19.05.2014 Views

PerkinElmer HPLC & UHPLC Workshop

PerkinElmer HPLC & UHPLC Workshop

PerkinElmer HPLC & UHPLC Workshop

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>HPLC</strong> & U<strong>HPLC</strong><br />

<strong>Workshop</strong><br />

<strong>PerkinElmer</strong> Korea<br />

2009 9 18<br />

© 2009 Perkin Elmer<br />

<strong>HPLC</strong><br />

Basic Principle<br />

<strong>PerkinElmer</strong> Korea<br />

Kim, Wang-Yu PhD<br />

© 2009 Perkin Elmer


Chromatography <br />

Chromatography h<br />

Chromos(color) + graphein(write) = <br />

1906 Michael Tswett <br />

. <br />

(Liquid-Solid).<br />

Molecular components in a mixture are separated because of<br />

their affinities for two substances called phases.<br />

() <br />

<br />

<br />

3<br />

<strong>HPLC</strong> <br />

• <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4


<strong>HPLC</strong> <br />

Chromatogram<br />

Injection<br />

Port<br />

computer<br />

high<br />

pressure<br />

Pump<br />

Colum mn<br />

Detector<br />

<br />

5<br />

Chromatography <br />

chromatography<br />

Gas chromatography<br />

<br />

Liquid Chromatography<br />

<br />

Gas-Solid<br />

Gas-Liquid<br />

<br />

Adsorption Partition Ion exchange Size Exclusion Affinity<br />

Gel Filtration<br />

<br />

Gel Permeation<br />

<br />

6


High Performance<br />

Liquid Chromatography<br />

<br />

7<br />

Partitionchromatography<br />

• <br />

• <br />

<br />

• <br />

• <br />

<br />

<br />

• <br />

<br />

<br />

<br />

8


(reverse phase) <br />

O<br />

O<br />

Si<br />

O<br />

O H +<br />

Cl<br />

CH 3 Si<br />

(CH 2 ) 17<br />

CH 3 CH 3<br />

O<br />

CH 3<br />

O Si O Si (CH 2 ) 17 CH 3<br />

O<br />

CH 3<br />

Pore<br />

Si<br />

Si<br />

CH<br />

3<br />

Si -O-Si-(CH 2 ) - CH<br />

17 3<br />

Si CH 3<br />

Si<br />

Si<br />

9<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10


Adsorbent( <br />

Solvent<br />

Pentane<br />

Hexane<br />

Iso-octa<br />

ne<br />

Cyclohex xane<br />

Carbon<br />

tetrachlo<br />

oride<br />

l-Chlorob butane<br />

Xylene<br />

Toluene<br />

Chlorobe enzene<br />

Benzene<br />

e<br />

Ethyl eth her<br />

Dichloro<br />

methane<br />

Chlorofo orm<br />

1,2-Dich hloroethane<br />

Methyl ethyl ketone<br />

Acetone<br />

Dioxane<br />

1-Pentan nol<br />

Tetrahyd drofuran<br />

Methyl t<br />

-butyl ether<br />

Ethyl ace etate<br />

Dimethy yl sulfoxide<br />

Diethyla<br />

mine<br />

Acetonit<br />

rile<br />

1-Butano ol<br />

Pyridine<br />

2-Metho oxyethanol<br />

n-Propyl<br />

l alcohol<br />

Isopropy yl alcohol<br />

Ethanol<br />

Methano ol<br />

Ethylene e glycol<br />

Dimethy yl<br />

formami ide<br />

Water<br />

(Al 2<br />

O 3<br />

)<br />

0.00<br />

0.00-0.01<br />

0.01<br />

0.04<br />

0.17-0.18<br />

0.26-0.30<br />

0.26<br />

0.20-0.30<br />

0.30-0.31<br />

0.32<br />

0.38<br />

0.36-0.42<br />

0.36-0.40<br />

0.44-0.49<br />

0.51<br />

0.56-0.58<br />

0.56-0.61<br />

0.61<br />

0.45-0.62<br />

0.3-0.62<br />

0.58-0.62<br />

0.62-0.75<br />

0.63<br />

0.52-0.65<br />

0.70<br />

0.71<br />

0.74<br />

0.78-0.82<br />

0.78-0.82<br />

0.88<br />

0.95<br />

1.11<br />

-<br />

-<br />

(SiOH)<br />

0.00<br />

0.00-0.01<br />

0.01<br />

0.03<br />

0.11<br />

0.20<br />

-<br />

0.22<br />

0.23<br />

0.25<br />

0.38-0.43<br />

0.32-0.32<br />

0.26<br />

-<br />

-<br />

0.47-0.53<br />

0.49-0.51<br />

-<br />

0.53<br />

0.48<br />

0.38-0.48<br />

-<br />

-<br />

0.50-0.52<br />

-<br />

-<br />

-<br />

-<br />

0.60<br />

-<br />

0.70-0.73<br />

-<br />

-<br />

-<br />

(C 18<br />

)<br />

P<br />

_ 0.0<br />

_ 0.1<br />

_ 0.1<br />

_ 0.2<br />

_ 1.6<br />

_ 1.0<br />

_ 2.5<br />

_ 2.4<br />

_ 2.7<br />

_<br />

_<br />

_ 2.8<br />

_ 3.1<br />

_ 4.1<br />

_ 3.5<br />

_ 5.7<br />

8.8 5.1<br />

11.7 4.8<br />

-<br />

-<br />

3.7 4.0<br />

- 2.5<br />

- 4.4<br />

- 7.2<br />

-<br />

-<br />

3.1 5.8<br />

- 3.9<br />

- 5.3<br />

- 5.5<br />

10.1 4.0<br />

8.3 3.9<br />

3.1<br />

-<br />

1.0 5.1<br />

-<br />

-<br />

7.6 6.4<br />

- 10.2<br />

11<br />

Chromatography <br />

()<br />

<br />

<strong>HPLC</strong> <br />

<br />

<br />

<strong>HPLC</strong> <br />

12<br />

<br />

<strong>HPLC</strong> column


Isocratic vs Gradient<br />

‣ <br />

<br />

‣ <br />

<br />

<br />

<br />

<br />

13<br />

Polarity<br />

Functional Group Polarity Comparisons<br />

Polarity Functional Group Structure Bonding Types Intermolecular Forces Displayed<br />

