10 m Windspeed, ms -1<br />

4 5 6 7 8 9 10 11+<br />

Sound Power Level, dB, L WA<br />

Enercon E82, 78 m Hub 91.9 97.3 100.5 100.5 105.0 105.0 105.0 105.0 19<br />

Whilst the turbine ultimately selected for construction will be subject to a competitive procurement<br />

process, noise management measures similar to those offered by Enercon are typical, and are likely to<br />

also be available from other turbine manufacturers. A warranty will be sought from the manufacturer<br />

of the turbine selected for development in order to confirm that an assessment of noise would result in<br />

noise immission levels at receptor locations being less than or equal to the noise limits set out in this<br />

chapter, and that no tonality considered to require a penalty through the method described in ETSU-R-<br />

97 will be present.<br />

12.2.5 Noise Limits<br />

The method of deriving operational noise limits specified by ETSU-R-97 is described in Section 12.2.1.3.<br />

Noise limits derived from ETSU-R-97 for this assessment are therefore:<br />

• daytime: the higher of 40 dB(A) or 5 dB(A) above the prevailing quiet daytime background noise<br />

level); and<br />

• night-time: The higher of 43 dB(A) or 5 dB(A) above the prevailing night-time background noise<br />

level.<br />

There is also provision for an increase in the fixed lower limit value where the occupier of the property<br />

has a financial interest in the development. In this situation, the limit for both daytime and night-time<br />

becomes the higher of 45 dB(A) or 5 dB(A) above the prevailing background noise level for the relevant<br />

period. However, as no properties are financially involved in the Development, this condition does not<br />

apply.<br />

12.2.6 Significance Criteria<br />

The acceptable limits for wind turbine operational noise are clearly defined in the ETSU-R-97 document<br />

to "offer a reasonable degree of protection to wind farm neighbours, without placing unreasonable<br />

restrictions on wind farm development or adding unduly to the costs and administrative burdens on<br />

wind farm developers or planning authorities". Therefore, the assessment determines whether the<br />

19 Sound power levels for the reduced rated power mode have been confirmed by Enercon and sourced from document SIAS-04-<br />

SPL E-82 E2 red Rev1_0-eng-eng.doc, when considered together with data from unrestricted operation of the turbine, detailed in<br />

document GD022915-en, rev 6, page 6, provided in <strong>App</strong>endix A12.1.<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

calculated immission levels at nearby noise sensitive properties lie below the noise limits derived in<br />

accordance with ETSU-R-97. Where the noise immission levels at noise sensitive properties are shown<br />

to be below derived noise limits the impact is considered to be not significant in terms of the EIA<br />

Regulations.<br />

12.2.7 Construction Noise<br />

12.2.7.1 Relevant Guidance<br />

The following legislation, guidance and standards are of particular relevance to construction noise:<br />

• the Control of Pollution Act 1974 (CoPA 1974);<br />

• the Environmental Protection Act 1990 (EPA 1990); and<br />

• BS 5228:2009 Code of Practice for Noise and Vibration Control on Construction and Open Sites.<br />

12.2.7.1.1 The Control of Pollution Act 1974<br />

CoPA 1974 provides Local Authorities with powers to control noise and vibration from construction<br />

sites.<br />

Section 60 of the Act enables a Local Authority to serve a notice to persons carrying out construction<br />

work of its requirements for the control of site noise. This may specify plant or machinery that is or is<br />

not to be used; the hours during which construction work may be carried out; the level of noise or<br />

vibration that may be emitted; and provide for changes in circumstances. <strong>App</strong>eal procedures are<br />

available.<br />

Section 61 of the Act allows for those carrying out construction work to apply to the Local Authority in<br />

advance for consent to carry out the works. This is not mandatory, but is often to the advantage of<br />

the developer, as once consent is issued, the Local Authority is no longer able to take action under<br />

Section 60 of CoPA 1974 or Section 80 of the EPA 1990. It does not, however, prevent nuisance action<br />

under Section 82 of the EPA 1990. The application is expected to give as much detail as possible about<br />

the works to be carried out, the methods to be used and the measures that will be taken to minimise<br />

noise and vibration.<br />

12.2.7.1.2 The Environmental Protection Act 1990<br />

The EPA 1990 specifies mandatory powers available to Local Authorities in respect of any noise that<br />

either constitutes or is likely to cause a statutory nuisance, which is also defined in the Act. A duty is<br />

imposed on Local Authorities to carry out inspections to identify statutory nuisances, and to serve<br />

abatement notices against these. Procedures are also specified with regards to complaints from<br />

persons affected by a statutory nuisance.<br />

12.2.7.1.3 BS 5228:2009 Code of Practice for Noise and Vibration Control on Construction and Open sites<br />

BS 5228:2009 is published in two parts: Part 1- Noise and Part 2- Vibration. The discussion below<br />

relates mainly to Part 1- Noise, however, the recommendations of Part 2 in terms of vibration are<br />

broadly very similar.<br />

It refers to the need for the protection against noise and vibration of persons living and working in the<br />

vicinity of and those working on construction and open 20 sites. It recommends procedures for noise<br />

and vibration control in respect of construction operations.<br />

The standard stresses the importance of community relations, and states that early establishment and<br />

maintenance of these relations throughout the carrying out of site operations will go some way towards<br />

allaying people’s concerns. In terms of neighbourhood nuisance, the following factors are likely to<br />

affect the acceptability of construction noise:<br />

• site location, relative to the noise sensitive premises;<br />

• existing ambient noise levels;<br />

• duration of site operations;<br />

• hours of work;<br />

• the attitude of local residents to the site operator; and<br />

20 An open site is a site such as an open-cast coal mine, landfill site or similar<br />

Enel Viento S.L<br />

Page 12-4 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

• the characteristics of the noise produced.<br />

Recommendations are made regarding the supervision, planning, preparation and execution of works,<br />

emphasising the need to consider noise at every stage of the operation.<br />

Measures to control noise are described, including:<br />

• control of noise at source by, e.g.,:<br />

• substitution of plant or activities by less noisy ones;<br />

• modification of plant or equipment to reduce noise emissions;<br />

• the use of noise control enclosures;<br />

• the siting of equipment and its method of use; and<br />

• equipment maintenance; and<br />

• controlling the spread of noise, e.g., by increasing the distance between plant and noise-sensitive<br />

premises or by the provision of acoustic screening.<br />

Another key revision to the standard is the inclusion of a discussion of noise control targets, and<br />

example criteria for the assessment of the significance of noise effects. These are not mandatory.<br />

Methods of calculating the levels of noise resulting from construction activities are provided, as are<br />

updated source levels for various types of plant, equipment and construction activities.<br />

Rather than assessing the effects of construction noise in terms of noise level, it is proposed to adopt<br />

the mitigation measures outlined in Section 12.5.2, which are considered to be best practice, as<br />

advocated in BS 5228. Construction noise will be limited in duration and confined to working hours as<br />

specified by the Council which can be adequately controlled through planning condition, therefore no<br />

further assessment of construction noise is considered necessary.<br />

Noise during decommissioning will be of a similar nature to that of construction and will be managed<br />

through best practice or other guidance or legislation relevant at the time.<br />

