11.05.2014 Views

Cephalic vascular anatomy in flamingos - Ohio University College of ...

Cephalic vascular anatomy in flamingos - Ohio University College of ...

Cephalic vascular anatomy in flamingos - Ohio University College of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fig. 3. Distribution <strong>of</strong> 8-bit gray-scale (X-ray attenuation) values <strong>of</strong><br />

CT data along transects perpendicular to the <strong>in</strong>jected jugular ve<strong>in</strong><br />

(solid l<strong>in</strong>e), <strong>in</strong>jected common carotid artery (dashed l<strong>in</strong>e), dense cortical<br />

bone (dotted l<strong>in</strong>e), and s<strong>of</strong>t tissue <strong>of</strong> the tongue (hatched l<strong>in</strong>e). The<br />

transect lengths were standardized to allow direct comparison. Gray<br />

boxes at the sides represent partial volume averag<strong>in</strong>g at the edges <strong>of</strong><br />

the <strong>in</strong>jected vasculature. Percentages for the ve<strong>in</strong> and artery reflect<br />

the amount <strong>of</strong> barium <strong>in</strong> the barium/latex <strong>in</strong>jection medium. The m<strong>in</strong>imal<br />

overlap <strong>in</strong> gray-scale values <strong>of</strong> these structures allows their discrim<strong>in</strong>ation<br />

and segmentation with<strong>in</strong> the CT data.<br />

tery as part <strong>of</strong> the caudal and middle conchal plexuses<br />

(plCH) <strong>of</strong> the nasal cavity (Fig. 4A) and then comb<strong>in</strong>es<br />

with its contralateral counterpart to form the median<br />

palat<strong>in</strong>e artery (aPM), which courses rostrally along the<br />

midl<strong>in</strong>e <strong>of</strong> the palate (Figs. 1A and 4A). The sphenomaxillary<br />

artery anastomoses laterally with the facial and<br />

dorsal alveolar branches <strong>of</strong> the temporomandibular artery<br />

to form the antorbital <strong>vascular</strong> plexus around the<br />

antorbital air s<strong>in</strong>us.<br />

Accompany<strong>in</strong>g the arteries are numerous ve<strong>in</strong>s, several<br />

<strong>of</strong> which are anatomically significant. For example,<br />

the palat<strong>in</strong>e, rictal, dorsal alveolar, and nasal ve<strong>in</strong>s all<br />

dra<strong>in</strong> the numerous <strong>vascular</strong> plexuses <strong>of</strong> the orbitonasal<br />

region <strong>of</strong> the head. These vessels and the ophthalmic<br />

ve<strong>in</strong> from the eye dra<strong>in</strong> <strong>in</strong>to the large maxillary ve<strong>in</strong><br />

(vMX), which courses along the dorsal surface <strong>of</strong> the<br />

pterygoid (Fig. 2C). The maxillary ve<strong>in</strong> merges with the<br />

temporomandibular ve<strong>in</strong> (which dra<strong>in</strong>s the ophthalmic<br />

rete and mandible), form<strong>in</strong>g the rostral cephalic ve<strong>in</strong><br />

(vCR), which then merges with the sphenopalat<strong>in</strong>e and<br />

sphenomaxillary ve<strong>in</strong>s along the ventral aspect <strong>of</strong> the<br />

bra<strong>in</strong>case (Fig. 2C). The l<strong>in</strong>gual ve<strong>in</strong> is the last cephalic<br />

contribution to the large bijugular anastomosis that lies<br />

alongside the common carotid artery at the craniocervical<br />

junction.<br />

FLAMINGO CEPHALIC VASCULATURE<br />

1037<br />

clearly are not an artifactual ‘‘blow out’’ because they<br />

are bilaterally symmetrical and have a characteristic<br />

<strong>vascular</strong> architecture, as confirmed by dissection. The<br />

s<strong>in</strong>uses are large enough <strong>in</strong> the <strong>in</strong>jected specimen<br />

(OUVC 9756) to excavate a large ovate bony depression<br />

on the medial surface <strong>of</strong> the lower jaw, just ventral to<br />

the medial mandibular fossa and rostral to the medial<br />

mandibular process and the <strong>in</strong>sertion <strong>of</strong> the pterygoideus<br />

musculature (Fig. 6A and B). This medial depression<br />

is apparently a consistent and highly reliable osteological<br />

correlate <strong>of</strong> the paral<strong>in</strong>gual s<strong>in</strong>us <strong>in</strong> that similar<br />

fossae were identified <strong>in</strong> the skulls <strong>of</strong> other P. ruber<br />

specimens (e.g., SBU 107161), as well as skulls <strong>of</strong> other<br />

flam<strong>in</strong>go species (e.g., P. m<strong>in</strong>or: FMNH 108183, OUVC<br />

9757, 9758; Fig. 6C). Moreover, fossae on the <strong>in</strong>ner surface<br />

