R. Breinbauer Textbooks of Heterocyclic Chemistry

R. Breinbauer Textbooks of Heterocyclic Chemistry R. Breinbauer Textbooks of Heterocyclic Chemistry

orgc.tugraz.at
from orgc.tugraz.at More from this publisher
09.05.2014 Views

R. Breinbauer Textbooks of Heterocyclic Chemistry General Textbooks of Organic Chemistry Textbooks of Pharmaceutical Chemistry H. Beyer, W. Walter, "Lehrbuch der Organischen Chemie", 23rd ed., S. Hirzel, Stuttgart-Leipzig 1998, 1176 pages. (Although not very helpful when it comes to the description of mechanisms, it is still the only textbook which informs about organic compounds and its properties. Excellent chapters about heterocycles.) E. Mutschler, G. Geisslinger, H. K. Kroember, M. Schäfer-Korting, "Mutschler-Arzneimittelwirkungen", 8th ed., Wiss. Verlagsgesellschaft, Stuttgart 2001, 1186 pages. (A classic textbook of pharmacology and toxicology which informs well about the structure and properties of drugs.) Reference Books Merck & Co., "The Merck Index", 13th ed., Merck & Co., Inc, Whitehouse Station, NJ 2001, 1818 pages. (A comprehensive reference book of all drugs and most bioactive compounds. The information is very densce. For organic chemists very interesting is a chpater with 446 name reactions.) Textbooks of Heterocyclic Chemistry T. Eicher, S. Hauptmann, "The Chemistry of Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages. (A very well understandable and very well organized introduction into the most important topics of heterocyclic chemistry. Good for learining, less useful for research.) T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp. (A very good introductory textbook of heterocyclic chemistry.) A. Katritzky (Ed.), "Comprehensive Heterocyclic Chemistry II", 2nd ed., Pergamon, Oxford 1996, Vol. 1-11. (One of the most useful reference works for heterocyclic chemistry. Not textbook but very helpful for research.) "Science of Synthesis", Thieme, Stuttgart 2000-2004, Vol. 9-17. (Building on the excellent features of Houben-Weyl this new edition offers very well structured, comprehensive and up-to-date information about heterocyclic compounds. In addition, experimental procedures for the most important reactions are given. This terrific source of reference should be consulted first when studying literature for a research project!) J. A. Joule, K. Mills, "Heterocyclic Chemistry", 4th ed., Blackwell Science, Oxford 2000, 589 pp. (The best and most informative textbook of heterocyclic chemistry. Includes the most recent updates of modern synthetic methods and is very well referenced. This book fulfills all needs both for learning and research.) A. R. Katritzky, A. F. Pozharskii "Handbook of Heterocyclic Chemistry", 2nd ed., Pergamon, Oxford 2000, 734 pp. (A more comprehensive textbook with lots of information but not easy to read. More reference book than text book.) Book Series "Advances in Heterocyclic Chemistry", Elsevier, San Diego 1963-2005, Vol. 1-88. (A series of monographs which contains high quality reviews of very specific topics of heterocyclic chemistry.) "Progress in Heteroyclic Chemistry", Pergamon, Oxford 1989-2003, Vol. 1-15. (Provides an annual literature update and some review articles) A. Weissberger, E. C. Taylor, P. Wipf (Ed.)"The Chemistry of Heterocyclic Compounds", Wiley-Interscience, London 1970-2004, Vol. 1-62. (Each volume is dedicated to a specific parent class of heterodycles. Very comprehensive in its information content.) Textbooks1-051005

R. <strong>Breinbauer</strong><br />

<strong>Textbooks</strong> <strong>of</strong> <strong>Heterocyclic</strong> <strong>Chemistry</strong><br />

General <strong>Textbooks</strong> <strong>of</strong> Organic <strong>Chemistry</strong><br />

<strong>Textbooks</strong> <strong>of</strong> Pharmaceutical <strong>Chemistry</strong><br />

H. Beyer, W. Walter, "Lehrbuch der Organischen Chemie", 23rd ed., S. Hirzel, Stuttgart-Leipzig 1998,<br />

1176 pages.<br />

(Although not very helpful when it comes to the description <strong>of</strong> mechanisms, it is still the only textbook<br />

which informs about organic compounds and its properties. Excellent chapters about heterocycles.)<br />

E. Mutschler, G. Geisslinger, H. K. Kroember, M. Schäfer-Korting, "Mutschler-Arzneimittelwirkungen", 8th<br />

ed., Wiss. Verlagsgesellschaft, Stuttgart 2001, 1186 pages.<br />

(A classic textbook <strong>of</strong> pharmacology and toxicology which informs well about the structure and<br />

properties <strong>of</strong> drugs.)<br />

Reference Books<br />

Merck & Co., "The Merck Index", 13th ed., Merck & Co., Inc, Whitehouse Station, NJ 2001, 1818 pages.<br />

(A comprehensive reference book <strong>of</strong> all drugs and most bioactive compounds. The information is<br />

very densce. For organic chemists very interesting is a chpater with 446 name reactions.)<br />

<strong>Textbooks</strong> <strong>of</strong> <strong>Heterocyclic</strong> <strong>Chemistry</strong><br />

T. Eicher, S. Hauptmann, "The <strong>Chemistry</strong> <strong>of</strong> Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages.<br />