Low Methylene σ London<br />

R (CH 2 ) 2<br />

Phenyl σ , π London<br />

R<br />

Halide R F, Cl, Br, I<br />

σ London, Dipole-Dipole<br />

Ether<br />

R O<br />

σ London, Dipole-Dipole, H-bonding<br />

R<br />

O -<br />

Nitro<br />

R N + O<br />

σ , π London, Dipole-Dipole, H-bonding<br />

Ester R<br />

O<br />

σ , π London, Dipole-Dipole, H-bonding<br />

O R<br />

O<br />

Aldehyde σ , π London, Dipole-Dipole, H-bonding<br />

R<br />

H<br />

Ketone R<br />

O<br />

σ , π London, Dipole-Dipole, H-bonding<br />

R<br />

Amino R NH 2<br />

σ , π London, Dipole-Dipole, H-bonding, Acid-base chemistry<br />

Hydroxyl R OH<br />

σ London, Dipole-Dipole, H-bonding<br />

O<br />

High Carboxylic Acid R<br />

σ , π London, Dipole-Dipole H-bonding Acid-base OH<br />

14


AbsorptionFluorescence<br />

Absorption<br />

Fluorescence<br />

Luminescence<br />

<br />

<br />

<br />

<br />

<br />

<br />

15<br />

Ion exchange() chromatography<br />

<br />

eletrostatic force <br />

polystyrene or silica gel <br />

<br />

<br />

<br />

<br />

16


Ion exchage column <br />

Strong Cation Exchanger<br />

Polystyrene<br />

or<br />

Silica<br />

<br />

R1<br />

(CH 2 CH 2 ) SO 3<br />

-<br />

R4 N +<br />

R2<br />

R3<br />

Strong Anion Exchanger <br />

Polystyrene<br />

or<br />

Silica<br />

CH 2 CH 2 CH 2 NR 3<br />

+ -<br />

OOC R<br />

Application : <br />

<br />

17<br />

Size exclusion() chromatography<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

18


Size exclusion <br />

<br />

<br />

<br />

<br />

19<br />

High Performance<br />

Liquid Chromatography<br />

<br />

20


Mass transfer( )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

21<br />

Longitudinal diffusion()<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

22


Eddy-diffusion()<br />

Initial Band Width<br />

<br />

<br />

<br />

<br />

Final<br />

Band<br />

Width<br />

23<br />

Van Deemter Equation<br />

<br />

<br />

<br />

<br />

<br />

<br />

B<br />

u<br />

<br />

<br />

<br />

A<br />

<br />

24


• Column: C18, 4.6 x 150 mm (5 µm)<br />

• Mobile Phase: 82% H 2 O : 18% ACN<br />

• Injection Volume: 20 µL<br />

• Sample: 1. Caffeine<br />

2. Salicylamide<br />

RT(retention time)<br />

• Column temperature : 30 degree<br />

• Detection : 254 nm<br />

INJECT<br />

calibration :<br />

<br />

<br />

<br />

Integration :<br />

<br />

<br />

25<br />

Chromatogram<br />

RT(retention time)<br />

R2<br />

’ R1 <br />

’<br />

<br />

R1<br />

0<br />

<br />

<br />

’ ’<br />

0 R1 R2<br />

α <br />

<br />

<br />

’ R1<br />

’ R2<br />

<br />

<br />

<br />

<br />

INJECT<br />

<br />

<br />

<br />

<br />

26


Selectivity α<br />

R 2<br />

0<br />

’ R 2<br />

’ R 1<br />

α = =<br />

R <br />

1 0<br />

<br />

<br />

<br />

<br />

<br />

α <br />

<br />

27<br />

Separation of water soluble vitamins<br />

Mobile Phase: 15% MeOH<br />

85% (10 mM hexanesulfonate,<br />

Separations of Water-Soluble Vitamins<br />

1% HOAc, 0.13% TEA in H 2 0)<br />

using different tC8 and C18 columns Flow Rate: 1.5 mL/min at 35 C<br />

1. Vitamin C<br />

2. Niacin<br />

3. Niacinamide<br />

4. Pyridoxine<br />

5. Thiamine<br />

6. Folic Acid<br />

7. Riboflavin<br />

28<br />

Ref.: M.W. Dong and J. L. Pace, LC.GC, 14(9), 794-803, 1996.


