13.05.2014 Views

Ch 5 Worksheet Key

Ch 5 Worksheet Key

Ch 5 Worksheet Key

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

5.1 Page 260 Exercise #12<br />

Name ___________________________<br />

a = 116, b = 64, c = 90, d = 82, e = 99, f = 88, g = 150,<br />

h = 56, j = 106, k = 74, m = 136, n = 118, p = 99<br />

5.1 Page 261 Exercise #16 You are building the window frame below. You will need to know the<br />

measures the angles in order to cut the trapezoidal pieces. Show how you would calculate the measures<br />

of the angles of the trapezoids<br />

The angles of the trapezoid<br />

measure 67.5 and 112.5.<br />

Each angle of the octagon:<br />

(8 − 2)180<br />

= 135<br />

8<br />

Around a point:<br />

360 – 135 = 225<br />

225 ÷ 2 = 112.5<br />

Angles between the bases are<br />

supplementary.<br />

180 – 112.5 = 67.5<br />

S. Stirling Page 1 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

Name ___________________________<br />

Proof of the Kite Angles Conjecture<br />

Conjecture: The nonvertex angles of a kite are congruent.<br />

K<br />

Given: Kite KITE with diagonal KT .<br />

Prove: The nonvertex angles are congruent, ∠E ≅∠ I .<br />

E<br />

I<br />

Kite KITE<br />

KT<br />

=<br />

KT<br />

T<br />

Given<br />

KE KI<br />

ET = IT<br />

Def. of Kite<br />

= and<br />

Same Segment.<br />

ΔKET<br />

≅ ΔKT<br />

I<br />

SSS Cong. Conj.<br />

∠E<br />

≅∠I<br />

CPCTC or<br />

Def. cong.<br />

triangles<br />

5.3 Page 272 Exercise #9 Proof of Kite Angle Bisector Conjecture<br />

The vertex angles of a kite are bisected by a diagonal.<br />

BN<br />

≅<br />

BN<br />

Same Segment.<br />

BE ≅ BY<br />

YN ≅ EN<br />

Given or<br />

Def. of Kite<br />

ΔBYN<br />

≅ Δ BEN<br />

SSS Cong. Conj.<br />

BN bisects<br />

BN bisects<br />

∠1≅∠<br />

2<br />

∠3≅∠<br />

4<br />

∠ YBE<br />

Def. angle bisector<br />

CPCTC or Def.<br />

cong. triangles<br />

∠ YNE<br />

S. Stirling Page 2 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

Proof of the Kite Diagonals Conjecture<br />

Conjecture: The diagonals of a kite are perpendicular.<br />

Given: Kite ABCD with diagonals DB and AC .<br />

Prove: The diagonals are perpendicular. DB ⊥ AC .<br />

Kite ABCD<br />

∠DAI<br />

≅∠BAI<br />

Name ___________________________<br />

C<br />

D<br />

I<br />

B<br />

A<br />

Given<br />

AD = AB<br />

Def. of Kite<br />

AI = AI<br />

Same Segment.<br />

Diag. bisect vertex angles.<br />

ΔDAI<br />

≅ ΔBAI<br />

SAS Cong. Conj.<br />

DB ⊥ AC<br />

Def. of Perpendicular<br />

∠DIA<br />

≅∠ BIA<br />

CPCTC<br />

m∠ DIA+ m∠ BIA=<br />

180<br />

Linear Pair Conj.<br />

m∠ DIA= m∠ BIA= 90°<br />

Algebra<br />

Proof of the Kite Diagonal Bisector Conjecture<br />

Conjecture: The diagonal connecting the vertex angles of a kite<br />

is the perpendicular bisector of the other diagonal.<br />

Given: Kite ABCD with diagonals DB and AC .<br />

D<br />

I<br />

A<br />

Prove: AC is the perpendicular bisector of DB .<br />

B<br />

Kite ABCD<br />

Given<br />

∠DAI<br />

≅∠BAI<br />

Diag. bisect vertex angles.<br />

C<br />

DB<br />

⊥<br />

AC<br />

AD = AB<br />

Def. of Kite<br />

AI = AI<br />

Same Segment.<br />

ΔDAI<br />

≅ ΔBAI<br />

SAS Cong. Conj.<br />

DI<br />

CPCTC<br />

= IB<br />

Diag. of kite are<br />

Perpendicular<br />

AC is the perpendicular bisector of DB<br />

Def. of perp. bisector.<br />

S. Stirling Page 3 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

Name ___________________________<br />

5.3 Page 271 Proof of Isosceles Trapezoid Diagonals Conjecture<br />

Conjecture: The diagonals of an isosceles trapezoid are congruent.<br />

Given: Isosceles trapezoid TRAP with TP = RA.<br />

Show: Diagonals are congruent, TA = RP.<br />

TR<br />

= TR<br />

PT<br />

Given<br />

= RA<br />

Same Segment.<br />

Isosceles trapezoid TRAP<br />

Given<br />

m∠ PTR= m∠TRA<br />

Isosceles Trap. base angles =<br />

ΔPTR<br />

≅ ΔART<br />

SAS Cong. Conj.<br />

TA = RP<br />

CPCTC<br />

5.3 Page 274 Exercise #19<br />

5.4 Page 279 Exercise #14<br />

a = 80, b = 20, c = 160, d = 20, e = 80, f = 80,<br />

g = 110, h = 70, m = 110, n = 100<br />

a = 54, b = 72, c = 108, d = 72, e = 162, f = 18, g = 81,<br />

h = 49.5, i = 130.5, k = 49.5, m = 162, n = 99<br />

S. Stirling Page 4 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

Name ___________________________<br />

