09.05.2014 Views

Modelling of impurity transport and plasma wall interaction at linear ...

Modelling of impurity transport and plasma wall interaction at linear ...

Modelling of impurity transport and plasma wall interaction at linear ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Member <strong>of</strong> the Helmholtz Associ<strong>at</strong>ion<br />

<strong>Modelling</strong> <strong>of</strong> <strong>impurity</strong> <strong>transport</strong> <strong>and</strong> <strong>plasma</strong><br />

<strong>wall</strong> <strong>interaction</strong> <strong>at</strong> <strong>linear</strong> devices using the<br />

ERO code<br />

D.Borodin 1 , A.Kirschner 1 , D.M<strong>at</strong>veev 1 , A.Kreter 1 , A.Galonska 1 , V.Philipps 1 ,<br />

D.Nishijima 2 , R.Doerner 2 , J.Westerhout 3 , G.J. van Rooij 3 , G. van Swaaij 3 ,<br />

R. Wieggers 3 , J.Rapp 3<br />

1<br />

Institut für Energieforschung - Plasmaphysik, Forschungszentrum Jülich,<br />

Associ<strong>at</strong>ion EURATOM-FZJ, Tril<strong>at</strong>eral Euregio Cluster, Germany<br />

2<br />

University <strong>of</strong> California, San Diego, La Jolla, CA 92093, USA<br />

- 3 FOM Institute for Plasma Physics Rijnhuizen, Associ<strong>at</strong>ion EURATOM-FOM,<br />

Tril<strong>at</strong>eral Euregio Cluster, Nieuwegein, The Netherl<strong>and</strong>s<br />

D.Borodin | Institute <strong>of</strong> Energy Research – Plasma Physics | Associ<strong>at</strong>ion EURATOM – FZJ


Outline<br />

Introduction to ERO code<br />

Specifics <strong>of</strong> ERO version for <strong>linear</strong> devices<br />

Examples <strong>of</strong> simul<strong>at</strong>ions<br />

Be injection <strong>at</strong> PISCES-B<br />

Chemical erosion mitig<strong>at</strong>ion <strong>at</strong> PISCES-B<br />

Methane injection <strong>at</strong> Pilot-PSI<br />

Summary<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 2


3D MC <strong>impurity</strong> <strong>transport</strong> code ERO<br />

Background Plasma<br />

C x+ ,Be x+ ,…<br />

CD z<br />

0,+<br />

re-eroded/<br />

reflected particles<br />

Input:<br />

n e , T e,i ,<br />

geometry<br />

C, Be, …<br />

CD 4<br />

PFC (substr<strong>at</strong>e Be, C, W, Mo, …)<br />

Local <strong>transport</strong>:<br />

ionis<strong>at</strong>ion, dissoci<strong>at</strong>ion<br />

friction (Fokker-Planck), thermal force<br />

Lorenz force (including ExB component)<br />

cross-field diffusion<br />

Plasma-surface <strong>interaction</strong>:<br />

physical sputtering/reflection<br />

chemical erosion (CD 4 )<br />

(re-)erosion <strong>and</strong> (re-)deposition<br />

HMM <strong>and</strong> TRYDYN surface models<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 3


ERO modelling str<strong>at</strong>egy<br />

Code development:<br />

- PSI & <strong>transport</strong><br />

- m<strong>at</strong>erial mixing<br />

- castell<strong>at</strong>ed surfaces<br />

- <strong>at</strong>omic d<strong>at</strong>a, ADAS<br />

Estim<strong>at</strong>ions for ITER:<br />

- tritium retention<br />

- target & limiter lifetime<br />

- impurities into <strong>plasma</strong><br />

Benchmarking:<br />

- PISCES-B (with beryllium)<br />

- Pilot-PSI<br />

- TEXTOR<br />

- JET,<br />

- AUG,<br />

- …<br />

Coupling with other<br />

codes:<br />

- <strong>plasma</strong> parameters from:<br />

e.g. B2-Eirene, Edge-2D<br />

- surface mixing: TriDyn, MolDyn<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 4


ERO version for<br />

<strong>linear</strong> devices<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 5


Linear device – general geometry<br />

PSI-2 facility. Moved from<br />

Berlin to FZ Juelich in<br />

2009.<br />

<strong>Modelling</strong> is always<br />

simplific<strong>at</strong>ion . . .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 6


Particularities for <strong>linear</strong> devices<br />

Elastic collisions with residual gas (D 2 )<br />

- example 1<br />

Different impact energies for molecular ions (D + , D 2+ , D 3+ )<br />

Be carbide form<strong>at</strong>ion (suppressing chemical erosion <strong>of</strong> C)<br />