(A very well understandable and very well organized introduction into the most important topics <strong>of</strong><br />

heterocyclic chemistry. Good for learining, less useful for research.)<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(A very good introductory textbook <strong>of</strong> heterocyclic chemistry.)<br />

A. Katritzky (Ed.), "Comprehensive <strong>Heterocyclic</strong> <strong>Chemistry</strong> II", 2nd ed., Pergamon, Oxford 1996, Vol. 1-11.<br />

(One <strong>of</strong> the most useful reference works for heterocyclic chemistry. Not textbook but very helpful for<br />

research.)<br />

"Science <strong>of</strong> Synthesis", Thieme, Stuttgart 2000-2004, Vol. 9-17.<br />

(Building on the excellent features <strong>of</strong> Houben-Weyl this new edition <strong>of</strong>fers very well structured,<br />

comprehensive and up-to-date information about heterocyclic compounds. In addition, experimental<br />

procedures for the most important reactions are given. This terrific source <strong>of</strong> reference should be<br />

consulted first when studying literature for a research project!)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(The best and most informative textbook <strong>of</strong> heterocyclic chemistry. Includes the most recent updates<br />

<strong>of</strong> modern synthetic methods and is very well referenced. This book fulfills all needs both for learning<br />

and research.)<br />

A. R. Katritzky, A. F. Pozharskii "Handbook <strong>of</strong> <strong>Heterocyclic</strong> <strong>Chemistry</strong>", 2nd ed., Pergamon, Oxford 2000,<br />

734 pp.<br />

(A more comprehensive textbook with lots <strong>of</strong> information but not easy to read. More reference book<br />

than text book.)<br />

Book Series<br />

"Advances in <strong>Heterocyclic</strong> <strong>Chemistry</strong>", Elsevier, San Diego 1963-2005, Vol. 1-88.<br />

(A series <strong>of</strong> monographs which contains high quality reviews <strong>of</strong> very specific topics <strong>of</strong> heterocyclic<br />

chemistry.)<br />

"Progress in Heteroyclic <strong>Chemistry</strong>", Pergamon, Oxford 1989-2003, Vol. 1-15.<br />

(Provides an annual literature update and some review articles)<br />

A. Weissberger, E. C. Taylor, P. Wipf (Ed.)"The <strong>Chemistry</strong> <strong>of</strong> <strong>Heterocyclic</strong> Compounds", Wiley-Interscience,<br />

London 1970-2004, Vol. 1-62.<br />

(Each volume is dedicated to a specific parent class <strong>of</strong> heterodycles. Very comprehensive in its<br />

information content.)<br />

<strong>Textbooks</strong>1-051005


R. <strong>Breinbauer</strong><br />

Best Selling Pharmaceuticals<br />

World's Top Selling Drugs in 2004:<br />

O<br />

N<br />

H<br />

N<br />

N<br />

Lipitor TM<br />

N<br />

H<br />

N<br />

N<br />

S<br />

F<br />

Atorvastatin<br />

(Pfizer)<br />

OH<br />

OH<br />

(HMG-CoA-Reductase Inhibitor)<br />

10.3 billion $<br />

Zyprexa TM<br />

Olanzapine<br />

(Eli Lilly)<br />

(Serotonin and Dopamine antagonist)<br />

4.8 billion $<br />

CO 2 H<br />

O<br />

O<br />

HO<br />

O<br />

H<br />

Zocor TM<br />

Simvastatin<br />

(Merck)<br />

O<br />

N<br />

H<br />

O<br />

O<br />

(HMG-CoA-Reductase Inhibitor)<br />

6.1 billion $<br />

Cl<br />

O<br />

Norvasc TM<br />

Amlodipine<br />

(Pfizer)<br />

O<br />

O NH 2<br />

(Ca-Channel blocker)<br />

4.5 billion $<br />

H<br />

N<br />

S<br />

N<br />

O<br />

S<br />

N<br />

H CO 2 CH 3<br />

Cl<br />

N<br />

CH 3<br />

H 3 C OCH 2 CF 3<br />

Prevacid TM<br />

Lansoprazole<br />

(Abbott, Takeda)<br />

(Gastric Proton Pump Inhibitor)<br />

4.0 billion $<br />

Plavix TM<br />

Clopidogrel<br />

(BMS, San<strong>of</strong>i-Aventis)<br />

(Platelet Aggregation Inhibitor)<br />

3.7 billion $<br />

NHH 3 *HCl<br />

H 3 CO<br />

O<br />

HO<br />

H 3 C<br />

H<br />

N<br />

N<br />

F<br />

F<br />

O<br />

S<br />

Nexium TM<br />

Omeprazol<br />

H 3 C<br />

H<br />

H<br />

N<br />

(Astra Zeneca)<br />

CH 3<br />

H 3 C OCH 3<br />

(Gastric Proton Pump Inhibitor)<br />

3.8 billion $<br />

Advair TM<br />

COSCH 2 F<br />

OCOC 2 H 5<br />

CH 3<br />

Fluticasone Propionate<br />

(GlaxoSmithKline)<br />

(against Asthma)<br />

3.7 billion $<br />

TopPharmaceuticals1-061005<br />

34 kDa glycosylated protein (165 aa)<br />

Erypo TM<br />

Recombinant Erythropoietin<br />

(Johnson&Johnson)<br />

(growth factor for erythrocyctes)<br />

4.0 billion $<br />

Cl<br />

Cl<br />

Zol<strong>of</strong>t TM<br />

Sertraline<br />

(Pfizer)<br />

(Selective Serotonin Reuptake Inhibitor)<br />

3.4 billion $<br />

data source: www.forbes.com


R. <strong>Breinbauer</strong> Monocyclic Hetero Systems with Trivial Names<br />

Certain 5- and 6-membered monocyclic hetero systems, both saturated and unsaturated are indexed at trivial names. Presence <strong>of</strong> a triple<br />

