09.05.2014 Views

Initial experiments with liquid target materials in PSI-2 and TEXTOR

Initial experiments with liquid target materials in PSI-2 and TEXTOR

Initial experiments with liquid target materials in PSI-2 and TEXTOR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Member of the Helmholtz Association<br />

<strong>Initial</strong> <strong>experiments</strong> <strong>with</strong> <strong>liquid</strong> <strong>target</strong><br />

<strong>materials</strong> <strong>in</strong> <strong>PSI</strong>-2 <strong>and</strong> <strong>TEXTOR</strong><br />

B. Unterberg, J.W. Coenen, A. Kreter, V. Philipps, M. Re<strong>in</strong>hart, G.<br />

Sergienko, A. Terra <strong>and</strong> T. Wegener<br />

Institut für Energie- und Klimaforschung – Plasmaphysik<br />

Forschungszentrum Jülich, Ass. EURATOM- Forschungszentrum Jülich,<br />

Trilateral Euregio Cluster, D- 52425 Jülich, Germany<br />

4th IEA International Workshop on Plasma Material Interaction Facilities for<br />

Fusion Research (PMIF 2013), Oak Ridge, TN, USA, September 9th – 13th 2013


Program on <strong>liquid</strong> <strong>target</strong>s <strong>in</strong> Jülich<br />

§ After assessment of<br />

alternative <strong>target</strong><br />

concepts, FZJ<br />

concentrates on<br />

alternatives to Li <strong>in</strong> CPS<br />

configuration, <strong>in</strong> the<br />

frame of the co-ord<strong>in</strong>ated<br />

EU fusion program<br />

(EFDA-PEX) <strong>and</strong> <strong>in</strong> TEC<br />

collaboration <strong>with</strong> FOM-<br />

DIFFER<br />

§ Development of samples<br />

for exposure <strong>in</strong> <strong>PSI</strong>-2 <strong>and</strong><br />

<strong>TEXTOR</strong><br />

Ø Report on <strong>in</strong>itial<br />

<strong>experiments</strong> <strong>with</strong> t<strong>in</strong><br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 2


Optimization of temperature w<strong>in</strong>dow<br />

motivates work on alternative <strong>materials</strong><br />

Temperature limit<br />

§ Lower limit<br />

§ Melt<strong>in</strong>g<br />

§ Wett<strong>in</strong>g<br />

§ Upper limit<br />

§ Evaporation flux: impact on<br />

plasma performance, redeposition,<br />

migration to<br />

remote areas<br />

§ Chemistry (e.g. LiH<br />

formation), corrosion / alloy<br />

formation (large w<strong>in</strong>dow for<br />

Li, show stopper for Ga)<br />

Evaporation rates<br />

[R. Majeski, "Liquid metal walls, lithium,<br />

<strong>and</strong> low recycl<strong>in</strong>g boundary conditions <strong>in</strong><br />

tokamaks" AlP Conf. Proc. vol. 1237, 122.]<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 3


Re-Deposition<br />

Factor 10 <strong>in</strong>crease <strong>in</strong> redepostion<br />

enhances T<br />

w<strong>in</strong>dow by


Material compatibility of t<strong>in</strong> <strong>with</strong> mesh metals<br />

SST/Ga SST/Sn Mo/Sn W/Sn<br />

SST show a strong ability to form<br />

alloys <strong>with</strong> all <strong>in</strong>vestigated <strong>liquid</strong> metal<br />

c<strong>and</strong>idates.<br />

Mo alloys <strong>with</strong> <strong>liquid</strong> Sn but <strong>in</strong> very<br />

small amounts. EDX analysis shows<br />

small <strong>in</strong>clusions (


Wett<strong>in</strong>g<br />

950 °C<br />

10 -6 mbar<br />

Wett<strong>in</strong>g - contact angle < 90°<br />

Adhesion > Cohesion<br />

Mo/Sn<br />

“Clean” metal surfaces are<br />

normaly wettable <strong>with</strong> <strong>liquid</strong><br />

metals<br />

BUT they nearly always have<br />

oxide layers which reduce the<br />

wettability of the surface!<br />

No Wett<strong>in</strong>g - contact angle >90°<br />

990 °C<br />

10 -6 mbar<br />

W/Sn<br />

1mbar H 2<br />

950°C<br />

W/Sn<br />

Adhesion < Cohesion<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 6


Overview of wett<strong>in</strong>g characteristics<br />

Contact angle<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 7


L<strong>in</strong>ear plasma device <strong>PSI</strong>-2<br />

Plasma<br />

source<br />

Coils<br />

TEAC<br />

Target<br />

manipulator<br />

Side-fed<br />

manipulator<br />

Periphery<br />

level<br />

3 m<br />

§ Plasma conditions (deuterium<br />

plasmas), <strong>with</strong> <strong>target</strong> bias<strong>in</strong>g<br />

q = 0.1 -2 MW m -2 , simulation of<br />

transients by laser irradiation<br />

(120 J / 4 ms)<br />

n e = 10 17 - 10 19 m -3<br />

T e up to 20 eV (T i ~ 0.5 T e )<br />

E ion = 10-300 eV (bias<strong>in</strong>g)<br />

Γ ion = 10 21 - 10 23 m -2 s -1<br />

F = 10 27 m -2 <strong>in</strong> 4 h<br />

Δ flow channel ~ 6 cm<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 8


Target holder <strong>in</strong> <strong>PSI</strong>-2<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 9


Setup<br />

Tungsten Mesh: d=0.1-0.2mm<br />

molybdenum disk & mount<strong>in</strong>g plate<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 10


Exposure<br />

Infra-red<br />

visible<br />

IR-Camera Pyrometer Pyrometer<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 11