12.3 BASELINE D<strong>ES</strong>CRIPTION<br />

12.3.1 Identification of Potential Receptors<br />

A noise contour plot was initially prepared for a layout consisting of 29 turbines. A similar plot for the<br />

final proposed layout of 22 Enercon E822.3 MW turbines (as described in Chapter 4: Project Description<br />

of this <strong>ES</strong>) is presented in Figure 12.1.<br />

Based upon the initial layout, potential noise-sensitive receptors (houses, built-up areas, etc.) were<br />

identified through the examination of Ordnance Survey 1:25,000 scale digital mapping and Ordnance<br />

Survey Address Layer 2 Data. Receptor locations were confirmed through site visits. The following<br />

potentially noise-sensitive locations (shown in Figure 12.1) were initially identified:<br />

• Aberlyne;<br />

• Beechcroft;<br />

• South Cobbinshaw;<br />

• Kiprig;<br />

• Harburnhead;<br />

• Harburnhead House;<br />

• South Lodge;<br />

• The Beeches;<br />

• Torphin Cottage; and<br />

• Torphin House.<br />

12.3.2 Selection of Baseline Noise Survey Locations<br />

Following a site visit to confirm the appropriateness of receptor locations, of the potentially noisesensitive<br />

receptors identified above, the following noise monitoring locations were selected for the<br />

deployment of equipment:<br />

• Aberlyne;<br />

• South Cobbinshaw;<br />

• Kiprig; and<br />

• Harburnhead.<br />

12.3.3 Baseline Noise Survey<br />

Baseline noise measurements were carried out at the locations and the dates detailed in Table 12.4<br />

and shown in Figure 12.1. The survey was carried out in accordance with the method specified in<br />

ETSU-R-97. The following specific measures ensured this compliance:<br />

• type 1 measuring equipment, equipped with all-weather windshields suitable for use in elevated<br />

windspeeds, were used, which were calibrated at the start of the survey and at the end of the<br />

survey. No significant calibration drift occurred;<br />

• measurements were performed at a height of 1.4 m AGL, in free-field conditions, i.e., a minimum<br />

of 3.5 m and, where possible, more than 10 m from any reflective surface other than the ground.<br />

• background noise levels were recorded at continuous 10-minute intervals, as L A90, 10min . Other<br />

parameters recorded included the L Aeq,10min ;<br />

• during the survey, windspeeds were measured using a 71 m meteorological mast located at grid<br />

reference 303425, 658192 at heights of 30 m, 50 m and 70 m. Hub height (85 m) windspeeds<br />

were calculated from the 30 m and 70 m windspeeds, and these used to calculate standardised<br />

10 m windspeeds, using the procedure specified in Section 12.2.1.4.1;<br />

• rain gauges were initially deployed at Aberlyne and South Cobbinshaw. Once the survey reached<br />

its conclusion at Aberlyne, the rain gauge at this location was relocated to Harburnhead until the<br />

end of the survey period;<br />

• data from periods when significant rainfall (greater than 0.1 mm/hour) was recorded were excluded<br />

from further analysis, through the method detailed in paragraph 12.3.4; and<br />

• ETSU-R-97 recommends at least one week of data for each monitoring location, after exclusions<br />

are taken into account. In practice, this minimum was comfortably exceeded.<br />

Survey record sheets and calibration certificates are included in <strong>Technical</strong> <strong>App</strong>endix A12.2.<br />

Table 12.4: Baseline Noise Survey<br />

Location Grid<br />

Reference<br />

Date of Survey<br />

Aberlyne 305235,<br />

657841<br />

Harburnhead 304276,<br />

660003<br />

Kiprig 302955,<br />

660562<br />

South<br />

Cobbinshaw<br />

301799,<br />

657272<br />

Description of<br />

Monitoring Location<br />

21/07/2010– 25/08/2010 Garden to side of<br />

house.<br />

21/07/2010 – 25/08/2010 On grass verge adjacent<br />

to house.<br />

21/07/2010 – 02/09/2010 In garden to rear of<br />

house.<br />

29/07/2010 – 10/09/2010 In garden to the south<br />

west of property.<br />

Noise Sources Observed<br />

During Survey Visits<br />

Local traffic along A70, dogs,<br />

sheep along local road.<br />

Birdsong, wind in trees, local<br />

traffic along B7008.<br />

Wind in trees, golfers talking<br />

nearby.<br />

Wind in trees. Residents<br />

walking on gravel path.<br />

Enel Viento S.L<br />

November 2011 Page 12-5


Chapter 12<br />

Noise<br />

12.3.4 Background Noise Levels<br />

The measured background noise levels and standardised 10 m windspeeds were correlated and sorted<br />

into quiet daytime and night-time periods. Where rainfall was recorded, the following procedures were<br />

carried out in order to exclude periods potentially affected by heavy rainfall:<br />

• where one ten-minute interval in any hour coincided with rainfall, noise data corresponding to this<br />

interval was removed from analysis;<br />

• where more than two ten-minute intervals in any hour coincided with rainfall, noise data one hour<br />

either side of the recorded intervals were removed from analysis, inclusive of any intervals<br />

between; and<br />

• where rainfall occurred for more than half of a defined ETSU-R-97 measurement period, noise data<br />

measured throughout the entire period was removed from analysis.<br />

Due to a power failure affecting the noise monitoring equipment installed at Harburnhead,<br />

measurements only continued for a period of 24 hours following initial deployment. This issue was<br />

later identified and addressed during a subsequent site visit. Similarly at Kiprig, a technical fault<br />

resulted in the loss of a week’s worth of data which was identified during the survey. As a result,<br />

measurements at Kiprig and Harburnhead continued for an additional one and two weeks respectively<br />

following the decommissioning of noise monitoring equipment at other locations.<br />

Scatter plots of background noise against wind speed were prepared for each monitoring location for<br />

quiet daytime and night-time periods. Where measured noise levels were found to be unusually<br />

elevated for periods which could not be attributed to high windspeed conditions, data was analysed<br />

further and considered for removal. Trendlines (lines of best fit) were then applied to scatter plots of<br />

the data to represent ‘prevailing background noise level’ curves. It was found that in all cases, third<br />

and fourth-order polynomials provided a good fit to the data, and a conservative relationship between<br />

windspeed and background noise level.<br />

Table 12.5 details the prevailing background noise levels obtained for quiet daytime and night-time<br />

measurement periods. In most instances, standardised 10 m windspeeds above 10 ms -1 were not<br />

obtained. The prevailing background noise level has assumed to remain constant at the higher<br />

windspeeds, as indicated by figures in italics in Table 12.5. This is considered to be a conservative<br />

assumption, as background noise levels are generally understood to increase with increasing<br />

windspeeds. Charts 12.1 to 12.8 also present this data graphically.<br />

Table 12.5: Prevailing Background Noise Levels<br />

Receptor Standardised 10 m Windspeed, ms -1<br />

4 5 6 7 8 9 10 11 12<br />

12.3.5 Noise Assessment Locations<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

The closest noise sensitive receptors surrounding the Development have been selected for assessment,<br />

in order to represent the properties potentially most affected. Background noise levels measured at<br />

the four properties detailed in Table 12.4 have been assumed to be representative of the background<br />

noise environments at other properties in similar nearby locations. Should the predicted operational<br />

noise levels from the Development comply with the requirements of ETSU-R-97 at these closest<br />

receptors, predicted noise levels at receptors further from the Development will also comply.<br />