bond in addition to the maximum number <strong>of</strong> noncumulative double bonds is expressed by the subtractive prefix "didehydro".<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N N N<br />

H<br />

N<br />

O<br />

N<br />

O<br />

N<br />

H<br />

Pyridine Piperidine 1H-Pyrrole 2H-Pyrrole 3H-Pyrrole Pyrrolidine<br />

Furazan<br />

Morpholine<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N N<br />

H<br />

N<br />

N<br />

N N<br />

N<br />

O<br />

Pyridazine<br />

Pyrimidine<br />

Pyrazine<br />

Piperazine<br />

1H-Pyrazole 3H-Pyrazole 4H-Pyrazole<br />

Isoxazole<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

N<br />

HN N<br />

H<br />

N<br />

H<br />

NH<br />

O<br />

O<br />

O<br />

1H-Imidazole 2H-Imidazole 4H-Imidazole<br />

Pyrazolidine<br />

Imidazolidine<br />

2H-Pyran<br />

4H-Pyran<br />

Furan<br />

N<br />

Se<br />

N<br />

S<br />

Se<br />

Te<br />

S<br />

N<br />

H<br />

H<br />

N<br />

HB BH<br />

HN NH B<br />

H<br />

O<br />

HB BH<br />

O O B<br />

H<br />

S<br />

HB BH<br />

S S B<br />

H<br />

S<br />

Isoselenazole<br />

Isothiazole<br />

Selenophen<br />

Tellurophen<br />

Thiomorpholine<br />

Borazine<br />

Boroxin<br />

Borthiin<br />

Thiophen<br />

TrivialHeteroMono-120504


R. <strong>Breinbauer</strong> HANTZSCH-WIDMAN - Stems for Monocyclic Hetero Systems<br />

Rings Containing Nitrogen<br />

Rings Containing No Nitrogen<br />

No. <strong>of</strong><br />

members in<br />

the ring<br />

Unsaturated<br />

Saturated<br />

No. <strong>of</strong><br />

members in<br />

the ring<br />

Unsaturated<br />

Saturated<br />

3<br />

-irine<br />

-iridine<br />

3<br />

-irene<br />

-irane<br />

4<br />

-ete<br />

-etidine<br />

4<br />

-ete<br />

-etane<br />

5<br />

-ole<br />

-olidine<br />

5<br />

-ole<br />

-olane<br />

6<br />

-ine**<br />

*<br />

6<br />

-in*<br />

-ane**<br />

7<br />

-epine<br />

*<br />

7<br />

-epin<br />

-epane<br />

8<br />

-ocine<br />

*<br />

8<br />

-ocin<br />

-ocane<br />

9<br />

-onine<br />

*<br />

9<br />

-onin<br />

-onane<br />

10<br />

-ecine<br />

*<br />

10<br />

-ecin<br />

-ecane<br />

* Saturation is expressed by detachable prefixes such as "tetrahydro-", "hexahydro", etc. The prefix<br />

"perhydro-" is not used.<br />

** When the Hantzsch-Widman prefixes "phospha", "arsa" , or "stiba" are immediately followed by<br />

the Hantzsch-Widman stems "-in" or "-ine", they are replaced by the prefixes "phosphor", "arsen"<br />

or "stibin", respectively.<br />

Hantzsch-Widman-120504<br />

* When the Hantzsch-Widman prefixes "phospha", "arsa" , or "stiba" are immediately followed by<br />

the Hantzsch-Widman stems "-in" or "-ine", they are replaced by the prefixes "phosphor", "arsen"<br />

or "stibin", respectively.<br />

** This stem is not used for saturated hetero systems based on the elements Si, Ge, Sn, or Pb.<br />

Saturation <strong>of</strong> these rings is indicated by detachable prefixes such as "tetrahydro-", "hexahydro",<br />

etc. when Hantzsch-Widman names are used. Saturation <strong>of</strong> 6-membered hetero systems<br />

based on the elements B or P is denoted by the stem "-inane".