Tracking <strong>of</strong> metastable st<strong>at</strong>e (MS) in Be<br />

- example 2<br />

Bohm diffusion<br />

Physical effects implemented for <strong>linear</strong> devices<br />

can be relevant for tokamaks as well!<br />

Technical issues:<br />

o Geometry, target, Be oven, …<br />

o Plasma parameters (3D) - fitting formulas for radial <strong>and</strong> axial pr<strong>of</strong>iles<br />

o Electric field (3D)<br />

o Target biasing<br />

o . . .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 7


Linear device – radial electric field<br />

Radial electric field is connected with<br />

<strong>plasma</strong> potential<br />

Axial electric field is determined by<br />

she<strong>at</strong>h, pre-she<strong>at</strong>h <strong>and</strong> biasing<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 8


Benchmark <strong>of</strong> elastic collisions model<br />

Be injection w/o <strong>plasma</strong> . . .<br />

A weight gain <strong>of</strong><br />

1.5*10 -4 g was<br />

registered in<br />

experiment<br />

Be oven<br />

Estim<strong>at</strong>ed<br />

injection r<strong>at</strong>e<br />

4.03*10 18 Be/s<br />

Target<br />

2g <strong>of</strong> Be is spent in 10 hours <strong>of</strong> oven oper<strong>at</strong>ion.<br />

This gives a r<strong>at</strong>e <strong>of</strong> about - 3.7*10 18 Be/s.<br />

W/o elastic collision with neutrals there would be no Be <strong>at</strong> target!<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 9


Be metastable st<strong>at</strong>e (MS) tracking in ERO<br />

The system <strong>of</strong> 2 balance equ<strong>at</strong>ions<br />

can be solved analytically . . .<br />

ADAS, T e =1eV, n e =2*10 12 cm -3<br />

Effective r<strong>at</strong>es:<br />

1,2) transitions between "GS" <strong>and</strong> "MS"<br />

3,4) ioniz<strong>at</strong>ion from "GS" <strong>and</strong> "MS"<br />

5,6) line intensity (PEC – photon emission<br />

coefficient), contributions from "GS" <strong>and</strong> "MS"<br />

MS resolved approach allows to tre<strong>at</strong> in ERO<br />

effectively the slow relax<strong>at</strong>ion between triplet<br />

<strong>and</strong> singlet levels – important if MS<br />

popul<strong>at</strong>ion affected by extra processes <strong>and</strong><br />

<strong>at</strong> high <strong>plasma</strong> parameter gradients<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 10


Be Injection <strong>at</strong><br />

PISCES-B<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 11


Plasma parameters <strong>at</strong> PISCES-B<br />

• Plasma column<br />

width is about 5cm<br />

Be injection<br />

B<br />

Target<br />

Be injection<br />

B<br />

Target<br />

• Vessel radius is<br />

about 20cm filled<br />

with neutral gas<br />

• Be comes into the<br />

volume from<br />

injection or (<strong>and</strong>) as a<br />

result <strong>of</strong> Be target<br />

erosion<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 12


Be spectroscopy <strong>at</strong> PISCES<br />

by 2D camera<br />

"Low density<br />

case" (1.2*10 12 cm -3 ,<br />

T e =10.5eV)<br />

BeI, BeII emission is registered:<br />

by spectrometer with a sp<strong>at</strong>ial resolution<br />

(the radial pr<strong>of</strong>ile position <strong>and</strong> direction<br />

can be varied)<br />

Experiment<br />

ERO modelling<br />

Be injection<br />

Target<br />

Be<br />

injection<br />

Target<br />

Axial<br />

pr<strong>of</strong>ile<br />

Radial<br />

pr<strong>of</strong>iles<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 13


Neutral Be emission 457nm (injection)<br />

The ERO modelling is in a good agreement with experiment (PSI-2008)<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 14


Radial pr<strong>of</strong>iles <strong>at</strong> oven (z=150mm): Be<br />

Devi<strong>at</strong>ions <strong>of</strong> modelling from experiment:<br />

1) BeI max. shifted to seeding loc<strong>at</strong>ion<br />

2) BeII pr<strong>of</strong>ile too narrow<br />

3) Absolute values <strong>of</strong> BeI intensity <strong>and</strong> r<strong>at</strong>io<br />