Proof of the Parallelogram Opposite Angles Conjecture<br />

Conjecture: The opposite angles of a parallelogram are congruent.<br />

R<br />

2<br />

Given: Parallelogram PARL with diagonal AL .<br />

Prove: ∠PAR ≅∠PLR<br />

and ∠R≅∠ P.<br />

1<br />

L<br />

Parallelogram<br />

PARL<br />

Given<br />

LP<br />

AR<br />

Def. of Parallelogram<br />

PA<br />

LR<br />

Def. of Parallelogram<br />

m∠ 1=<br />

m∠<br />

4<br />

If ||, AIA cong.<br />

m∠ R= m∠<br />

P<br />

m∠ 2=<br />

m∠<br />

3<br />

If ||, AIA cong.<br />

m∠ 2+ m∠ 1= m∠ 3+ m∠<br />

4<br />

A<br />

Addition<br />

m∠ PLR= m∠<br />

PAR<br />

4<br />

3<br />

P<br />

If 2 angles of one triangle =<br />

2 angles of another, the 3 rd<br />

angles are =.<br />

Substitution<br />

Proof of the Parallelogram Opposite Sides Conjecture<br />

Conjecture: The opposite sides of a parallelogram are congruent.<br />

P<br />

A<br />

Given: Parallelogram PARL with diagonal PR .<br />

Prove: PL ≅ RA and PA ≅ LR .<br />

Parallelogram<br />

PARL<br />

Given<br />

PA<br />

LR<br />

Def. of Parallelogram<br />

∠APR<br />

≅∠LRP<br />

If ||, AIA cong.<br />

L<br />

R<br />

∠L<br />

≅∠ A<br />

Opposite angles of<br />

Parallelogram =<br />

ΔPAR<br />

≅ΔRLP<br />

AAS Cong. Conj.<br />

PR<br />

=<br />

PR<br />

PL<br />

≅ RA and PA ≅ LR<br />

Same Segment.<br />

CPCTC<br />

S. Stirling Page 5 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

Name ___________________________<br />

5.5 Page 284 Exercise #13 Proof of the Parallelogram Diagonals Conj.<br />

The diagonals of a parallelogram bisect each other.<br />

given<br />

∠EAL<br />

≅ ∠ALN<br />

ΔETA<br />

≅ΔNTL<br />

def parallelogram<br />

EA<br />

≅ LN<br />

LT ≅ TA<br />

EN &<br />

LA bisect eachother.<br />

5.6 Proofs<br />

Proof of the Rhombus Diagonals Angles Conjecture<br />

Conjecture: The diagonals of a rhombus bisect the angles of the rhombus.<br />

Given: Rhombus RHOM with diagonal HM .<br />

Prove: HM bisects ∠RHO<br />

and ∠ RMO .<br />

Rhombus RHOM<br />

Given<br />

RH = HO = OM = MR<br />

Def. of Rhombus<br />

HM<br />

HM bisects<br />

∠ RMO<br />

= HM<br />

Same Segment.<br />

∠RHO<br />

Def. of angle bisector<br />

and<br />

R<br />

H<br />

O<br />

M<br />

ΔMRH<br />

≅Δ MOH<br />

SSS Cong. Conj.<br />

∠RHM<br />

≅∠ OHM<br />

∠RMH<br />

≅∠OMH<br />

CPCTC<br />

S. Stirling Page 6 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

Name ___________________________<br />

Proof of the Rhombus Diagonals Conjecture<br />

H<br />

Conjecture: The diagonals of a rhombus are perpendicular, and R<br />

they bisect each other.<br />

X<br />

Given: Rhombus RHOM with diagonals HM and RO .<br />

Prove: HM and RO are perpendicular bisectors of each other.<br />

M<br />

O<br />

Rhombus RHOM<br />

Given<br />

RH = RM<br />

Def of Rhombus<br />

RX = RX<br />

Same Segment<br />

HX<br />

RX<br />

ΔRXH<br />

= XM<br />

= XO<br />

Diagonals of a parallelogram<br />

bisect each other.<br />

≅ ΔRXM<br />

SSS Cong. Conj.<br />

m∠ RXH + m∠ RXM = 180<br />

Linear Pair<br />

HM and RO are<br />

perpendicular bisectors of<br />

each other.<br />

Def of Perp. Bisector<br />

RO ⊥ HM<br />

Def of Perp.<br />

m∠ RXH = m∠ RXM = 90°<br />

CPCTC and Algebra<br />

5.6 Page 297 Exercise #28<br />

a = 54, b = 36, c = 72, d = 108, e = 36, f = 144, g = 18,<br />

h = 48, i = 48, k = 84<br />

S. Stirling Page 7 of 8


<strong>Ch</strong> 5 <strong>Worksheet</strong> L1 <strong>Key</strong><br />

5.R Page 305 Exercise #13<br />

Name ___________________________<br />

Kite<br />

Isosceles<br />

trapezoid<br />

Parallelogram Rhombus Rectangle Square<br />

Opposite sides are No One pair Yes Yes Yes Yes<br />

parallel<br />

Opposite sides are No One pair Yes Yes Yes Yes<br />

congruent<br />

Opposite angles are Non-Vertex No Yes Yes Yes Yes<br />

congruent<br />

Diagonals bisect each No No Yes Yes Yes Yes<br />

other<br />

Diagonals are Yes No No Yes No Yes<br />

perpendicular<br />

Diagonals are No Yes No No Yes Yes<br />

congruent<br />

Exactly one line of Yes Yes No No No No<br />

symmetry<br />

Exactly two lines of<br />

symmetry<br />

No No No Yes Yes Yes 4<br />

5.R Page 305 Exercise #15<br />

a = 120, b = 60, c = 60, d = 120, e = 60, f = 30, g = 108,<br />

m = 24, p = 84<br />

S. Stirling Page 8 of 8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!