Efficiency<br />

Inject<br />

t R t N = 16 ( R<br />

t<br />

) 2 = 5.54 ( R<br />

W<br />

) 2<br />

b<br />

W 1/2<br />

W 1/2 HETP = L/N<br />

W b<br />

<br />

• <br />

<br />

<br />

<br />

• <br />

• 29<br />

<br />

N = 5000<br />

N = 10,000<br />

N = 20,000<br />

1 3 5 7 9 11 13 15<br />

Time (min)<br />

30


Resolution(<br />

R s =<br />

1<br />

√ N<br />

4<br />

α -1<br />

α<br />

k’<br />

1 + k’<br />

R = 0.4 R = 0.5 R = 0.6 R = 0.7<br />

R = 08 0.8 R=10 1.0 R=15<br />

1.5<br />

31<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

32


<strong>HPLC</strong><br />

column & separation<br />

<strong>PerkinElmer</strong> Korea<br />

Kim, Wang-Yu PhD<br />

© 2009 Perkin Elmer<br />

<strong>HPLC</strong> <br />

Chromatogram<br />

Injection<br />

Port<br />

computer<br />

high<br />

pressure<br />

Pump<br />

Colum mn<br />

Detector<br />

<br />

34


35<br />

<br />

• Short (30-50mm) - short run times, low backpressure<br />

• Long (250-300mm) - higher resolution, long run times<br />

• Narrow (≤ 2.1mm) - higher detector sensitivity<br />

• Wide (10-22mm) - high sample loading<br />

• Narrow columns enable to save solvent waste.<br />

• Short columns enable to reduce the analyssis time.<br />

36


4.6 mm<br />

2.1 mm<br />

L = 250 mm<br />

L = 150 mm<br />

<br />

<br />

<br />

<br />

37<br />

<br />

• Spherical particles offer reduced back pressures and longer column life when<br />

using viscous mobile phases like 50:50 MeOH:H2O.<br />

38


• Smaller particles offer higher efficiency, but also cause higher backpressure.<br />

Choose 3µm particles for resolving complex, multi-component samples.<br />

Otherwise, choose 5 or 10µm packings.<br />

P ∝ (1/d p ) 2 P = Pressure<br />

d p = Particle Size<br />

39<br />

<br />

• High surface area generally provides greater retention, capacity and resolution<br />

for separating complex, multi-component samples. Low surface area packings<br />

generally equilibrate quickly, especially important in gradient analyses.<br />

40


• Larger pores allow larger solute molecules to be retained longer<br />

through h maximum exposure to the surface area of the particles.<br />

Choose a pore size of 60~150Å or less for sample MW ≤ 2000.<br />

Choose a pore size of 300Å or greater for sample MW > 2000.<br />

41<br />

<br />

Higher carbon loads generally offer greater resolution and longer<br />

run times. Low carbon loads shorten run times and many show a<br />

different selectivity.<br />

42


Endcapping reduces peak-tailing of polar solutes that interact excessively with the<br />

otherwise exposed, mostly acidic silanols. Non-endcapped packings provide a<br />

different selectivity than do endcapped packings, especially for such polar<br />