Table 12.6 details the locations assessed, their distance to the nearest proposed turbine and the<br />

baseline noise levels applied.<br />

Table 12.6: Noise Assessment Locations<br />

Receptor Eastings Northings Distance<br />

to Nearest<br />

Turbine 21<br />

Aberlyne 305223 657808 1302 m Aberlyne<br />

Beechcroft 301343 660221 1582 m Kiprig<br />

Crosswoodburn 305508 657764 1546 m Aberlyne<br />

Baseline Noise<br />

Data <strong>App</strong>lied<br />

Harburnhead 304269 660011 701 m Harburnhead<br />

Harburnhead House 304471 660753 1457 m Harburnhead<br />

Kiprig 302976 660584 843 m Kiprig<br />

South Cobbinshaw 301799 657272 1575 m South Cobbinshaw<br />

South Lodge 304586 660374 1177 m Harburnhead<br />

The Beeches 304471 656773 1392 m Aberlyne<br />

Torphin Cottage 302991 660626 887 m Kiprig<br />

Torphin House 303326 660959 1281 m Kiprig<br />

Prevailing Background Noise Level, dB, LA 90,10min<br />

Quiet Daytime<br />

Aberlyne 33.0 34.9 38.1 42.1 45.6 46.8 46.8 46.8 46.8<br />

Harburnhead 27.9 29.9 32.3 35.0 37.9 40.7 43.5 46.0 48.0<br />

Kiprig 32.0 34.0 36.1 38.3 40.4 42.0 43.0 43.2 43.2<br />

South Cobbinshaw 28.3 30.7 34.2 38.0 40.7 40.7 40.7 40.7 40.7<br />

Night-time<br />

Aberlyne 28.0 29.8 33.7 38.9 44.0 46.7 46.7 46.7 46.7<br />

Harburnhead 22.8 25.2 28.2 31.6 35.3 39.1 42.7 46.2 49.1<br />

Kiprig 30.5 31.6 33.5 36.2 39.8 43.9 48.2 52.3 55.5<br />

South Cobbinshaw 24.5 26.4 29.4 33.2 36.8 38.9 38.9 38.9 38.9<br />

21 NB These are plan distances, calculation of noise levels are based upon slant distance, i.e. taking account of relative elevation of<br />

source and receptor.<br />

Enel Viento S.L<br />

Page 12-6 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

12.3.6 Noise Limits<br />

Table 12.7 details the noise limits calculated for each property from the prevailing background noise<br />

levels, as detailed in Section 12.2.1.3 Noise Limits. The limits are also shown graphically in charts 12.1<br />

to 12.8.<br />

12.4 ASS<strong>ES</strong>SMENT OF POTENTIAL EFFECTS<br />

12.4.1 Predicted Operational Noise Levels<br />

Table 12.8 details the predicted noise levels for each of the noise assessment locations detailed in<br />