R. <strong>Breinbauer</strong> Heterocycles as Parent Rings<br />

The following list contains heterocycles which can function as parent rings in ascending order:<br />

H<br />

P<br />

S<br />

S<br />

S<br />

O<br />

O<br />

O<br />

O<br />

S<br />

O<br />

H<br />

N<br />

H<br />

N<br />

N<br />

Phosphindole (1) Thiophene (2)<br />

Thianthrene (3)<br />

Furane (4)<br />

4H-Pyrane (5) Isobenz<strong>of</strong>urane (6)<br />

2H-Chromene (7)<br />

Phenoxathine (8)<br />

Pyrrole (9)<br />

Imidazole (10)<br />

H<br />

N<br />

N<br />

S<br />

N<br />

O<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Pyrazole (11) Isothiazole (12) Isoxazole (13) Pyridine (14) Pyrazine (15)<br />

Pyrimidine (16)<br />

Pyridazine (17)<br />

1H-Pyrrolizine (18)<br />

Indolizine (19)<br />

NH<br />

Isoindole (20)<br />

N<br />

3H-Indole (21)<br />

H<br />

N<br />

Indole (22)<br />

H<br />

N<br />

N<br />

Indazole (23)<br />

N<br />

N<br />

H<br />

N<br />

N<br />

7H-Purine (24)<br />

N<br />

4H-Quinolizine (25)<br />

N<br />

Isoquinoline (26)<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Quinoline (27)<br />

Phthalazine (28)<br />

1,8-Naphthyridine (29)<br />

Quinoxaline (30)<br />

Quinazoline (31)<br />

Cinnoline (32)<br />

Pteridine (33)<br />

N<br />

H<br />

N<br />

N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

N<br />

N<br />

4aH-Carbazole (34)<br />

Carbazole (35)<br />

Phenanthridine (36)<br />

Acridine (37)<br />

Perimidine (38)<br />

1,7-Phenanthroline (39)<br />

Phenazine (40)<br />

Hg<br />

As<br />

H<br />

P<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

Te<br />

Se<br />

S<br />

O<br />

Phenomercazine (41)<br />

Phenarsazine (42)<br />

Phenophosphazine (43)<br />

Phenotellurazine (44)<br />

Phenselenazine (45)<br />

Phenothiazine (46)<br />

Phenoxazine (47)<br />

Heterocycles1-240504


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 1<br />

11.-12.10.2005<br />

Introduction:<br />

Definition<br />

Classification<br />

Industrial Importance<br />

Top 10 Pharmaceuticals<br />

Nomenclature:<br />

HANTZSCH-WIDMAN-System<br />

Replacement Nomenclature<br />

Literature<br />

T. Eicher, S. Hauptmann, "The <strong>Chemistry</strong> <strong>of</strong> Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages.<br />

(Good chapter about the nomenclature <strong>of</strong> heterocycles.)<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Very good introductory chapter about heteroaromaticity.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(Good introduction into heteroaromaticity.)<br />

Aromaticity:<br />

Theoretical Criteria<br />

Experimental Properties<br />

Benzene<br />

Electronpoor 6-membered ring heteroaromatics:<br />

- Pyridine<br />

- Pyridinium Ion<br />

- Pyrylium Ion<br />

Cyclopentadienyl-Ion<br />

Electronrich 5-membered ring heteroaromatices<br />

- Pyrrol<br />

- Furan<br />

- Thiophen<br />

Dipolmoment<br />

Bond Lengths<br />

Solubility<br />

Boiling Point<br />

Lecture1-121005


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 2<br />

18.-19.10.2005<br />

Aromaticity:<br />

Reactive Behaviour <strong>of</strong> Different Aromatics<br />

Resonance Energy<br />

1H-NMR Data<br />

Nucleobases<br />

Tautomers<br />

- Iminol vs. Amido<br />

- Amin vs. Imino<br />

- Thion vs. Thiol<br />

General Principles <strong>of</strong> Reactions with Heterocycles:<br />

Electrophilic Reaction on Imino-N<br />

- Basicity <strong>of</strong> Nitrogen Heterocycles<br />

- Nuleophilicity: Steric and Electronic Influences<br />

Literature<br />

K. Groebke, J. Hunziker, W. Fraser, L. Peng, U. Diederichsen, K. Zimmermann, A. Holzner, C. Leumann, A.<br />

Eschenmoser, "Warum Penotse- und nicht Hexose-Nukleinsäuren, Teil V" Helv. Chim. Acta 1995, 81,<br />

375-474.<br />

(In this landmark publication Eschenmoser discusses within a 2 page long footnote why the C=O bond<br />

is so much stronger than the C=C and C=N bond, a fact which is <strong>of</strong> utmost importance for<br />

Watson-Crick base pairing.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(Contains an illuminating chapter about general reactivity principles. In addition, for each major<br />

structure class a chapter describes the general behaviour <strong>of</strong> this class in the most reaction types.)<br />

Electrophilic Reactions<br />

- Reactive Behaviour <strong>of</strong> 5-Ring and 6-Ring Heterocycles<br />

- Activation <strong>of</strong> Pyridines for S E Ar (N-Oxides, EDG-groups)<br />

Nucleophilic Substitution<br />

- Reactive Behaviour <strong>of</strong> 6-Ring Heterocycles (Substituents, Benz<strong>of</strong>used Rings)<br />

- Synthesis <strong>of</strong> Cipr<strong>of</strong>loxacin<br />

Radical Reactions<br />

- Nuleophilic Radicals (Minisci-Reaction)<br />

Lecture2-181005


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 3<br />

25.-26.10.2005<br />

General Principles <strong>of</strong> Reactions with Heterocycles:<br />

Literature<br />

Radical Reactions<br />

- Nucleophilic Radicals (Minisci-Reaction)<br />

- Electrophilic Radicals<br />

Lithiation Reactions<br />

- Metallation<br />

Governing Factors (CH-Acidity, Complexation, Directing Groups, Base, Solvent)<br />