samples.<br />

43<br />

Brownlee(from <strong>PerkinElmer</strong>) Validated<br />

44


Question : What column?<br />

45<br />

Answer :<br />

C18<br />

Phenyl<br />

46


Question : What column?<br />

Which two sample components have the most similar structures?<br />

Draw them, then circle the structural t differences between them.<br />

Anthracene<br />

3-Hexylanthracene<br />

(CH2) 5 CH 3<br />

Note: The structural difference between<br />

these two compounds is the<br />

hydrophobic hexyl side chain. This<br />

suggests a non-polar C18 or C8<br />

column would interact with this area of<br />

difference to help provide separation of<br />

these two compounds.<br />

Recommended bonded phase (silica based materials only) – mark one<br />

Normal phase silica NH 2 CN<br />

Reversed phase C18 C8 Ph CN<br />

47<br />

: Column problem<br />

A. <br />

: plugged frit, column contamination<br />

B. <br />

: split peak, peak tailing, broad peak<br />

C. <br />

: Equilibration, flow change, selectivity change<br />

48


49<br />

<br />

Column: C18, 4.6 x 150 mm, 5 µm Mobile Phase: 82% H 2 O : 18% ACN<br />

Injection Volume: 30 µL Sample: 1. Caffeine 2. Salicylamide<br />

A. Injection Solvent<br />

B. Injection Solvent<br />

100% Acetonitrile il<br />

Mobile Phase<br />

2<br />

2<br />

1<br />

0 10<br />

Time (min)<br />

0 10<br />

Time (min)<br />

<br />

<br />

<br />

50


Mobile Phase: 40% 5 mM KH 2 PO 4 : 60% ACN<br />

Flow Rate: 1.0 mL/min. Temperature: RT<br />

<br />

<br />

<br />

.<br />

pH 4.4 pH 3.0<br />

CH 3 CHCOOH<br />

CH 2 CH(CH 3 ) 2<br />

Ibuprofen<br />

pK a = 4.4<br />

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10<br />

Time (min)<br />

Time (min)<br />

[RCOO - ][H + ]<br />

RCOOH RCOO - + H + K a = [RCOOH]<br />

51<br />

<br />

May be caused by:<br />

• Column aging<br />

• Column contamination<br />

• Insufficient equilibration<br />

• Poor column/mobile phase combination<br />

• Change in mobile phase<br />

• Change in flow rate<br />

• Other instrument issues<br />

52


U<strong>HPLC</strong><br />

Basic principle<br />

<strong>PerkinElmer</strong> Korea<br />

Kim, Wang-Yu PhD<br />

© 2009 Perkin Elmer<br />

<strong>HPLC</strong> <br />

Chromatogram<br />

Injection<br />

Port<br />

computer<br />

high<br />

pressure<br />

Pump<br />

Colum mn<br />

Detector<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

54


Chromatogram()<br />

RT(retention time)<br />

R2<br />

R1<br />

<br />

0<br />

’ R1<br />

INJECT<br />

’ R2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

55<br />

Benefits of U<strong>HPLC</strong><br />

U<strong>HPLC</strong><br />

Green Productivity<br />

• Higher throughput<br />

• Much Less Solvent<br />

• Better detection<br />

Isoflavones in nutriceutical products<br />

Can be analyzed with U<strong>HPLC</strong> over six times<br />

faster, with higher sensitivity,<br />

using over 90% less mobile<br />

phase solvent compared with<br />

conventional <strong>HPLC</strong> methods.<br />

Conventional<br />

<strong>HPLC</strong><br />

56<br />

0 5 10 15 20 min.<br />

…save time and money


Common Fears of Migrating to U<strong>HPLC</strong><br />

New Technology<br />

Cost of new hardware<br />

Cost of ownership and operation<br />

Ruggedness of sub-2µm columns<br />

High pressure<br />

Training<br />

i<br />

Software<br />

Method conversion<br />

• Migration to U<strong>HPLC</strong> is easier than most people p think.<br />

• New hardware will pay for itself by increasing productivity and<br />

reducing operating costs.<br />

57<br />

Don’t Be Afraid of U<strong>HPLC</strong>!!!<br />

Principles and Theory of <strong>HPLC</strong><br />

Resolution Equation<br />

1 ⎡<br />

k′<br />

⎤<br />

R s<br />

= N • • −1<br />

4 ⎢<br />

⎥ α<br />

⎣ 1 + k′<br />

⎦<br />

( )<br />

Efficiency<br />

• particle size<br />

• column length<br />

• solvent velocity<br />

Retention<br />

•solvent strength<br />

th<br />

• stationary phase<br />

composition<br />

Selectivity<br />

• type of<br />

stationary phase<br />

• mobile phase<br />

composition<br />

• additives<br />

58<br />

…baseline separation is the goal for identification and quantification


U<strong>HPLC</strong> – High Resolution and Speed<br />

1 ⎡ k′<br />

⎤<br />

= N<br />

• •<br />

4 ⎢<br />

⎣ 1 + ′ ⎥ α<br />

k ⎦<br />

−<br />

( 1<br />

)<br />

R s<br />

N α 1 Efficiency is inversely<br />

Efficiency Retention capacity Selectivity<br />

N α proportional to particle<br />

dp size (d p )<br />

L Efficiency is directly<br />

N α proportional to column<br />

d dp<br />

length (L)<br />

59<br />

…the strength of U<strong>HPLC</strong> is increased efficiency by reducing particle size<br />

‘Van Deemter Equation’<br />

Smaller particles size means<br />

Faster chromatography<br />

Increased Efficiency<br />

Enhanced Resolution/Selectivity<br />

Wider range of flow velocities<br />

Less solvent consumption<br />

Smaller particles size also means<br />

Higher operating pressure<br />

Filtration of MP and samples (0.2µm)<br />

Low system volume required<br />

Lower sample loading<br />

Higher skill level of operator<br />

60<br />

…the benefits justify the challenge


Van Deemter Equation - Contributions to Band Broadening<br />

H<br />

H = A + B u + Cu<br />

Van Deemter equation describes column<br />

efficiency as a function of mobile phase Actual Plot<br />

velocity in terms of solute:<br />

• eddy diffussion i (A)<br />

• molecular diffusion (B)<br />

• mass transfer (C)<br />

C Term<br />

Optimum efficiency<br />

A Term<br />

B Term<br />

Linear Velocity (u)<br />

61<br />

Van Deemter Equation - Contributions to Band Broadening<br />

H = A + B u + Cu<br />

Eddy Diffusion<br />

H<br />

2<br />

3<br />

Column<br />

Faster<br />

1<br />

Time<br />

Slower<br />

A Term<br />

• Independent d of mobile phase velocity (u)<br />

• A decreases as particle size (d p ) decreses<br />

Linear Velocity (u)<br />

62


Van Deemter Equation - Contributions to Band Broadening<br />

H = A + B u + Cu<br />

Molecular Diffusion<br />

H<br />

• Describes diffusion of solute in the mobile phase<br />

• Effect of B becomes negligible at sufficient flow rate<br />

A Term<br />

B Term<br />

Linear Velocity (u)<br />

63<br />

Van Deemter Equation - Contributions to Band Broadening<br />

H = A + B u + Cu<br />

H<br />

• Describes the transfer<br />

of solute into and out<br />

of the stationary<br />

phase (sorption and<br />

desorption).<br />

• C decreases with<br />

particle size (d p ) so<br />

slope of C*u also<br />

decreases with<br />

particle size.<br />

Mass Transfer<br />

stationary silica<br />

mobile phase<br />

phase support<br />

A Term<br />

B Term<br />

Linear Velocity (u)<br />

64


Van Deemter Equation - Contributions to Band Broadening<br />

H = A + B u + Cu<br />

H<br />

• Van Deemter equation terms A and C decrease as<br />

particle size decreases.<br />

• Sub-2µm columns are more efficient over a<br />

broader range of flow rates.<br />

Optimum efficiency<br />

ATerm<br />

Linear Velocity (u)<br />

B Term<br />

CTerm<br />

A Term<br />

B Term<br />

65<br />

U<strong>HPLC</strong> Basics<br />

Sub-2µm Particle Columns<br />

Increase Column Efficiency ( N ∝1<br />

d p )<br />

Improve Resolution ( R ∝ 1 )<br />

s<br />

d p<br />

2<br />

Increase Column Backpressure ( ∆P ∝ d )<br />

1 p<br />

150mmx46mmx50µm<br />

4.6 x 5.0 50mmx21mmx19µm<br />

2.1 x 1.9 • N ≈ Constant (~ 10,000 plates)<br />

• R s ≈ Constant<br />

t<br />

• ∆P (~ 6X)<br />

• t R (~ 8X)<br />

66<br />

…faster analysis at higher pressure


Requirements for a U<strong>HPLC</strong> System<br />

System must handle pressures up to 15,000 psi to in order to utilize sub 2-µm<br />

particle size columns.<br />

• Ultra high pressure pumps such as the Flexar FX-10 and FX-15.<br />

• Fast autosamplers with injection valves that can handle pressures >15,000 psi.<br />

Column oven – elevated temperature reduces mobile phase viscosity and system<br />

backpressure.<br />

Fast detectors such as the Flexar FX UV/Vis with a sampling rate of 100 Hz.<br />

Reduced extra-column volume is critical to minimize band broadening in U<strong>HPLC</strong>.<br />