Table 12.6, for both daytime and night-time periods.<br />

Table 12.7: Noise Limits<br />

Receptor Standardised 10 m Windspeed, ms -1<br />

4 5 6 7 8 9 10 11 12<br />

Noise Limit, dB, LA 90,10min<br />

Quiet Daytime<br />

Aberlyne 40.0 40.0 43.1 47.1 50.6 51.8 51.8 51.8 51.8<br />

Beechcroft 40.0 40.0 41.1 43.3 45.4 47.0 48.0 48.2 48.2<br />

Crosswoodburn 40.0 40.0 43.1 47.1 50.6 51.8 51.8 51.8 51.8<br />

Harburnhead 40.0 40.0 40.0 40.0 42.9 45.7 48.5 51.0 53.0<br />

Harburnhead House 40.0 40.0 40.0 40.0 42.9 45.7 48.5 51.0 53.0<br />

Kiprig 40.0 40.0 41.1 43.3 45.4 47.0 48.0 48.2 48.2<br />

South Cobbinshaw 40.0 40.0 40.0 43.0 45.7 45.7 45.7 45.7 45.7<br />

South Lodge 40.0 40.0 40.0 40.0 42.9 45.7 48.5 51.0 53.0<br />

The Beeches 40.0 40.0 43.1 47.1 50.6 51.8 51.8 51.8 51.8<br />

Torphin Cottage 40.0 40.0 41.1 43.3 45.4 47.0 48.0 48.2 48.2<br />

Torphin House 40.0 40.0 41.1 43.3 45.4 47.0 48.0 48.2 48.2<br />

Night-time<br />

Aberlyne 43.0 43.0 43.0 43.9 49.0 51.7 51.7 51.7 51.7<br />

Beechcroft 43.0 43.0 43.0 43.0 44.8 48.9 53.2 57.3 60.5<br />

Crosswoodburn 43.0 43.0 43.0 43.9 49.0 51.7 51.7 51.7 51.7<br />

Harburnhead 43.0 43.0 43.0 43.0 43.0 44.1 47.7 51.2 54.1<br />

Harburnhead House 43.0 43.0 43.0 43.0 43.0 44.1 47.7 51.2 54.1<br />

Kiprig 43.0 43.0 43.0 43.0 44.8 48.9 53.2 57.3 60.5<br />

South Cobbinshaw 43.0 43.0 43.0 43.0 43.0 43.9 43.9 43.9 43.9<br />

South Lodge 43.0 43.0 43.0 43.0 43.0 44.1 47.7 51.2 54.1<br />

The Beeches 43.0 43.0 43.0 43.9 49.0 51.7 51.7 51.7 51.7<br />

Torphin Cottage 43.0 43.0 43.0 43.0 44.8 48.9 53.2 57.3 60.5<br />

Torphin House 43.0 43.0 43.0 43.0 44.8 48.9 53.2 57.3 60.5<br />

Table 12.8: Predicted Noise Immission Levels<br />

Receptor Standardised 10 m Windspeed, ms -1<br />

4 5 6 7 8 9 10 11 12<br />

Predicted Noise Level, dB, L A90,10min<br />

Daytime<br />

Aberlyne 25.1 29.5 33.9 36.2 37.0 37.0 37.0 37.0 37.0<br />

Beechcroft 22.6 27.1 31.4 33.8 34.5 34.5 34.5 34.5 34.5<br />

Crosswoodburn 23.4 27.9 32.2 34.6 35.3 35.3 35.3 35.3 35.3<br />

Harburnhead 29.2 33.9 37.9 39.9 41.4 41.4 41.4 41.4 41.4<br />

Harburnhead House 23.9 28.5 32.7 34.9 35.9 35.9 35.9 35.9 35.9<br />

Kiprig 27.6 32.1 36.4 38.8 39.5 39.5 39.5 39.5 39.5<br />

South Cobbinshaw 23.0 27.4 31.8 34.2 34.9 34.9 34.9 34.9 34.9<br />

South Lodge 25.5 30.1 34.2 36.4 37.6 37.6 37.6 37.6 37.6<br />

The Beeches 23.9 28.3 32.7 35.1 35.7 35.7 35.7 35.7 35.7<br />

Torphin Cottage 27.2 31.7 36.0 38.4 39.1 39.1 39.1 39.1 39.1<br />

Torphin House 24.8 29.3 33.5 35.9 36.7 36.7 36.7 36.7 36.7<br />

Night-time<br />

Aberlyne 25.1 29.5 33.9 36.5 37.0 37.0 37.0 37.0 37.0<br />

Beechcroft 22.6 27.1 31.5 34.0 34.5 34.5 34.5 34.5 34.5<br />

Crosswoodburn 23.4 27.9 32.3 34.8 35.3 35.3 35.3 35.3 35.3<br />

Harburnhead 29.2 33.9 38.3 40.8 41.4 41.4 41.4 41.4 41.4<br />

Harburnhead House 23.9 28.5 32.9 35.4 35.9 35.9 35.9 35.9 35.9<br />

Kiprig 27.6 32.1 36.5 39.0 39.5 39.5 39.5 39.5 39.5<br />

South Cobbinshaw 23.0 27.4 31.8 34.3 34.9 34.9 34.9 34.9 34.9<br />

South Lodge 25.5 30.1 34.5 37.0 37.6 37.6 37.6 37.6 37.6<br />

The Beeches 23.9 28.3 32.7 35.2 35.7 35.7 35.7 35.7 35.7<br />

Torphin Cottage 27.2 31.7 36.1 38.6 39.1 39.1 39.1 39.1 39.1<br />

Torphin House 24.8 29.3 33.7 36.2 36.7 36.7 36.7 36.7 36.7<br />

Enel Viento S.L<br />

November 2011 Page 12-7


Chapter 12<br />

Noise<br />

12.4.2 Operational Noise Assessment<br />

The assessment of predicted operational noise levels against the noise limits derived in accordance<br />

with ETSU-R-97 is detailed below.<br />

Table 12.9 details the difference (margin) between predicted noise immission levels (Table 12.8) and<br />

the range of derived noise limits (Table 12.7) for each of the properties assessed. A negative margin<br />

indicates that the predicted noise level is lower than the limit.<br />

Charts 12.1 to 12.8 show the measured background noise levels, prevailing background noise level,<br />

and noise limits for each monitoring location. These charts also show predicted noise levels for the<br />

monitoring location itself and additional receptors for which the background is considered to be<br />

representative.<br />

It can be seen from Table 12.9 and Charts 12.1 to 12.8, the predicted noise levels at all receptors are<br />

no higher than the noise limits in all cases, at all windspeeds, and are therefore compliant with<br />

ETSU limits.<br />

Table 12.9: Margins Between Predicted Turbine Noise and Derived Noise Limits<br />

Receptor Standardised 10 m Windspeed, ms -1<br />

Quiet Daytime<br />

4 5 6 7 8 9 10 11 12<br />

Noise Margin, dB<br />

Aberlyne -14.9 -10.5 -9.2 -10.9 -13.6 -14.8 -14.8 -14.8 -14.8<br />

Beechcroft -17.4 -12.9 -9.7 -9.5 -10.9 -12.5 -13.5 -13.7 -13.7<br />

Crosswoodburn -16.6 -12.1 -10.9 -12.5 -15.3 -16.5 -16.5 -16.5 -16.5<br />

Harburnhead -10.8 -6.1 -2.1 -0.1 -1.5 -4.3 -7.1 -9.6 -11.6<br />

Harburnhead House -16.1 -11.5 -7.3 -5.1 -7.0 -9.8 -12.6 -15.1 -17.1<br />

Kiprig -12.4 -7.9 -4.7 -4.5 -5.9 -7.5 -8.5 -8.7 -8.7<br />

South Cobbinshaw -17.0 -12.6 -8.2 -8.8 -10.8 -10.8 -10.8 -10.8 -10.8<br />

South Lodge -14.5 -9.9 -5.8 -3.6 -5.3 -8.1 -10.9 -13.4 -15.4<br />

The Beeches -16.1 -11.7 -10.4 -12.0 -14.9 -16.1 -16.1 -16.1 -16.1<br />

Torphin Cottage -12.8 -8.3 -5.1 -4.9 -6.3 -7.9 -8.9 -9.1 -9.1<br />

Torphin House -15.2 -10.7 -7.6 -7.4 -8.7 -10.3 -11.3 -11.5 -11.5<br />

Night-time<br />

Aberlyne -17.9 -13.5 -9.1 -7.4 -12.0 -14.7 -14.7 -14.7 -14.7<br />

Beechcroft -20.4 -15.9 -11.5 -9.0 -10.3 -14.4 -18.7 -22.8 -26.0<br />

Crosswoodburn -19.6 -15.1 -10.7 -9.1 -13.7 -16.4 -16.4 -16.4 -16.4<br />

Harburnhead -13.8 -9.1 -4.7 -2.2 -1.6 -2.7 -6.3 -9.8 -12.7<br />

Harburnhead House -19.1 -14.5 -10.1 -7.6 -7.1 -8.2 -11.8 -15.3 -18.2<br />

Kiprig -15.4 -10.9 -6.5 -4.0 -5.3 -9.4 -13.7 -17.8 -21.0<br />

South Cobbinshaw -20.0 -15.6 -11.2 -8.7 -8.1 -9.0 -9.0 -9.0 -9.0<br />

South Lodge -17.5 -12.9 -8.5 -6.0 -5.4 -6.5 -10.1 -13.6 -16.5<br />

The Beeches -19.1 -14.7 -10.3 -8.7 -13.3 -16.0 -16.0 -16.0 -16.0<br />

Torphin Cottage -15.8 -11.3 -6.9 -4.4 -5.7 -9.8 -14.1 -18.2 -21.4<br />

Torphin House -18.2 -13.7 -9.3 -6.8 -8.1 -12.2 -16.5 -20.6 -23.8<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

Decisions on micrositing of the turbines, as set out in Chapter 4: Project Description of this <strong>ES</strong>, and the<br />

final choice of turbine model and its mode of operation, will be made so as to maintain compliance with<br />

the limits set out in this chapter, or those applied through planning conditions.<br />

Enel Viento S.L<br />

Page 12-8 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

Chart 12.1: Aberlyne - Quiet Daytime Operational Noise Assessment<br />

Chart 12.3: South Cobbinshaw - Quiet Daytime Operational Noise Assessment<br />

60<br />

y = -0.02523x 4 + 0.45370x 3 - 2.31967x 2 + 4.38180x + 30.05139<br />

R² = 0.35981<br />

60<br />

y = -0.02640x 4 + 0.45023x 3 - 2.23221x 2 + 4.81038x + 22.68159<br />

R² = 0.44670<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - Aberlyne<br />

Predicted Noise Level - Crosswoodburn<br />

Predicted Noise Level - The Beeches<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - South Cobbinshaw<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Standardised 10 m Windspeed , ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

Chart 12.2: Aberlyne - Night-time Operational Noise Assessment<br />

Chart 12.4: South Cobbinshaw - Night-time Operational Noise Assessment<br />

60<br />

y = -0.03205x 4 + 0.58060x 3 - 2.82054x 2 + 3.61053x + 29.68875<br />

R² = 0.49632<br />

60<br />

y = -0.02117x 4 + 0.39591x 3 - 2.14450x 2 + 4.78018x + 19.81635<br />

R² = 0.37846<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - Aberlyne<br />