Metalation <strong>of</strong> Heteroaromatics<br />

Side Chain Metalation<br />

- Metal-Halogen Exchange<br />

Metal-Halogen Exchange avoiding Electrophile Generation (2 equiv tBuLi)<br />

Transition-Metal Cross-Coupling Reactions<br />

- Oxidative Addition<br />

- Transmetalation<br />

- Cross-Coupling Reactions (Stille, Suzuki, Kumada, Negishi, Sonogashira)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(Contains an illuminating chapter about general reactivity principles. For each major structure class a<br />

chapter describes the general behaviour <strong>of</strong> this class in the most reaction types.)<br />

WWW-links<br />

http://www.chem.harvard.edu/groups/myers/chemistry115handouts.htm<br />

(Pr<strong>of</strong>. A. G. Myers at Harvard has made his terrific Chem115 handouts accessbile for the public. A<br />

must read for every synthetic chemist. For this course in particular the handouts about Directed<br />

Lithiation, Suzuki reaction, and Stille reaction are <strong>of</strong> special relevance.)<br />

Oxidation-<br />

- Resistance <strong>of</strong> Electronpoor Heteraromatics<br />

- Conversion <strong>of</strong> Furans to Carboxylic Acids<br />

Reduction<br />

- Hydrogenation (pH-Dependence <strong>of</strong> Selectivitiy)<br />

Lecture3-251005


R. <strong>Breinbauer</strong> Stability <strong>of</strong> Lithium-Reagents in Solution<br />

Organolithium reagents react with etheral solvents under elimination <strong>of</strong> ethylene:<br />

Half-Lives <strong>of</strong> BuLi in Etheral Solvents<br />

-70 °C -40 °C -20 °C 0 °C +20 °C +35 °C<br />

O<br />

n-BuLi<br />

O<br />

Li<br />

> -60 °C<br />

+<br />

H<br />

OLi<br />

t-BuLi<br />

DME<br />

t-BuLi<br />

THF<br />

11 min


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 4<br />

2.11.2005<br />

General Concepts for the Synthesis <strong>of</strong> Heterocycles:<br />

Ring Closures Involving Ionic Cyclizations<br />

- C-X Bond Formation<br />

- C-C Bond Formation<br />

- Application: Hantzsch Dihydropyridine Synthesis<br />

Synthon Selection by Analysis <strong>of</strong> Oxidation Levels <strong>of</strong> Ring Atoms<br />

Literature<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Contains a very long and deep discussion about general principles and strategies for the synthesis<br />

<strong>of</strong> heterocycles.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(Contains a short chapter about synthesis concepts.)<br />

Important Ring Closing Reactions<br />

- Heterocycles with 1 Heteroatom<br />

- Heterocycles with 2 Adjacent Heteroatoms<br />

- Heterocycles with 2 Non-Adjacent Heteroatoms<br />

Mechanistic Understanding <strong>of</strong> Ring Closures<br />

- Nucleophilic Attack on Electrophiles (tet, trig, dig)<br />

Bürgi-Dunitz - Trajectorie<br />

- Baldwin Rules<br />

Lecture4-021105


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 5<br />

8.-9.11.2005<br />

General Concept for the Synthesis <strong>of</strong> Heterocycles:<br />

Mechanistic Understanding <strong>of</strong> Ring Closures<br />

- Baldwin Rules<br />

Intramolecular Substitution at Saturated C-Atom<br />

- Rate Dependence on Ring Size<br />

- Thorpe-Ingold Effect, gem-Dimethyl Effect (Activation Entropy)<br />

- Feist-Benary- Furan Synthesis (5-exo-tet)<br />

Literature<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Contains a very long and deep discussion about general principles and strategies for the synthesis<br />

<strong>of</strong> heterocycles.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(Contains a short chapter about synthesis concepts.)<br />

Intramolecular Addition at Carbonyl C-Atom<br />

- Combes Quinoline Synthesis (6-exo-trig)<br />

Intramolecular Addition across other Double Bonds<br />

- Attack at Electrophilic Nitrogen (Synthesis <strong>of</strong> Quinoxalinoxide)<br />