• Low ID Tubing<br />

• Short tubing length<br />

• Low volume detector<br />

flow cell<br />

Contributions of<br />

Band Broadening<br />

col<br />

67<br />

…Flexar FX U<strong>HPLC</strong> systems are up to the task<br />

Extra column volume<br />

Extra-Column-Volume =<br />

sample volume + connecting tubing<br />

volume<br />

+ fitting volume + detector cell volume<br />

Tubing volume<br />

68


Band Broadening Comparison<br />

85.00<br />

80.00<br />

75.00<br />

1400<br />

3360<br />

Conventional system<br />

IBW = 22 µL<br />

70.00<br />

65.00<br />

60.00<br />

100.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

90.00<br />

5700<br />

80.00<br />

3800<br />

Optimized U<strong>HPLC</strong> system<br />

IBW = 12 µL<br />

70.0000<br />

60.00<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

69<br />

…minimizing extra-column volume significantly reduces band broadening<br />

General Steps of Method Migration<br />

1. Choose a <strong>HPLC</strong> analysis that is appropriate for migration to U<strong>HPLC</strong>.<br />

2. Select an U<strong>HPLC</strong> column with the best potential for successful migration.<br />

3. Calculate U<strong>HPLC</strong> method parameters (Flow Rate, Injection Volume, etc.).<br />

4. Run transferred method.<br />

5. Optimize transferred method.<br />

Other Considerations:<br />

• Use only <strong>HPLC</strong> grade or U<strong>HPLC</strong> grade mobile phases.<br />

• Filter all mobile phases, standards and samples with ≤0.2µm membranes.<br />

• Utilize elevated temperature to reduce MP viscosity and column<br />

backpressure.<br />

• Prepare samples and standards in initial MP conditions.<br />

70<br />

…careful planning maximizes potential for success


Choosing the Right Column<br />

Choose a column with the same type of stationary phase to maintain retention<br />

order.<br />

The optimal column ID for U<strong>HPLC</strong> is 2.1mm because mobile phase<br />

consumption and frictional heating are significantly reduced.<br />

Choose column dimensions that will have a similar efficiency as the <strong>HPLC</strong><br />

column currently used.<br />

A good “rule of thumb” for choosing a U<strong>HPLC</strong> column length when currently<br />

using a 4.6mm ID, 5.0µm particle <strong>HPLC</strong> column is:<br />

<strong>HPLC</strong> Column Dimensions<br />

50mmx46mm<br />

4.6 U<strong>HPLC</strong> Column Dimensions<br />

30 mm x 2.1 mm<br />

150 mm x 4.6 mm<br />

50 mm x 2.1 mm<br />

250 mm x 4.6 mm<br />

100 mm x 2.1 mm<br />

71<br />

…the right column choice will simplify method migration<br />

Tools Available to Simplify Method Migration<br />

Many good references are available with detailed descriptions of method transfer<br />

including a <strong>PerkinElmer</strong> white paper entitled “Guidelines for the Use of U<strong>HPLC</strong><br />

Instruments” by D. Guillarme & J. Veuthey. White paper is available at:<br />

http://las.perkinelmer.com/content/applicationnotes/wtp_guidelinesforuhplcinstruments.pdf<br />

There are five major method<br />

parameters to convert when<br />

transferring a method from<br />

<strong>HPLC</strong> to U<strong>HPLC</strong>.<br />

• Injection Volume (V inj )<br />

• Flow Rate (F)<br />

• Isocratic Step Time (t iso )<br />

• Gradient Step Time (t grad )<br />

• Gradient Slope<br />

72<br />

…method transfer calculator is available from <strong>PerkinElmer</strong>


Injection Volume<br />

The injection volume (V inj ) must be adjusted to avoid column overload as well as<br />

maintain sensitivity and reduce extra-column band broadening.<br />

As a rule, injected volumes should not exceed 1-5% of the column volume.<br />

The column volume is a function of the column length (L) and internal diameter<br />

(d c ) but is independent of stationary phase particle size.<br />

V<br />

2<br />

dc<br />

ij inj<br />

=<br />

Vij<br />

inj<br />

×<br />

×<br />

1<br />

2<br />

dc<br />

L<br />

2<br />

2<br />

L<br />

1<br />

2<br />

1<br />

V inj = Injection Volume<br />

d c = Cl Column Diameter<br />

L = Column Length<br />

• 150 mm x 4.6 mm x 5.0 µm 50 mm x 2.1 mm x 1.9 µm<br />

V inj1 = 15.0 µL V inj2 = 1.0 µL<br />

15X<br />

Decrease in Injection Volume<br />

73<br />

…conserve precious sample and expensive standards<br />

Flow Rate<br />

The flow rate (F) for U<strong>HPLC</strong> must be adjusted to maintain a similar mobile phase<br />

linear velocity (u) used in the <strong>HPLC</strong> column.<br />

The linear velocity within a column is directly proportional to the column diameter<br />

(d c ) but also depends on the particle size (d p ) of the stationary phase. Therefore<br />

u*d p must be maintained at a constant value to account for changes in column<br />