Predicted Noise level - Crosswoodburn<br />

Predicted Noise Level - The Beeches<br />

Prevailing Background Noise<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - South Cobbinshaw<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

0 2 4 6 8 10 12<br />

Standardised 10 m Windspeed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

Enel Viento S.L<br />

November 2011 Page 12-9


Chapter 12<br />

Noise<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

Chart 12.5: Kiprig - Quiet Daytime Operational Noise Assessment<br />

Chart 12.7: Harburnhead - Quiet Daytime Operational Noise Assessment<br />

60<br />

y = -0.03486x 3 + 0.64061x 2 - 1.70204x + 30.82128<br />

R² = 0.57220<br />

60<br />

y = -0.02331x 3 + 0.56484x 2 - 1.67373x + 27.05450<br />

R² = 0.67825<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - Kiprig<br />

Predicted Noise Level - Torphin Cottage<br />

Predicted Noise Level - Torphin House<br />

Predicted Noise Level - Beechcroft<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - Harburnhead<br />

Predicted Noise Level - South Lodge<br />

Predicted Noise Level - Harburnhead House<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12 14 16<br />

Standardised 10 m Windspeed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

Chart 12.6: Kiprig- Night-time Operational Noise Assessment<br />

Chart 12.8: Harburnhead - Night-time Operational Noise Assessment<br />

60<br />

y = -0.00612x 4 + 0.14863x 3 - 0.91669x 2 + 2.53825x + 27.10286<br />

R² = 0.36819<br />

60<br />

y = -0.02966x 3 + 0.75595x 2 - 2.63805x + 23.19183<br />

R² = 0.74501<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - Kiprig<br />

Predicted Noise Level - Torphin Cottage<br />

Predicted Noise Level - Torphin House<br />

Predicted Noise Level - Beechcroft<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Noise Level - Harburnhead<br />

Predicted Noise Level - South Lodge<br />

Predicted Noise Level - Harburnhead House<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12 14 16<br />

Standardised 10 m Windspeed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

Enel Viento S.L<br />

Page 12-10 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

12.4.3 Cumulative Effects Assessment<br />

An assessment of the cumulative effects of noise from the Development together with three other<br />

windfarms in the nearby area has been undertaken. The windfarms considered as part of this<br />

cumulative assessment are Pates Hill windfarm, located approximately 3 km to the west, Muirhall wind<br />

farm located approximately 5 km to the south west, and Harrows Law wind farm located approximately<br />

3.5 km to the south east, all of which are shown in Figure 12.1. Both the Pates Hill and Muirhall<br />

windfarm developments are operational, however Harrows Law windfarm is currently within the<br />

application process, having been refused consent at planning committee during the writing of this<br />

chapter. As the application for the proposed development is still within the period of appeal, it has<br />

been considered in the cumulative assessment in order to represent a worst case scenario and a<br />

comprehensive assessment.<br />

As two of the windfarm developments considered in the cumulative assessment are already<br />

operational, noise emissions for the turbine models installed at the respective developments have been<br />

obtained from the relevant manufacturers. In the case of Harrows Law windfarm, details of turbine<br />

noise emissions have been sourced from the Harrows Law Windfarm, <strong>Vol</strong>ume 2: Environmental<br />

Statement Main Report, February 2010.<br />

12.4.3.1 Pates Hill Windfarm – Noise Emissions<br />

Noise emissions for the Vestas V80 2.0 MW turbine model operating at Pates Hill windfarm have been<br />

obtained from Vestas. As it is uncertain if the data provided by the manufacturer is warranted,<br />

emission levels from this windfarm have been modelled with a hard ground factor (G=0.0), in<br />

accordance with the Bowdler et al. 2009.<br />

12.4.3.2 Muirhall Windfarm – Noise Emissions<br />

Noise emissions for the Repower MM92 turbine model operating at Muirhall windfarm have been<br />

obtained from Repower. As the data is warranted by the manufacturer, emission levels from this<br />

windfarm have been modelled with a mixed ground factor (G=0.5), in accordance with the Bowdler et<br />

al. 2009.<br />

12.4.3.3 Harrows Law Windfarm – Noise Emissions<br />

Noise emissions from the proposed Harrows Law windfarm have been sourced from the Harrows Law<br />

Windfarm Environmental Statement, reproduced in Tables 12.14 and 12.15 below. As it is not<br />

specified within the Harrows Law Windfarm environmental statement whether the data is warranted or<br />

measured, as a worst case approach the data has been assumed to be measured, and modelled with a<br />

hard ground factor (G=0).<br />

Table 12.14: Noise Emission Data, Siemens SWT-2.3-82<br />

Standardised 10 m Windspeed, ms -1<br />

4 5 6 7 8 9 10 11 12<br />

Sound Power Level, dB, L WA<br />

SWT-82-VS 73 m Hub 90.3 98.5 103.2 104.5 104.5 104.5 104.5 104.5 104.5<br />

Table 12.15: Octave Band Spectra of Siemens SWT-2.3-VS<br />

Octave Band Frequency (Hz)<br />

63 125 250 500 1000 2000 4000 8000<br />

Sound Power Level, dB, L WA<br />

SWT-82-VS spectrum 77.8 87.8 96.5 98.6 98.9 96.3 94.4 88.6<br />

The assessment methodology detailed in Section 12.2.1.4.2 has also been followed for the cumulative<br />

assessment.<br />

12.4.3.4 Accounting for the Effect of Wind Direction on Sound Propagation<br />

Due to the position of each windfarm, in the majority of instances it is not possible for receptors to be<br />

in a downwind position of several windfarms simultaneously. To account for this, a directivity factor<br />

has been applied to calculate the worst case propagation conditions as a function of wind direction.<br />

For the position of each turbine relative to each receptor, the propagation direction (the direction from<br />

the turbine to the receptor) has been calculated. Then, for each of 24 x 15-degree wind direction<br />

intervals, the difference between wind direction and propagation direction has been calculated for each<br />

turbine location relative to each receptor. An adjustment was then applied to the noise level from each<br />

turbine at each receptor to account for the effects on sound propagation of wind direction relative to<br />

the propagation direction, based on a formula contained in Bowdler 2007 22 , which is described as “...a<br />

pragmatic basis on which to form a view of the cumulative impact and one that is substantially better<br />

than simply adding the worst-case values for every windfarm”. These adjustments are detailed in<br />

Table 12.16.<br />

Table 12.16: Attenuation Levels due to Wind Direction<br />

Difference Between Wind Direction<br />

Adjustment (dB)<br />

and Propagation Direction(deg)<br />

0 0.0<br />

15 -0.1<br />

30 -0.3<br />

45 -0.6<br />

60 -1.0<br />

75 -1.5<br />

90 -2.0<br />

105 -2.7<br />

120 -3.5<br />

135 -4.4<br />

150 -5.5<br />

165 -7.0<br />

180 -10.0<br />

On this basis, the worst-case wind direction for each receptor has been identified, i.e. that which<br />

results in the highest cumulative level of wind turbine noise taking into account the difference between<br />

wind direction and propagation direction for each turbine.<br />

12.4.3.5 Cumulative Noise Levels<br />

Table 12.17 below details the predicted cumulative noise immission levels from the cumulative<br />

assessment, with additional information detailing the wind directions under which such worst case<br />

levels are predicted to occur, the results of which are also shown in charts 12.9 to 12.16.<br />