- Hegedus Indole Synthesis (5-exo-trig)<br />

- Activation <strong>of</strong> Double Bonds through Electrophile<br />

- Pictet-Spengler Isoquinoline Synthesis (6-endo-trig)<br />

Cyclisation at Triple Bonds<br />

- Attack at Nitrile, Alkyne, Isonitrile<br />

- TOSMIC-Reagent<br />

Carbene & Nitrene Cyclisation<br />

- Addition across Multiple Bonds<br />

- Insertion into CH-Bonds<br />

Electrocyclic Reactions<br />

- Woodward-H<strong>of</strong>fmann-Rules<br />

Lecture5-081105


R. <strong>Breinbauer</strong> 1,3 - Dipoles<br />

a<br />

b<br />

c<br />

Type 1<br />

a<br />

b<br />

c<br />

a<br />

b<br />

c<br />

Type 2<br />

a<br />

b<br />

c<br />

R'<br />

R'<br />

Azide<br />

Diazoalkane<br />

Nitrous oxide<br />

R<br />

R<br />

N<br />

N N<br />

N<br />

C N<br />

R<br />

N<br />

O N<br />

R<br />

R<br />

N<br />

N<br />

N<br />

C<br />

R<br />

N<br />

O<br />

N<br />

N<br />

N<br />

Azomethine imine<br />

Azoxy compound<br />

Azomethine ylide<br />

R<br />

R<br />

N<br />

C N R''<br />

R<br />

R'<br />

N<br />

O N R''<br />

R'<br />

N<br />

C C R''<br />

R R''<br />

R<br />

R<br />

N<br />

C N R''<br />

R<br />

R'<br />

N<br />

O N R''<br />

R'<br />

N<br />

C C R''<br />

R R''<br />

Nitrile imine<br />

R<br />

N<br />

N<br />

C<br />

R'<br />

R<br />

N<br />

N<br />

C<br />

R'<br />

Nitrone<br />

O<br />

R'<br />

N<br />

C<br />

R''<br />

O<br />

R'<br />

N<br />

C<br />

R''<br />

R''<br />

R''<br />

Nitrile ylide<br />

R<br />

C<br />

R<br />

N<br />

C<br />

R'<br />

R<br />

C<br />

R<br />

N<br />

C<br />

R'<br />

Carbonyl oxide<br />

O<br />

O<br />

C<br />

R<br />

O<br />

O<br />

C<br />

R<br />

R<br />

R<br />

Nitrile oxide<br />

O<br />

N<br />

C<br />

R'<br />

O<br />

N<br />

C<br />

R'<br />

Ozone<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Out <strong>of</strong> 12 thinkable 1,3-dipoles containing C, H, N, and O 9 have been used for [3+2]-cycloadditions.<br />

1,3-Dipols1-100102


R. <strong>Breinbauer</strong> Heterocycles made by 1,3 - Dipolar Cycloaddition<br />

N<br />

N<br />

N<br />

N<br />

O<br />

N<br />

N<br />

S<br />

X<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

X = O, S, NR<br />

Imidazoles<br />

Imidazolidines<br />

1,2,4-Triazolidines<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

N<br />

Oxazoles<br />

O<br />

N<br />

Oxazolines<br />

O<br />

N<br />

Oxazolidines<br />

Pyrazoles<br />

Pyrazolines<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

N<br />

NR<br />

O<br />

Isoxazoles<br />

Isoazolines<br />

Isoxazolidines<br />

Pyrazolidines<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

N<br />

N<br />

O<br />

N<br />

N<br />

1,2,3-Triazoles<br />

1,2,3-Triazolines<br />

1,2,4-Oxadiazoles<br />

1,2,4-Oxadiazolines<br />

N<br />

N<br />

N<br />

1,2,4-Triazoles<br />

X<br />

N<br />

N<br />

N<br />

X N<br />

NH<br />

N<br />

1,2,4-Triazolines<br />

X<br />

N<br />

N<br />

N<br />

X = O, S, NR<br />

S<br />

N<br />

S<br />

N<br />

S<br />

N<br />

N<br />

Isothiazoles Isothiazolines 1,2,4-Thiadiazoles<br />

1,3-Dipol-Cycloaddition-091105<br />

A. R. Katritzky, A. F. Pozharskii "Handbook <strong>of</strong> <strong>Heterocyclic</strong> <strong>Chemistry</strong>", 2nd ed., Pergamon, Oxford 2000.


R. <strong>Breinbauer</strong> Synthesis <strong>of</strong> 1,3-Dipols I<br />

R<br />

H<br />

Nitrile Oxides:<br />

N<br />

OH<br />

R<br />

NO<br />

H 2<br />

H<br />

Ph<br />

Nitrile Imides:<br />

R 2<br />

R 1<br />

NCS<br />

R<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Cl OH<br />

HN Ph<br />

N C O R O<br />

N O<br />

H O<br />

R 1 HN R 2<br />

N<br />

Et 3 N<br />

Cl<br />

h*ν or ∆<br />

Et 3 N<br />

Et 3 N<br />

R N O<br />

Nitrile Oxides<br />

R 1 N N R<br />

2<br />

Nitrile Imides<br />

Nitrile Ylides:<br />

Ar<br />

N R 1<br />

Cl<br />

H R 2<br />

Ar<br />

N<br />

R 1 R 2<br />

R N<br />

R<br />

N<br />

PhS SiMe 3<br />

Et 3 N<br />

h*ν<br />

CH 2 N 2<br />

h*ν<br />

:CH 2<br />

F<br />

Ar<br />

R 1<br />

N C<br />

R 2<br />

Aromatic Nitrile Ylides<br />

R N CH 2<br />

Aliphatic Nitrilmethylide<br />

Nitrile Imides:<br />

N<br />

S<br />

R O<br />

O<br />

110 - 160 °C<br />

R<br />

N S<br />

Nitrile Sulfides<br />

Nitrones:<br />

R 1<br />

H<br />

R 2<br />

H<br />

R 3<br />

N<br />

OH<br />

R 1<br />

N<br />

OH<br />

HgO<br />

O<br />

R 2 R 3<br />

R 2 R 1<br />

N<br />

R 3 O<br />

Nitrones<br />

1,3-Dipol-Synthesis1-091105<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995.