diameter and particle size.<br />

2<br />

F =<br />

F<br />

×<br />

×<br />

2<br />

1<br />

2<br />

d c<br />

d p<br />

1<br />

2<br />

d c<br />

d p<br />

1<br />

2<br />

F = Flow Rate<br />

d c = Column Diameter<br />

d p = Particle Diameter<br />

• 150mmx46mmx50µm 4.6 x 5.0 50mmx21mmx19µm<br />

2.1 x 1.9 F 1 = 10mL/min 1.0 F 2 = 054mL/min<br />

0.54 ~2X<br />

Decrease in Flow Rate<br />

74<br />

…save on mobile phase consumption


Isocratic Step Times<br />

% B<br />

The ratio between the isocratic<br />

step time (t iso ) and the column<br />

dead time must be maintained<br />

between <strong>HPLC</strong> and U<strong>HPLC</strong><br />

conditions.<br />

Time<br />

The column dead time depends on the flow rate, column diameter and length.<br />

t<br />

2<br />

F d<br />

1 c L<br />

2 2<br />

iso<br />

= t<br />

2 iso<br />

× × ×<br />

1<br />

2<br />

F2<br />

d L<br />

c<br />

1<br />

2<br />

1<br />

F = Flow Rate<br />

d c = Column Diameter<br />

L = Column Length<br />

• 150 mm x 4.6 mm x 5.0 µm 50 mm x 2.1 mm x 1.9 µm<br />

t iso1 = 5.0 min<br />

t iso2 = 0.6 min<br />

75<br />

5 min 0.6 min Isocratic Step<br />

Gradient Slope<br />

The initial and final MP compositions in<br />

% B any <strong>HPLC</strong> gradient step should be<br />

maintained in the U<strong>HPLC</strong> method.<br />

Time<br />

2<br />

d<br />

c<br />

1<br />

slope<br />

2<br />

=<br />

slope<br />

1<br />

×<br />

2<br />

d<br />

c<br />

The slope and time of the gradient step<br />

in the U<strong>HPLC</strong> method must be adjusted<br />

so the product of the gradient slope and<br />

dead time remain constant between the<br />

traditional <strong>HPLC</strong> method and the<br />

U<strong>HPLC</strong> method.<br />

t<br />

grad<br />

2<br />

2<br />

L<br />

×<br />

L<br />

1<br />

2<br />

F<br />

×<br />

F<br />

2<br />

1<br />

( %<br />

B<br />

)<br />

final<br />

− % B<br />

1<br />

initial<br />

1<br />

=<br />

slope<br />

2<br />

76<br />

Example:<br />

slope<br />

t grad<br />

4.<br />

6<br />

mm<br />

2 150<br />

mm<br />

0.<br />

54<br />

mL/min<br />

= 0. 75% / min×<br />

× ×<br />

5.<br />

83% / min<br />

2<br />

2.1mm 50mm<br />

1.<br />

0mL/min<br />

2<br />

=<br />

( 85% % − 70%<br />

%<br />

)<br />

=<br />

=<br />

2<br />

5.<br />

83% / min<br />

2.<br />

6min<br />

20 min 2.6 min Gradient Step


Transferred Gradient Program<br />

90 <strong>HPLC</strong><br />

85<br />

90<br />

U<strong>HPLC</strong><br />

85<br />

%ACN<br />

80<br />

75<br />

%ACN<br />

80<br />

75<br />

70<br />

70<br />

65<br />

0 5 10 15 20 25 30 35 40 45<br />

Time(min)<br />

65<br />

0 1 2 3 4 5 6 7 8 9<br />

Time(min)<br />

Comparison of <strong>HPLC</strong> and the transferred<br />

(calculated) U<strong>HPLC</strong> gradient programs<br />

Step<br />

<strong>HPLC</strong><br />

Time<br />

U<strong>HPLC</strong><br />

Time<br />

%ACN<br />

1 0 0 70<br />

2 5 0.6 70<br />

3 25 3.2 85<br />

4 29 3.7 85<br />

5 30 3.8 70<br />

6 45 5.7 70<br />

8X<br />

Decrease in<br />

Predicted Runtime<br />

77<br />

45 min Run 5.7 min Run<br />

U<strong>HPLC</strong> Applications<br />

34.00<br />

32.00<br />

Nutraceutical ti Application: Ginsenosides id from Ginseng<br />

2<br />

Peak List<br />

1. Rg1<br />

1<br />

2<br />

2. Re<br />

3<br />

3. Rf<br />

30.0000<br />

4. Rb1<br />

4<br />

6<br />

5. Rc<br />

28.00<br />

5<br />

7<br />

1<br />

6. Rb2<br />

26.00<br />

24.00<br />

22.00<br />

7. Rd<br />

3<br />

6<br />

4<br />

20.00<br />

18.00<br />

5<br />

PE Brownlee C 18<br />

7<br />

50 5.0 55 5.5 60 6.0 65 6.5 70 7.0 75 7.5 80 8.0 85 8.5 90 9.0<br />

50 mm x 2.1 mm, 1.9 µm<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

PE Brownlee C 18 150 mm x 4.6 mm, 5 µm<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60<br />

78<br />

5X Throughput Improvement


110.00<br />

100.00<br />

90.00<br />

80.00<br />

70.00<br />

U<strong>HPLC</strong> Applications<br />

Nutraceutical ti Application: Isoflavones in Soy<br />

3<br />

1<br />

4<br />

3<br />

2 5<br />

4<br />

6<br />

Peak List<br />

1. Daidzin<br />

2. Glycitin<br />

3. Genistin<br />

4. Daidzein<br />

5. Gylcitein<br />

6. Genistein<br />

60.0000<br />

50.00<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5<br />

PE Brownlee C 18<br />

50 mm x 2.1 mm, 1.9 µm<br />

2<br />

40.0000<br />

1<br />

.5 2.0 2.5 3.0<br />

5<br />

6<br />

30.00<br />

20.0000<br />

10.00<br />

PE Brownlee C 18 150 mm x 4.6 mm, 5 µm<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42<br />