<strong>of</strong> BeII/BeI devi<strong>at</strong>e by factors, which are<br />

different for various <strong>plasma</strong> conditions . . .<br />

Possible explan<strong>at</strong>ions:<br />

1) Uncertainties in <strong>plasma</strong> parameters<br />

(input) – e.g. <strong>plasma</strong> column width too<br />

large?..<br />

2) Atomic d<strong>at</strong>a, Be-D molecules,<br />

metastables, . . .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 15


Import <strong>of</strong> <strong>plasma</strong> parameters to ERO from B2.5<br />

B2.5 [1] modeling results <strong>of</strong> Pilot-PSI <strong>plasma</strong> will be used<br />

2D multifluid code describing the quasineutral <strong>plasma</strong> beam.<br />

Neutral particles are tre<strong>at</strong>ed as fluid species.<br />

V target =-5V<br />

V target =-22V<br />

B2.5 output for two different target potentials, showing Ohmic he<strong>at</strong>ing <strong>and</strong><br />

detachment, particularly in the -5V case<br />

Present<strong>at</strong>ion by PSI-2010 by R.Wieggers (FOM)<br />

[1] R. Schneider et al., Contrib. Plasma Phys. 46, (2006) 3<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 16


Be/C mixing <strong>at</strong><br />

PISCES-B:<br />

mitig<strong>at</strong>ion <strong>of</strong><br />

chemical erosion<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 17


PISCES-B <strong>linear</strong> divertor simul<strong>at</strong>or<br />

z<br />

Neutral Be Be +<br />

Plasma<br />

source<br />

Plasma<br />

column<br />

Be oven<br />

E ax<br />

E rad<br />

B<br />

Simul<strong>at</strong>ion<br />

volume<br />

Be oven<br />

z=150mm<br />

Target<br />

Target<br />

Target<br />

y<br />

x<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 18


Radial pr<strong>of</strong>iles <strong>at</strong> oven (z=150mm): Be<br />

M.Baldwin et. al.<br />

(Nucl. Fusion 46(2006) 444–450):<br />

I CD = exp(-t/τ(f Be ))<br />

1/τ ~ f Be<br />

2<br />

D.Nishijima et. al. (PSI-2006):<br />

1/τ ~f Be2 ⋅exp(-const/T s )<br />

CD B<strong>and</strong> strength [a.u.]<br />

0.1 1<br />

Mitig<strong>at</strong>ion speed depends<br />

on Be concentr<strong>at</strong>ion<br />

0.41 % Be<br />

1.10 % Be<br />

0.03 % Be<br />

0.13 % Be<br />

0.18 % Be<br />

0 500 1000 1500 2000<br />

Time (s)<br />

Influence <strong>of</strong> Be 2 C form<strong>at</strong>ion (which is observed by XPD)?<br />

TRIDYN surface model is necessary?<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 19


Surface models <strong>and</strong> carbide form<strong>at</strong>ion<br />

Seeding r<strong>at</strong>e 6*10 18 Be/s<br />

Seeding r<strong>at</strong>e 3*10 19 Be/s<br />

S<strong>at</strong>ur<strong>at</strong>ion<br />

Complete<br />

mitig<strong>at</strong>ion<br />

S<strong>at</strong>ur<strong>at</strong>ion<br />

Carbide form<strong>at</strong>ion leads to stronger mitig<strong>at</strong>ion<br />

The effect is similar for both HMM <strong>and</strong> SDTrimSP surface models<br />

In ERO-SDTrimSP time scale is absolute, in HMM it is a subject<br />

<strong>of</strong> Interaction Layer (IL) depth choice<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 20


Instantenious carbide form<strong>at</strong>ion – surface models<br />

ERO-HMM<br />

ERO-SDTrimSP<br />

Unrealistic time scale: in experiment it takes 100-1000 s!<br />

Current model: instantaneous carbide form<strong>at</strong>ion.<br />

Surface morphology, flux/temper<strong>at</strong>ure distribution, carbidis<strong>at</strong>ion dynamics?..<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 21


Carbide form<strong>at</strong>ion – characteristic time<br />

Carbide form<strong>at</strong>ion: t c =10s<br />

Fixed seeding r<strong>at</strong>e 3e19Be/s<br />

τ char – characteristic time <strong>of</strong> carbide<br />

form<strong>at</strong>ion<br />

N Pot. – potential amount <strong>of</strong> carbide Be 2 C.<br />

τ char allows to vary the mitig<strong>at</strong>ion time scale . . .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 22


Effective mitig<strong>at</strong>ion time – effect <strong>of</strong> τ char<br />