R. <strong>Breinbauer</strong> Synthesis <strong>of</strong> 1,3-Dipols II<br />

Azomethinimides:<br />

O<br />

Carbonyl Ylides:<br />

R 1 O<br />

H<br />

N<br />

N R<br />

2<br />

H<br />

R 3<br />

H<br />

H R 3<br />

O<br />

R 1 N<br />

N R<br />

2<br />

Azomethinimides<br />

Ar<br />

O<br />

N 2<br />

H<br />

O<br />

Rh 2 (OAc) 4<br />

Ar O<br />

O<br />

Carbonyl Ylides<br />

N<br />

N R H<br />

Base<br />

N<br />

N R<br />

R = -H, -Ar, -COR, -CO 2 R<br />

Pyridinium N-Imides<br />

Thiocarbonyl Ylides:<br />

R 1 R 2<br />

Azomethin-Ylides:<br />

TMSOTf<br />

R 3<br />

N<br />

TMS<br />

F<br />

R 1 R 2<br />

N CH 2<br />

Ar<br />

Ar<br />

S<br />

Ar<br />

CH 2 N 2 Ar S<br />

-78 °C<br />

N N -40 °C<br />

Ar<br />

Ar<br />

S CH2<br />

N R 3 R 1 R 2<br />

- N 2<br />

Thiocarbonyl Ylides<br />

OTf<br />

Ar<br />

RO 2 C<br />

R 3 N<br />

Azomethin-Ylides<br />

heat<br />

Ar<br />

N CO 2 R<br />

H H<br />

N<br />

RO 2 C<br />

CO 2 R<br />

h*ν<br />

RO 2 C<br />

Ar<br />

H<br />

H<br />

CO 2 R<br />

Ar<br />

N<br />

H<br />

CO 2 R<br />

heat<br />

tautomerism<br />

Ar<br />

H<br />

N<br />

H<br />

CO 2 R<br />

1,3-Dipol-Synthesis2-091105<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995.


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 6<br />

15.11.2005<br />

General Concept for the Synthesis <strong>of</strong> Heterocycles:<br />

Cycloaddition Reactions<br />

1,3-Dipolar Cycladdtions<br />

- 1,3-Dipoles: Types and Synthesis<br />

- FMO Considerations<br />

Literature<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Contains a very long and deep discussion about general principles and strategies for the synthesis<br />

<strong>of</strong> heterocycles.)<br />

Lecture6-151105


R. <strong>Breinbauer</strong> HUISGEN Azide-Alkyne-Coupling<br />

Review: R. <strong>Breinbauer</strong>, M. Köhn, ChemBioChem 2003, 4, 1147-1149.<br />

Challenge in Chemical Biology:<br />

A common problem in Chemical Biology is the attachment <strong>of</strong> a probe molecule to a<br />

biopolymer or the ligation <strong>of</strong> two entities in a living cell. Such a ligation reaction,<br />

should have the following features:<br />

- works smoothly in high yield<br />

- works under physiological conditions (water, pH 7, RT, air, atmospheric pressure)<br />

- uses bioorthogonal functional groups<br />

- works without addtional reagents<br />

Azide-Alkyne-Coupling:<br />

Cu(I) catalysis allows to run this process at room temperature instead <strong>of</strong> >130°C typical for<br />

the uncatalyzed version:<br />

V. V. Rostovtsef, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708-2711.<br />

C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057-3064.<br />

R 1<br />

N<br />

N<br />

N R<br />

2<br />

CuSO 4<br />

ligand (L)<br />

reducing agent<br />

[CuL n ]<br />

+<br />

R 1<br />

H<br />

H<br />

Modification <strong>of</strong> CMV-Virus:<br />

N<br />

H<br />

O<br />

H<br />

117 eq<br />

N<br />

H<br />

[N 3 ] 60<br />

DYE<br />

HO<br />

:<br />

50 eq CuSO 4<br />

100 eq 2<br />

100 eq TCEP<br />

Activity Based Enzyme Pr<strong>of</strong>iling:<br />

O<br />

O<br />

N<br />

H<br />

pH 8<br />

O<br />

COOH<br />

H<br />

O<br />

DYE<br />

phosphate buffer / 5% tBuOH<br />

16 h / 4 °C<br />

N<br />

N<br />

N<br />

Ligand:<br />

N<br />

H<br />

N<br />

O<br />

DYE<br />

60<br />

Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, M. G. Finn, J. Am. Chem. Soc. 2002, 124,<br />

14397-14402.<br />

N 3 (CH 2 ) 6 OSO 2 Ph (2.5µM)<br />

3<br />

N<br />

N<br />

N<br />

2<br />

Ph<br />

3<br />

Nu<br />

N 3<br />

(CH 2 ) 6<br />

R 1 CuL n<br />

R 1 CuL n<br />

N N<br />

N<br />

R<br />

2<br />

Protein Extract<br />

H<br />

RHODAMINE (20 µM)<br />

4<br />

CuSO 4 (1 mM )<br />

Ligand (2 mM )<br />

TCEP (1 mM )<br />

pH 8 phosphate buffer / 5% tBuOH<br />

1 h / Rt<br />

N<br />

N<br />

+<br />

R 2<br />

N<br />

-<br />

RHODAMINE<br />

N<br />

N<br />

N<br />

(CH 2 ) 6<br />

Azide-Alkyne-Coupling1-091105<br />

A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc. 2003, 125, 4686-4687.