Exposed samples<br />

Empty<br />

Before<br />

After<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 12


Material Cuts<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 13


Exposure characteristics<br />

Plasma characteristics<br />

§ Total exposure time (D2-<br />

plasma): 64 m<strong>in</strong>.<br />

§ Plasma parameters <strong>in</strong><br />

front of <strong>target</strong>: n e =<br />

8x10 17 m -3 /T e = 9 eV<br />

§ Plasma flux density:<br />

5x10 21 m -2 s -1<br />

Surface temperature<br />

§ Heat flux density: 60<br />

kWm -2 (no bias<strong>in</strong>g) Equilibrium reached after ~900s<br />

IR-cam: temperature variation across<br />

sample ≤ ±100° C<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 14


Sn mass loss <strong>in</strong> dur<strong>in</strong>g exposure<br />

§<br />

§<br />

§<br />

§<br />

Total loss: 240 mg (of 1139mg)<br />

Surface temperature needed<br />

for evaporation of 240 mg:<br />

1120°C (full area)<br />

“effective erosion yield”:<br />

Y=0.15 >> Y sputter<br />

Penetration depth of Sn atoms:<br />

λ= 1.7 cm, E k<strong>in</strong> =1.5 eV >> E k<strong>in</strong><br />

=0.15 eV (evaporated Sn)<br />

Ø Indicat<strong>in</strong>g sputtered particles<br />

§<br />

SnI <strong>in</strong>tensity ris<strong>in</strong>g dur<strong>in</strong>g<br />

<strong>in</strong>crease of <strong>target</strong> temperature,<br />

<strong>in</strong>dication of temperature<br />

enhanced erosion?<br />

Intensity distribution SnI (380 nm)<br />

<strong>target</strong><br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 15


<strong>TEXTOR</strong> experiment: Aims<br />

A:<br />

T<strong>in</strong> Evaporation<br />

Temperature Evolution<br />

T<strong>in</strong> Spectroscopy<br />

Liquid Metal Stability<br />

under quiescent Plasmas<br />

B:<br />

Stability of Liquid T<strong>in</strong> Layers<br />

under Disruptive Events<br />

DMV triggered disruptions<br />

And be prepared for suprises<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 16


Setup<br />

Tungsten Mesh filed <strong>with</strong> T<strong>in</strong><br />

TZM Holder<br />

filled<br />

empty<br />

Heatable Limiter-Setup<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 17


Conditions<br />

T<strong>in</strong> surface<br />

The Limiter is preheated to<br />

300˚C, to allow <strong>liquid</strong> T<strong>in</strong> to<br />

be present at all times<br />

Position at the Bottom of<br />

<strong>TEXTOR</strong><br />

TZM<br />

Graphite<br />

49cm, LCFS ~ 47cm<br />

1MW NBI heated (1-4.5s) BT=2.25 T, Ip=350 kA<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 18


Exposure<br />

Before<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 19


Wetted surface<br />

After<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 20


Wett<strong>in</strong>g Loss<br />

After<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 21


Camera View<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 22


3 frames<br />

#119916<br />

Strong droplet mission<br />

#119919<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 23


Fast Camera<br />

S<strong>in</strong>gle Frames<br />

3000fps<br />

#119916<br />

25 frames<br />

50 frames 500 frames<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 24


Droplets<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 25


Disruptions<br />

14 frames before 6 frames dur<strong>in</strong>g<br />

Droplets do not orig<strong>in</strong>ate from mesh dur<strong>in</strong>g disruption<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 26


Mass Loss <strong>in</strong> <strong>TEXTOR</strong><br />

Droplets sizes<br />

seem to be <strong>in</strong> the<br />

µm range <strong>in</strong> sized<br />

r=10µm--> 30ng<br />

Sn Mass<br />

available 2.12g<br />

Mass Loss:<br />

5.3159*10 -3 g<br />

~180000 Droplets<br />

Consistent <strong>with</strong> numbers<br />

extrapolated from fast CCD<br />

Mechanism not yet<br />

understood<br />

Differences <strong>PSI</strong>-2 – <strong>TEXTOR</strong> to be assessed:<br />

§ Plasma temperature / ion energies<br />

§ Carbon background <strong>in</strong> <strong>TEXTOR</strong> (coat<strong>in</strong>g of Sn surface)<br />

§ Magnetic field strength<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 27


Summary <strong>and</strong> outlook<br />

§ T<strong>in</strong> has been studied as <strong>liquid</strong> <strong>target</strong> material alternative to<br />

Lithium <strong>with</strong><strong>in</strong> the concept of a the capillary porous system.<br />

§ Tungsten has been found as optimum mesh material, wett<strong>in</strong>g<br />

improved under hydrogen atmosphere.<br />

§ Exposure <strong>in</strong> <strong>PSI</strong>-2: mass loss could not be expla<strong>in</strong>ed by<br />

physical sputter<strong>in</strong>g / evaporation – temperature enhanced<br />

sputter<strong>in</strong>g?<br />

§ Exposure <strong>in</strong> <strong>TEXTOR</strong>: mass loss dom<strong>in</strong>ated by strong droplet<br />

emission, mechanism unclear to date<br />

§ Next exposure <strong>in</strong> <strong>PSI</strong>-2: <strong>target</strong> bias<strong>in</strong>g to <strong>in</strong>crease ion energy<br />

to come close to <strong>TEXTOR</strong> conditions <strong>and</strong> to assess<br />

temperature enhanced erosion<br />

§ Next exposure <strong>in</strong> <strong>TEXTOR</strong>: position<strong>in</strong>g of <strong>target</strong>s <strong>in</strong> erosion<br />

dom<strong>in</strong>ated zone to prevent carbon deposition<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!