The chemical erosion<br />

from beginning to<br />

s<strong>at</strong>ur<strong>at</strong>ion can be fitted<br />

as<br />

τ mit - effective<br />

mitig<strong>at</strong>ion time<br />

In a certain range τ mit is <strong>linear</strong> dependent on τ char . . .<br />

Any assumption for τ char e.g. dependence on T surf will<br />

be reproduced by τ mit .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 23


Effective mitig<strong>at</strong>ion time – effect <strong>of</strong> τ char<br />

Effect <strong>of</strong> Be-D molecules<br />

form<strong>at</strong>ion?<br />

Effect <strong>of</strong> surface<br />

morphology evolution?<br />

Surface roughness?<br />

In experiment<br />

τ mit ~(f Be ) -(1.9±0.1)<br />

Other effects?<br />

Surface changes observed <strong>at</strong> PISCES<br />

Simul<strong>at</strong>ions lead to a <strong>linear</strong><br />

dependence <strong>of</strong> τ mit on the Be<br />

concentr<strong>at</strong>ion in <strong>plasma</strong>.<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 24


Pilot-PSI<br />

(effective D/XB for CH)<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 25


Pilot-PSI: CD light from CD4 injection (side view)<br />

Experiment<br />

ERO<br />

• Narrow: 2.2mm<br />

• Total: 3.2mm<br />

E-folding lengths <strong>of</strong> axial pr<strong>of</strong>iles:<br />

total<br />

narrow<br />

• Narrow: 1.7mm<br />

• Total: 3.0mm<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 26


C-H d<strong>at</strong>abase in ERO code<br />

Reaction chains <strong>of</strong> hydrocarbon molecules (Janev / Reiter)<br />

C 2 H 6 C 2 H 5 C 2 H 4 C 2 H 3 C 2 H 2 C 2 H C 2<br />

C 2 H<br />

+<br />

6 C 2 H<br />

+<br />

5 C 2 H<br />

+<br />

4 C 2 H<br />

+<br />

3 C 2 H<br />

+<br />

2 C 2 H + C<br />

+<br />

2<br />

CH 4 CH 3 CH 2 CH C<br />

314 reactions!<br />

CH 4<br />

+<br />

CH 3<br />

+<br />

CH 2<br />

+<br />

CH + C + C 2+<br />

Emission d<strong>at</strong>a<br />

CII, CIII<br />

CH A-X, C 2 d-a<br />

ADAS<br />

U. Fantz et al. 2005<br />

Probably this is not enough . . .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 27


Dependence <strong>of</strong> D/XB on sticking <strong>and</strong> Te<br />

Width <strong>of</strong> <strong>plasma</strong> column<br />

is an important<br />

parameter:<br />

main sink for the CD is<br />

not dissoci<strong>at</strong>ion, but<br />

escape.<br />

Devi<strong>at</strong>ions <strong>at</strong> low<br />

temper<strong>at</strong>ures are<br />

probably due to<br />

additional CD excit<strong>at</strong>ion<br />

reactions (dissoci<strong>at</strong>eve<br />

excit<strong>at</strong>ion?) . . .<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 28


Summary & Outlook<br />

The simul<strong>at</strong>ion <strong>of</strong> experiments <strong>of</strong> <strong>linear</strong> devices is important for<br />

implement<strong>at</strong>ion <strong>and</strong> testing <strong>of</strong> various new models, assumptions<br />

<strong>and</strong> underlying d<strong>at</strong>a in ERO.<br />

Several effects e.g. elastic collisions, carbide form<strong>at</strong>ion <strong>and</strong><br />

metastable tracking were already implemented <strong>and</strong> tested.<br />

This effects lead to improvement <strong>of</strong> for modelling <strong>of</strong> ITER – life time<br />

<strong>of</strong> PFC <strong>and</strong> tritium retention (divertor, “BM-tiles”).<br />

It is necessary to continue the implement<strong>at</strong>ion <strong>of</strong> further physical<br />

effects e.g. Be-D molecules form<strong>at</strong>ion or dynamics <strong>of</strong> surface<br />

carbidis<strong>at</strong>ion.<br />

The modelling <strong>of</strong> <strong>plasma</strong> <strong>and</strong> residual gas <strong>of</strong> <strong>linear</strong> devices by<br />

B2-EIRENE (or similar) codes can provide an important input for<br />

ERO, which is based on test-particle approxim<strong>at</strong>ion.<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 29


End<br />

02/09/2010 D.Borodin | Oak Ridge WS | Forschungszentrum Jülich<br />

No 30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!