79<br />

6X Throughput Improvement`<br />

Benefits from Migration to U<strong>HPLC</strong><br />

Improve Productivity<br />

• Expected analysis time (t ana) is directly proportional to change in column dead<br />

volume.<br />

1 = <strong>HPLC</strong> Method<br />

• So:<br />

d<br />

p L<br />

2 2<br />

2 = U<strong>HPLC</strong> Method<br />

t<br />

ana<br />

= t<br />

2 ana<br />

× ×<br />

1<br />

d p<br />

L<br />

1 1<br />

d p = Particle Diameter<br />

L = Column Length<br />

• 150 mm x 4.6 mm x 5.0 µm 50 mm x 2.1 mm x 1.9 µm<br />

Example:<br />

t ana<br />

1.<br />

9um<br />

50mm<br />

= 45min×<br />

× 5.<br />

7min<br />

5.<br />

0um<br />

150mm<br />

2<br />

=<br />

~ 8X<br />

Throughput Improvement<br />

80<br />

10 Runs/Shift 84 Runs/Shift


Benefits from Migration to U<strong>HPLC</strong><br />

Decrease Mobile Phase Consumption<br />

• For successful method migration the product of mobile phase velocity (u) and<br />

particle size (d p ) should be maintained at constant value. [ (u•d p ) 1 =(u•d p ) 2 ]<br />

• The migration of flow rate is dependent on particle size and internal column<br />

diameter.<br />

Example:<br />

F<br />

2<br />

dc<br />

d<br />

2<br />

F<br />

2<br />

= F1<br />

× ×<br />

2<br />

d d<br />

c<br />

1<br />

p<br />

p<br />

1<br />

2<br />

d c = Column Diameter<br />

F = Flow Rate<br />

2<br />

2.<br />

1mm<br />

5.<br />

0um<br />

mL/min × × 0. 54 mL/min<br />

2<br />

4. 6mm<br />

1.<br />

9um<br />

2<br />

= 1 =<br />

2<br />

MP Consumption <strong>HPLC</strong> = 1.0 mL/min x 45 min = 45 mL<br />

MP Consumption U<strong>HPLC</strong> = 0.54 mL/min x 5.7 min = 3.1 mL<br />

~93%<br />

Decrease in MP Consumption<br />

Flow Rate<br />

~ 50%<br />

81<br />

Use Less MP and Reduce Waste Disposal<br />

Summary<br />

Migration to U<strong>HPLC</strong> requires an LC system optimized for U<strong>HPLC</strong>, not<br />

just a new column<br />

Conversion of <strong>HPLC</strong> method conditions is simple with the available<br />

U<strong>HPLC</strong> conversion calculators<br />

Increase productivity up to 9-fold by decreasing runtimes<br />

Decrease consumption of mobile phase by up to 93% and lower waste<br />

disposal cost<br />

Green Technology<br />

Method development/optimization is much faster due to short U<strong>HPLC</strong><br />

runtimes<br />

82<br />

Instruments will pay for themselves by increasing productivity and<br />

reducing operating costs.<br />

Don’t Be Afraid of U<strong>HPLC</strong>


Flexar TM : New <strong>HPLC</strong><br />

<strong>PerkinElmer</strong> Korea<br />

Kim, Wang-Yu PhD<br />

from <strong>PerkinElmer</strong><br />

83<br />

© 2009 Perkin Elmer<br />

Flexar. More choices in LC analysis.<br />

18,000 PSI<br />

84<br />

…the most choices in pump pressures


Flexar Features<br />

Bottle tray with<br />

integrated<br />

degassing and<br />

SW comm link<br />

Inter-component<br />

drain<br />

management<br />

Built on rugged<br />

<strong>PerkinElmer</strong> LC<br />

technology,<br />

recognized for<br />

reliability<br />

Tubing<br />

management for<br />

streamlined<br />

chromatography<br />

Elegant, ergonomic<br />

user interface with<br />

streamlined,<br />

consistent look &<br />

footprint<br />

Controlled by<br />

both Chromera<br />

and TotalChrom<br />

85<br />

…designed with form and function in mind<br />

Flexar Solvent Manager<br />

Three versions available<br />

• Without degassing<br />

• 3-channel degassing<br />

• 5-channel degassing<br />

Can be combined with any Flexar<br />

pumps<br />

Solvent delivery<br />

tubes conveniently<br />

managed through<br />

rear manifold.<br />

Can hold up to five 1–liter<br />

solvent bottles<br />

Built-in communications<br />

link and vacuum degasser<br />

Stackable design, with Flexar<br />

tube management and builtin<br />

inter-component drain<br />

system<br />

Removable tray to contain<br />

breach of complete bottle<br />

86<br />

…more than just a bottle tray


Flexar Autosampler<br />

Easy<br />

Open<br />

Access<br />

87<br />

…absolutely accessible for easy loading and service<br />

Flexar Autosamplers: World-class Performance<br />

Excellent Injection Repeatability<br />

‣ Above 5µL injections, %RSDs of ≤0.5%<br />

‣ For 5µL Linjections, in µL-Pickup mode, %RSDs are also typically ≤0.5%<br />

‣ Area %RSDs fixed loop mode of ≤0.3%<br />

‣ For 2µL injections, in µL-Pickup mode, (10µL loop) area %RSDs are typically ≤0.5%<br />

Anthracene<br />

area precision:<br />

0.24% RSD<br />

5µL injection<br />

Very low<br />

carryover:<br />

Pressure<br />

assist air<br />

purge after<br />

each run<br />

(1) 300 ppm caffeine<br />

n=30<br />

(3) 30µg/L caffeine<br />

(2) Blank injection<br />

88<br />

…what carry over?