<strong>of</strong> the mandible that could potentially be confused<br />

with the paral<strong>in</strong>gual s<strong>in</strong>us fossa, such as those for jaw<br />

muscles and the mandibular neuro<strong>vascular</strong> bundle, are<br />

well understood (Holliday, 2006) and can be shown to be<br />

separate from the paral<strong>in</strong>gual s<strong>in</strong>us fossa (Fig. 6). Turn<strong>in</strong>g<br />

to potentially related taxa such as anseriforms and<br />

ciconiiforms (Fig. 6D and E) as well as the basal avian<br />

taxon Struthio (Fig. 6F), although all relevant muscular<br />

attachments and neuro<strong>vascular</strong> fossae can be identified<br />

<strong>in</strong> these taxa, none bears a fossa similar to the paral<strong>in</strong>gual<br />

s<strong>in</strong>us fossa <strong>of</strong> flam<strong>in</strong>gos. Likewise, no such <strong>vascular</strong><br />

s<strong>in</strong>us has been found <strong>in</strong> our dissections <strong>of</strong> birds other<br />

than flam<strong>in</strong>gos.<br />

The paral<strong>in</strong>gual s<strong>in</strong>uses are located anatomically between<br />

the ipsilateral serpihyoideus muscle (mSH) (Vanden<br />

Berge and Zweers, 1993) and ceratohyal ventrolaterally<br />

(Fig. 1F), the pterygoideus ventralis muscle (mPTV; Fig.<br />

6) and pharyngeal mucosa dorsomedially, the trachea,<br />

laryngeal artery, laryngopharynx, and tongue medially,<br />

and the lower jaw rostrolaterally (Figs. 1, 2, 4, and 5).<br />

Each s<strong>in</strong>us is suspended between the l<strong>in</strong>gual artery (a<br />

large branch <strong>of</strong> the hyol<strong>in</strong>gual artery) dorsomedially and<br />

l<strong>in</strong>gual ve<strong>in</strong> ventromedially (Figs. 1 and 2A). The l<strong>in</strong>gual<br />

ve<strong>in</strong> <strong>in</strong>vests the ventromedial portion <strong>of</strong> the s<strong>in</strong>us and<br />

dra<strong>in</strong>s caudally <strong>in</strong>to the jugular ve<strong>in</strong> on the right side<br />

and <strong>in</strong>to the rostral cephalic ve<strong>in</strong> on the left side. Each<br />

s<strong>in</strong>us can be divided <strong>in</strong>to two fairly discrete lobes, a caudolateral<br />

lobe (sPC) and a rostromedial (sPR) lobe connected<br />

by a th<strong>in</strong> isthmus <strong>of</strong> glandular tissue (Figs. 4B,<br />

C, and G, 5A and B, and 7). The subl<strong>in</strong>gual artery (aSL)<br />

branches <strong>of</strong>f from the l<strong>in</strong>gual artery just dorsal to the<br />

caudal portion <strong>of</strong> the caudolateral paral<strong>in</strong>gual lobe and<br />

runs rostrolaterally between the two paral<strong>in</strong>gual lobes,<br />

where it cont<strong>in</strong>ues rostrally as a helic<strong>in</strong>e artery along<br />

the lateral sides <strong>of</strong> the basihyale and paraglossus muscles<br />

<strong>of</strong> the tongue (Homberger, 1988). The left s<strong>in</strong>us is<br />

primarily arterial, whereas the right s<strong>in</strong>us is partitioned<br />

<strong>in</strong>to a venous portion <strong>in</strong> the caudolateral lobe and an arterial<br />

and mixed (i.e., purple latex) region <strong>in</strong> the rostromedial<br />

lobe (Fig. 1F). A large laryngeal artery that supplies<br />

the laryngopharynx branches <strong>of</strong>f the l<strong>in</strong>gual artery<br />

dorsomedially with<strong>in</strong> the rostromedial lobe <strong>of</strong> the paral<strong>in</strong>gual<br />

s<strong>in</strong>us. The l<strong>in</strong>gual artery then cont<strong>in</strong>ues <strong>in</strong>to the<br />

distal end <strong>of</strong> the tongue, where it ends <strong>in</strong> a dense l<strong>in</strong>gual<br />

plexus.<br />

Paral<strong>in</strong>gual S<strong>in</strong>uses<br />

A pair <strong>of</strong> novel paral<strong>in</strong>gual s<strong>in</strong>uses were discovered<br />

upon CT imag<strong>in</strong>g (Figs. 1, 2, 4, 5, 6, and 7). The s<strong>in</strong>uses<br />

DISCUSSION<br />

Flam<strong>in</strong>gos share a number <strong>of</strong> similar <strong>vascular</strong> patterns<br />

with other birds, <strong>in</strong>clud<strong>in</strong>g an asymmetrical cau-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!