Predicted cumulative noise immission levels calculated as a function of the worst case wind direction<br />

are at most 2.3 dB(A) higher than those predicted for the Development alone. This maximum<br />

difference is predicted at Beechcroft located to the north west of the Development, at a windspeed of 5<br />

ms -1 . In certain cases, the cumulative noise level assessed as function of worst-case wind direction is<br />

predicted to be no higher than that from the Development alone.<br />

22 Bowdler, D. (2007) Clocaenog Forest SSA Wind Farms Cumulative Impact Assessment, New Acoustics, September 2007<br />

Enel Viento S.L<br />

November 2011 Page 12-11


Chapter 12<br />

Noise<br />

Table 12.17: Predicted Cumulative Noise Immission Levels<br />

Receptor<br />

Worst<br />

Standardised 10 m Windspeed, ms -1<br />

Case 4 5 6 7 8 9 10 11 12<br />

Wind<br />

Direction<br />

Predicted Cumulative Noise Level, dB, L<br />

(deg)<br />

A90,10min<br />

Daytime<br />

Aberlyne 300 25.4 30.0 34.3 36.5 37.2 37.2 37.2 37.2 37.2<br />

Beechcroft 150 24.6 29.3 33.3 35.3 36.0 35.9 35.7 35.8 35.8<br />

Crosswoodburn 285 23.9 28.6 32.9 35.1 35.8 35.8 35.8 35.8 35.8<br />

Harburnhead 210 29.2 33.9 37.9 39.9 41.4 41.4 41.4 41.4 41.4<br />

Harburnhead House 210 24.2 28.8 33.0 35.1 36.1 36.1 36.1 36.1 36.1<br />

Kiprig 180 27.8 32.3 36.6 38.9 39.6 39.6 39.6 39.6 39.6<br />

South Cobbinshaw 30 24.5 29.2 33.3 35.4 36.0 36.0 35.8 35.9 35.9<br />

South Lodge 210 25.7 30.3 34.5 36.5 37.7 37.7 37.7 37.7 37.7<br />

The Beeches 315 24.5 29.1 33.4 35.6 36.2 36.2 36.2 36.2 36.2<br />

Torphin Cottage 180 27.5 32.0 36.3 38.6 39.3 39.3 39.2 39.2 39.2<br />

Torphin House 180 25.1 29.7 33.9 36.2 36.9 36.9 36.9 36.9 36.9<br />

Night-time<br />

Aberlyne 300 25.4 30.0 34.4 36.7 37.2 37.2 37.2 37.2 37.2<br />

Beechcroft 150 24.6 29.3 33.4 35.4 36.0 35.9 35.6 35.8 35.8<br />

Crosswoodburn 285 23.9 28.6 33.0 35.3 35.8 35.8 35.8 35.8 35.8<br />

Harburnhead 210 29.2 33.9 38.3 40.8 41.4 41.4 41.4 41.4 41.4<br />

Harburnhead House 210 24.2 28.8 33.2 35.6 36.1 36.1 36.1 36.1 36.1<br />

Kiprig 180 27.8 32.3 36.7 39.1 39.6 39.6 39.6 39.6 39.6<br />

South Cobbinshaw 30 24.5 29.2 33.3 35.5 36.0 36.0 35.8 35.9 35.9<br />

South Lodge 210 25.7 30.3 34.7 37.1 37.7 37.7 37.7 37.7 37.7<br />

The Beeches 315 24.5 29.1 33.4 35.7 36.2 36.2 36.2 36.2 36.2<br />

Torphin Cottage 180 27.5 32.0 36.3 38.8 39.3 39.3 39.2 39.2 39.2<br />

Torphin House 180 25.1 29.7 34.0 36.4 36.9 36.9 36.9 36.9 36.9<br />

Noise limits for the cumulative assessment are equal to those detailed in Table 12.7 for the assessment<br />

of noise solely from the Development. Table 12.18 details the margin between the predicted<br />

cumulative noise levels and the derived noise limits. A negative margin indicates that the predicted<br />

cumulative noise level is lower than the limit.<br />

Table 12.18: Margins Between Predicted Cumulative Turbine Noise and Noise Limits<br />

Receptor Standardised 10 m Windspeed, ms -1<br />

Quiet Daytime<br />

4 5 6 7 8 9 10 11 12<br />

Cumulative Noise Margin, dB<br />

Aberlyne -14.6 -10.0 -8.8 -10.6 -13.4 -14.6 -14.6 -14.6 -14.6<br />

Beechcroft -15.4 -10.7 -7.8 -8.0 -9.4 -11.1 -12.3 -12.4 -12.4<br />

Crosswoodburn -16.1 -11.4 -10.2 -12.0 -14.8 -16.0 -16.0 -16.0 -16.0<br />

Harburnhead -10.8 -6.1 -2.1 -0.1 -1.5 -4.3 -7.1 -9.6 -11.6<br />

Harburnhead House -15.8 -11.2 -7.0 -4.9 -6.8 -9.6 -12.4 -14.9 -16.9<br />

Kiprig -12.2 -7.7 -4.5 -4.4 -5.8 -7.4 -8.4 -8.6 -8.6<br />

South Cobbinshaw -15.5 -10.8 -6.7 -7.6 -9.7 -9.7 -9.9 -9.8 -9.8<br />

South Lodge -14.3 -9.7 -5.5 -3.5 -5.2 -8.0 -10.8 -13.3 -15.3<br />

The Beeches -15.5 -10.9 -9.7 -11.5 -14.4 -15.6 -15.6 -15.6 -15.6<br />

Torphin Cottage -12.5 -8.0 -4.8 -4.7 -6.1 -7.7 -8.8 -9.0 -9.0<br />

Torphin House -14.9 -10.3 -7.2 -7.1 -8.5 -10.1 -11.1 -11.3 -11.3<br />

Night-time<br />

Aberlyne -17.6 -13.0 -8.6 -7.2 -11.8 -14.5 -14.5 -14.5 -14.5<br />

Beechcroft -18.4 -13.7 -9.6 -7.6 -8.8 -13.0 -17.6 -21.5 -24.7<br />

Crosswoodburn -19.1 -14.4 -10.0 -8.6 -13.2 -15.9 -15.9 -15.9 -15.9<br />

Harburnhead -13.8 -9.1 -4.7 -2.2 -1.6 -2.7 -6.3 -9.8 -12.7<br />

Harburnhead House -18.8 -14.2 -9.8 -7.4 -6.9 -8.0 -11.6 -15.1 -18.0<br />

Kiprig -15.2 -10.7 -6.3 -3.9 -5.2 -9.3 -13.6 -17.7 -20.9<br />

South Cobbinshaw -18.5 -13.8 -9.7 -7.5 -7.0 -7.9 -8.1 -8.0 -8.0<br />

South Lodge -17.3 -12.7 -8.3 -5.9 -5.3 -6.4 -10.0 -13.5 -16.4<br />

The Beeches -18.5 -13.9 -9.6 -8.2 -12.8 -15.5 -15.5 -15.5 -15.5<br />

Torphin Cottage -15.5 -11.0 -6.7 -4.2 -5.5 -9.6 -14.0 -18.1 -21.3<br />

Torphin House -17.9 -13.3 -9.0 -6.6 -7.9 -12.0 -16.3 -20.4 -23.6<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