Flexar LC Column Oven<br />

Three versions<br />

• Heat only<br />

• Peltier (heat and cool)<br />

• Peltier with column selection/switching<br />

(TotalChrom only – Chromera coming)<br />

Built-in i leak alarm<br />

Integrated solvent pre-heater/chiller minimizes<br />

temperature gradients<br />

• Better column performance<br />

• More repeatable retention times<br />

Temperature range of 30ºC to90ºC (5ºC to<br />

90ºC for Peltier), controlled to within 0.2ºC<br />

throughout entire temperature range<br />

Stackable design, with Flexar<br />

tube management and builtin<br />

inter-component drain<br />

system<br />

Large, easily<br />

accessible column<br />

compartment holds<br />

even 30-cm column<br />

format<br />

89<br />

…Precise temperature control for improved retention time stability.<br />

Flexar PDA Detectors…<br />

FX PDA U<strong>HPLC</strong> Detector<br />

Excellent performance, <strong>HPLC</strong> or U<strong>HPLC</strong><br />

Improved noise specifications (


Flexar UV/VIS Detectors…<br />

FX UV/VIS U<strong>HPLC</strong> Detector<br />

World-class UV/VIS detection<br />

Dual beam optical design with<br />

choice of tungsten or deuterium<br />

light sources with wavelength range<br />

of 190-700 nm<br />

Up to 50 pts/sec<br />

10 µL flow cell standard d –<br />

compatible with a wide range of<br />

optional flow cells<br />

Fast, sharp U<strong>HPLC</strong> performance<br />

High efficiency 2.4 µL flow cell for<br />

optimum U<strong>HPLC</strong> peak resolution<br />

100 pts/sec detection to capture<br />

even the fastest t U<strong>HPLC</strong> peaks<br />

UV/VIS LC Detector<br />

91<br />

…sensitive, selective, speed, dynamic range<br />

Flexar Refractive Index and Fluorescence Detectors…<br />

Refractive Index Detector<br />

Combine sensitivity and specificity<br />

Best sensitivity in the market<br />

Now under Chromera control and can<br />

conveniently be combined with<br />

UV/VIS detection (PAH)<br />

92<br />

Rugged general-purpose detection<br />

Highly stable and sensitive LC and<br />

GPC detector for compounds that do<br />

not have high UV absorbance such as<br />

polymers, sugars, organic acids and<br />

triglycerides<br />

Internal temperature of flow cell for<br />

baseline stability<br />

Autozero and autopurge of reference<br />

cell make it easy to use<br />

Fluorescence Detector<br />

…now fully controlled under Chromera!


Flexar U<strong>HPLC</strong> Systems…<br />

FX-10 U<strong>HPLC</strong> System<br />

FX-15 U<strong>HPLC</strong> System<br />

FX-10: High Value U<strong>HPLC</strong><br />

Micro Binary 10,000 psi pump package<br />

FX-15: Ultimate in U<strong>HPLC</strong><br />

Dual reciprocating i 18,000 psi pump<br />

High efficiency FX U<strong>HPLC</strong> autosampler<br />

Column oven for retention time<br />

reproducibility and viscosity reduction<br />

High speed FX UV/VIS detector (100<br />

pt/sec) with high efficiency 2.4µL flow cell<br />

93<br />

…You don’t have to pay more to achieve so much.<br />

Flexar FX-15 U<strong>HPLC</strong> Pump<br />

15,0000 psi operation for the most<br />

demanding U<strong>HPLC</strong> applications with up to<br />

10x productivity improvement – up to<br />

5mL/min at 18,000 psi!<br />

Green productivity –mobile phase<br />

solvent consumption reduced by 10-15x<br />

Optical Sensor<br />

synchronizes injection<br />

with piston position<br />

Maximum retention time<br />

repeatability for U<strong>HPLC</strong><br />

Dual reciprocating 15,000<br />

psi pump<br />

Smoother more precise flow for<br />

retention time repeatability<br />

High pressure Ti-tip check<br />

valves and pulse dampeners<br />

Rated to >15,000 psi operation for<br />

highest throughput U<strong>HPLC</strong><br />

Integrated t piston<br />

wash function<br />

Keeps precision pumps<br />

clean even with buffers<br />

94<br />

…the ultimate in U<strong>HPLC</strong>


Flexar FX-15 Pump for Ultimate U<strong>HPLC</strong><br />

Exclusive Ultra High Pressure<br />

Pulse Dampeners<br />

Rated to >18,000 p.s.i.<br />

Significantly reduces pulsation.<br />

Innovative Check “T”<br />

Prevents channel-to-channel cross talk.<br />

No back flow to affect composition.<br />

Improved retention time repeatability.<br />

95<br />

FX-15 U<strong>HPLC</strong> Pump Piston Drive<br />

Automatic Piston Wash<br />

SAPPHIRE<br />

PISTON<br />

‣ Greatly Increases Seal Life<br />

(particularly with buffers)<br />

MOBILE<br />

PHASE<br />

FLOW OF<br />

FLUSH SOLUTION<br />

PISTON<br />

MOVEMENT<br />

‣ No Auxiliary Pump Required<br />

(self flush)<br />

PRIMARY<br />

HIGH-PRESSURE SEAL<br />

SECONDARY<br />

SELF-FLUSH SEAL<br />

‣ Dedicated recirculation flush<br />

solvent<br />

‣ 15 µL displacement<br />

‣ Self-centering piston saddle<br />

‣ Captive spring for fast head removal<br />

96


Flexar. Reach for more choices in LC analysis.<br />

FX-15<br />

15,000 psi<br />

Autosamplers<br />

FX-10 pump package<br />

FX-15<br />

Pumps<br />

FX-10<br />

10,000 psi<br />

PDA<br />

Flexar<br />

6,000 psi<br />

UV/VIS<br />

RI<br />

Manual injection systems<br />

FL<br />

Ovens<br />

Chromera software<br />

Direct access to<br />

all system<br />

status<br />

parameters<br />

User configurable<br />

Direct access<br />

status panel for<br />

to all<br />

critical parameters<br />

instrument<br />

controls and<br />

settings<br />

Direct access to<br />

any area in the<br />

software<br />

98


Chromera Report<br />

Refine the report style<br />

based upon the needs<br />

of the data<br />

Choose from a<br />

gallery of report<br />

styles<br />

Create and save the specific<br />

layouts needed for<br />

automated reporting<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!