As can be seen from Table 12.18 and Charts 12.9 to 12.16 the predicted cumulative noise levels are in<br />

all cases lower than the limits. The predicted cumulative levels are therefore considered to be<br />

acceptable within the terms of ETSU-R-97 and not significant in terms of the EIA Regulations.<br />

Enel Viento S.L<br />

Page 12-12 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

60<br />

Chart 12.9: Aberlyne - Quiet Daytime Cumulative Operational Noise<br />

Assessment<br />

y = -0.02523x 4 + 0.45370x 3 - 2.31967x 2 + 4.38180x + 30.05139<br />

R² = 0.35981<br />

60<br />

Chart 12.11: South Cobbinshaw - Quiet Daytime Cumulative Operational Noise<br />

Assessment<br />

y = -0.02640x 4 + 0.45023x 3 - 2.23221x 2 + 4.81038x + 22.68159<br />

R² = 0.44670<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - Aberlyne<br />

Predicted Cumulative Noise Level - The Beeches<br />

Predicted Cumulative Noise Level - Crosswoodburn<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - South<br />

Cobbinshaw<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Standardised 10 m Windspeed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

60<br />

Chart 12.10: Aberlyne - Night-time Cumulative Operational Noise Assessment<br />

y = -0.03205x 4 + 0.58060x 3 - 2.82054x 2 + 3.61053x + 29.68875<br />

R² = 0.49632<br />

60<br />

Chart 12.12: South Cobbinshaw - Night-time Cumulative Operational Noise<br />

Assessment<br />

y = -0.02117x 4 + 0.39591x 3 - 2.14450x 2 + 4.78018x + 19.81635<br />

R² = 0.37846<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - Aberlyne<br />

Predicted Cumulative Noise Level - The Beeches<br />

Predicted Cumulative Noise Level - Crosswoodburn<br />

Prevailing Background Noise<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - South<br />

Cobbinshaw<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

0 2 4 6 8 10 12<br />

Standardised 10 m Windspeed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

Enel Viento S.L<br />

November 2011 Page 12-13


Chapter 12<br />

Noise<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

60<br />

Chart 12.13: Kiprig - Quiet Daytime Cumulative Operational Noise Assessment<br />

y = -0.03486x 3 + 0.64061x 2 - 1.70204x + 30.82128<br />

R² = 0.57220<br />

60<br />

Chart 12.15: Harburnhead - Quiet Daytime Cumulative Operational Noise<br />

Assessment<br />

y = -0.02331x 3 + 0.56484x 2 - 1.67373x + 27.05450<br />

R² = 0.67825<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - Kiprig<br />

Predicted Cumulative Noise Level - Torphin Cottage<br />

Predicted Cumulative Noise Level - Torphin House<br />

Predicted Cumulative Noise Level - Beechcroft<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - Harburnhead<br />

Predicted Cumulative Noise Level - South Lodge<br />

Predicted Cumulative Noise Level - Harburnhead House<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12 14 16<br />

Standardised 10 m Wind Speed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

60<br />

Chart 12.14: Kiprig- Night-time Cumulative Operational Noise Assessment<br />

y = -0.00612x 4 + 0.14863x 3 - 0.91669x 2 + 2.53825x + 27.10286<br />

R² = 0.36819<br />

60<br />

Chart 12.16: Harburnhead - Night-time Cumulative Operational Noise<br />

Assessment<br />

y = -0.02966x 3 + 0.75595x 2 - 2.63805x + 23.19183<br />

R² = 0.74501<br />

50<br />

50<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - Kiprig<br />

Predicted Cumulative Noise Level - Torphin Cottage<br />

Predicted Cumulative Noise Level - Torphin House<br />

Predicted Cumulative Noise Level - Beechcroft<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12<br />

Noise Level, LA90,10min, dB(A)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Measured Background Noise Level<br />

Noise Limit<br />

Predicted Cumulative Noise Level - Harburnhead<br />

Predicted Cumulative Noise Level - South Lodge<br />

Predicted Cumulative Noise Level - Harburnhead House<br />

Prevailing Background Noise<br />

0 2 4 6 8 10 12 14 16<br />

Standardised 10 m Windspeed, ms -1<br />

Standardised 10 m Windspeed, ms -1<br />

Enel Viento S.L<br />

Page 12-14 November 2011


Harburnhead Windfarm Chapter 12<br />

Environmental Statement<br />

Noise<br />

12.5 MITIGATION AND R<strong>ES</strong>IDUAL EFFECTS<br />

12.5.1 Operational Noise Mitigation<br />

In all cases the levels of operational noise are predicted to be compliant with the requirements of<br />

ETSU-R-97.<br />

12.5.1.1 Residual Operational Effects<br />

Mitigation measures are embedded within the design of the Development for operation during daytime<br />

periods, where turbines 1 and 3 are required to operate in restricted power modes. Residual effects<br />

are therefore assessed as not significant.<br />

12.5.2 Construction Noise Mitigation<br />

The following good practice measures will be required of all contractors during construction:<br />

Construction noise will be limited in duration and confined to working hours as specified by the Council<br />

and can therefore be adequately controlled through planning condition. The application of mitigation<br />

measures where applicable will also ensure that any noise from site will be adequately controlled.<br />

Noise during decommissioning will be of a similar nature to that of construction and will be managed<br />

through best practice or other guidance or legislation relevant at the time.<br />

• operations shall be limited to times agreed with West Lothian Council’s Environmental Health<br />

Department;<br />

• deliveries of turbine components, plant and materials by HGV to site shall only take place by<br />

designated routes and within times agreed with West Lothian Council;<br />

• the Developer shall publicise the construction programme (for example, in local newspapers,<br />

through mailings to local residents, through an on-site information board at the site access, and on<br />

the Developer’s website) for the commencement and duration of operations, provide details of the<br />

project programme and provide named contacts for daytime and out of hours;<br />

• the site contractors shall be required to select the quietest item of suitable plant available for all site<br />

operations where practicable;<br />

• where practicable, the work programme will be phased, which would help to reduce the combined<br />

effects arising from several noisy operations;<br />

• where necessary and practicable, noise from fixed plant and equipment will be contained within<br />

suitable acoustic enclosures or behind acoustic screens;<br />

• all sub-contractors appointed by the main contractor will be formally and legally obliged, required<br />

through contract, to comply with all environmental noise conditions;<br />

• where practicable, night time working will not be carried out. Local residents shall be notified in<br />

advance of any night-time construction activities likely to generate significant noise levels, e.g.,<br />

turbine erection; and<br />

• any plant and equipment normally required for operation at night (23:00 - 07:00), e.g., generators<br />

or dewatering pumps, shall be silenced or suitably shielded to ensure that the night-time lower<br />

threshold of 45 dB, LA eq,night shall not be exceeded at the nearest noise-sensitive receptors.<br />

12.5.2.1 Residual Construction Effects<br />

<strong>App</strong>lication of the above measures to manage construction noise will ensure that effects are minimised<br />

as far as is reasonably practicable and that the construction process is operated in compliance with the<br />

relevant legislation.<br />

12.6 SUMMARY OF EFFECTS<br />

An assessment of potential noise effects has been carried out for the operational, construction and<br />

decommissioning stages of the Development.<br />

Operational noise has been assessed in accordance with ETSU-R-97 The Assessment and Rating of<br />

Noise from Windfarms and with current best practice, as published in Bowdler et al. 2009. It has been<br />

shown that the Development would comply with the requirements of ETSU-R-97 at all receptor<br />

locations.<br />

The cumulative effects of the Development, the nearby operational Pates Hill and Muirhall windfarms<br />

and the proposed Harrows Law windfarm have also been considered. The cumulative noise levels were<br />

found to be within the derived noise limits.<br />

Enel Viento S.L<br />

November 2011 Page 12-15


Chapter 12<br />

Noise<br />

12.7 GLOSSARY<br />

The following items of acoustic terminology may have been referred to in the preceding chapter.<br />

AGL: Above Ground Level<br />

Background Noise: The background noise level is the under lying level of noise present at a<br />

particular location for the majority (usually 90%) of a period of time. As such it excludes any shortduration<br />

noises, such as individual passing cars (but not continuous traffic), dogs barking or passersby.<br />

Sources of background noise typically include such things as wind noise, traffic and continuously<br />

operating machinery (e.g. air conditioning or generators).<br />

Decibel (dB): The decibel is the basic unit of noise measurement. It relates to the cyclical changes in<br />

air pressure created by the sound (Sound Pressure Level) and operates on a logarithmic scale, ranging<br />

upwards from 0 dB. 0 dB is equivalent to the normal threshold of hearing at a frequency of 1000 Hz.<br />

Each increase of 3 dB on the scale represents a doubling in the Sound Pressure Level, and is typically<br />

the minimum noticeable change in sound level under normal listening conditions. For example, while an<br />

increase in noise level from 32 dB to 35 dB represents a doubling in sound pressure level, this change<br />

would only just be noticeable to the majority of listeners.<br />

dB(A): Environmental noise levels are usually discussed in terms of dB(A). This is known as the A-<br />

weighted sound pressure level, and indicates that a correction factor has been applied, which<br />

corresponds to the human ear’s response to sound across the range of audible frequencies. The ear is<br />

most sensitive in the middle range of frequencies (around 1000-3000 Hertz (Hz)), and less sensitive at<br />

lower and higher frequencies. The A-weighted noise level is prevailing by analysing the level of a<br />

sound at a range of frequencies and applying a specific correction factor for each frequency before<br />

calculating the overall level. In practice this is carried out automatically within noise measuring<br />

equipment by the use of electronic filters, which adjust the frequency response of the instrument to<br />

mimic that of the ear.<br />

dB(Z): The un-weighted or linear sound pressure level.<br />

Façade: A façade noise level is one measured at, or very close to, the façade of a building. These are<br />

typically 3 dB higher than free-field levels, due to reflection.<br />

Free Field: This term refers to a location where the propagation (movement) of sound is not affected<br />

by the presence of obstacles or surfaces which would cause reflections (echoes).<br />

Frequency: The frequency of a sound is equivalent to its pitch in musical terms. The units of<br />

frequency are Hertz (Hz), which represents the number of cycles (vibrations) per second.<br />

Noise Immission: The sound pressure level detected at a given location (e.g. nearest dwelling).<br />

LA 90,t : This term is used to represent the A-weighted sound pressure level that is exceeded for 90% of<br />

a period of time, t. This is used as a measure of the background noise level.<br />

LA eq,t : This term is known as the A-weighted equivalent continuous sound pressure level for a period<br />

of time, t. It is similar to an average, and represents the sound pressure level of a sound of continuous<br />

intensity that would result in an equal quantity of sound energy as a sound which varies in intensity.<br />

Low frequency noise: Noise at the lower end of the range of audible frequencies (20 Hz – 20 kHz).<br />

Usually refers to noise below 250 Hz. Should not be confused with infrasound, which is sound below<br />

the lowest normally audible frequency, 20 Hz.<br />

Noise: Unwanted sound. May refer to both natural (e.g. wind, birdsong etc) and artificial sounds (e.g.<br />

traffic, noise from wind turbines, etc.). It is assumed that all background sounds are unwanted, for the<br />

purposes of this assessment.<br />

Noise contour plot: A diagram showing lines of equal sound levels (isobels) in a similar manner to<br />

height contours on an Ordnance Survey map or isobars (lines of equal pressure) on a weather map.<br />

Noise sensitive receptors: Locations that may potentially be adversely affected by the addition of a<br />

new source of noise. These can include residential properties, outdoor areas and sensitive species.<br />

Harburnhead Windfarm<br />

Environmental Statement<br />

Sound power (W): The sound energy radiated per unit time by a sound source, measured in watts<br />

(W).<br />

Sound power level (Lw): Sound power measured on the decibel scale, relative to a reference value<br />

(Wo) of 10 -12 W.<br />

Sound pressure (P): The fluctuations in atmospheric pressure relative to atmospheric pressure,<br />

measured in Pascals (Pa).<br />

Sound pressure level (Lp): Sound pressure measured on the decibel scale, relative to a sound<br />

pressure of 2 x 10 -5 Pa.<br />

Tonal element: A characteristic of a sound where the sound pressure level in a particular frequency<br />

range is greater than in those frequency ranges immediately above higher or lower. This would be<br />

perceived as a humming or whining sound.<br />

Vibration: In this context, refers to vibration carried in structures such as the ground or buildings,<br />

rather than airborne noise.<br />

Enel Viento S.L<br />

Page 12-16 November 2011


298000<br />

299000<br />

300000<br />

301000<br />

302000<br />

303000<br />

304000<br />

305000<br />

306000<br />

307000<br />

308000<br />

309000<br />

661000<br />

Beechcroft<br />

Kiprig<br />

Torphin House<br />

Harburnhead House<br />

South Lodge<br />

661000<br />

662000<br />

660000<br />

662000<br />

Key<br />

Proposed Turbine<br />

Elevation<br />

Harburnhead<br />

660000<br />

35dB<br />

40dB<br />

45dB<br />

50dB<br />

659000<br />

659000<br />

55dB<br />

Pates Hill<br />

Turbine<br />

Property<br />

Reproduced from Ordnance Survey digital map data © Crown copyright 2011. All rights reserved. License number 100048606<br />

652000<br />

653000<br />

654000<br />

655000<br />

656000<br />

657000<br />

658000<br />

298000<br />

299000<br />

300000<br />

Muirhall<br />

301000<br />

South Cobbinshaw<br />

302000<br />

303000<br />

304000<br />

Harrows Law<br />

305000<br />

Aberlyne<br />

306000<br />

307000<br />

308000<br />

309000<br />

652000<br />

653000<br />

654000<br />

655000<br />

656000<br />

657000<br />

658000<br />

Noise Assesment Locations<br />

Noise Monitoring Location<br />

1:40,000 Scale @ A3<br />

0 1 2 km<br />

Produced:LHu<br />

Reviewed:PM<br />

<strong>App</strong>roved: PP<br />

Ref: 189/<strong>ES</strong>/050<br />

Date: 21/11/2011<br />

Noise Contour Plot<br />

Figure 12.1<br />

Revision: A<br />

Harburnhead Windfarm<br />

Environmental Statement

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!