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 7<br />

22.-23.11.2005<br />

General Concept for the Synthesis <strong>of</strong> Heterocycles:<br />

Cycloaddition Reactions<br />

1,3-Dipolar Cycladdtions<br />

- 1,3-Dipoles: Types and Synthesis<br />

- FMO Considerations<br />

- Heterocycles Produced by 1,3-Dipolar Cycloadditions<br />

- Huisgen Azide-Alkyne Coupling<br />

Literature<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Contains a very long and deep discussion about general principles and strategies for the synthesis<br />

<strong>of</strong> heterocycles.)<br />

R. <strong>Breinbauer</strong>, M. Köhn, "Azide-Alkyne-Coupling: A Powerful Ligation Reaction for Bioconjugate<br />

<strong>Chemistry</strong>", ChemBioChem 2003, 4, 1147-1149.<br />

Hetero Diels-Alder Reaction<br />

- Jacobi-Reaction<br />

- Enantioselecitve Hetero-Diels-Alder-Reaction: "Mighty Fist"- Cr-salen catalyst<br />

- Synthesis <strong>of</strong> 1,4-Aminoalcohols<br />

- Diels-Alder-Reaction with Inverse Electron Demand<br />

[2+2]-Cycloaddition<br />

- Synthesis <strong>of</strong> β-Lactams<br />

- Synthesis <strong>of</strong> Oxetanes: Paterno-Büchi-Reaction<br />

Cheletropic Reactions<br />

- Aziridination<br />

- SO 2 -Extrusion: Bromoprene-Synthesis<br />

Lecture7-221105


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 8<br />

29.-30.11.2005<br />

Synthesis, Reactivity, and Use <strong>of</strong> Heterocycles:<br />

Literature<br />

3-Ring-Systems:<br />

Epoxides:<br />

Synthesis:<br />

- Direct Oxidation (Ethylene, Butadiene)<br />

- Preparation <strong>of</strong> Propyleneoxide<br />

- Prileschajew-Oxidation with Peracid<br />

- Corey-Chaykovsky-Reaction with Sulphur-Ylides: Synthesis <strong>of</strong> Fluconazole<br />

- Becker-Adler-Oxidation<br />

- Sharpless Asymmetric Epoxidation<br />

- Jacobsen Asymmetric Epoxidation: Synthesis <strong>of</strong> Indinavir<br />

- Shi Asymmetric Epoxidation: Synthesis <strong>of</strong> Glabroscol<br />

- Jacobsen Hydrolytic Kinetic Resolution (HKR)<br />

T. Eicher, S. Hauptmann, "The <strong>Chemistry</strong> <strong>of</strong> Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages.<br />

(Excellent chapters about ring systems.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(The chapters about small rings are not as comprehensive and terrific as for 5- and 6-membered<br />

rings, but nevertheless worth reading.)<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Descrption <strong>of</strong> ring systems not very well structured but nevertheless insightful.)<br />

Reactions:<br />

- Reactions with External Nucleophiles<br />

- Payne-Rearrangement<br />

- Conversion <strong>of</strong> Epoxides to Thiiranes<br />

Oxaziridines:<br />

Synthesis:<br />

- Photoisomerization <strong>of</strong> Nitrones<br />

- Amination <strong>of</strong> Carbonyl Compounds<br />

- Oxidation <strong>of</strong> Imines with Peroxyacids<br />

Reactions:<br />

- DAVIS- Oxaziridine<br />

Lecture8-291105


R. <strong>Breinbauer</strong> JACOBI - Reaction<br />

R<br />

N<br />

O<br />

R''<br />

R'<br />

O<br />

R<br />

R'<br />

MeO<br />

MeO<br />

OMe<br />

H<br />

N<br />

Boc<br />

O<br />

TosMIC<br />

82 %<br />

MeO<br />

MeO<br />

OMe<br />

N<br />

Boc<br />

90 %<br />

o-dichlorobenzene<br />

reflux<br />

P. A. Jacobi, D. G. Walker, J. Am. Chem. Soc. 1981, 103, 4611.<br />

P. A. Jacobi, D. G. Walker, I. M. A. Odeh, J. Org. Chem. 1981, 46, 2065.<br />

P. A. Jacobi, T. A. Craig, D. G. Walker, B. A. Arrick, R. F. Frechette, J. Am. Chem. Soc. 1984, 106, 5585.<br />

B. Liu, A. Padwa, Tetrahedron Lett. 1999, 40, 1645.<br />

MeO<br />

MeO<br />

OMe<br />

N<br />

MeO<br />

MeO<br />

N O N<br />

OMe<br />

Examples:<br />

O<br />

OMe<br />

O<br />

MeO<br />

O<br />

O<br />

O<br />

O<br />

N<br />

H<br />

N<br />

O<br />

N<br />

O<br />

(rac)-Stemoamide<br />

1) NaBH 4<br />

2) MeOH, H +<br />

3) CH 3 CCSnBu 3 , BF 3<br />

64 % (3 steps)<br />

in situ<br />

epimerization<br />

73 %<br />

MeO<br />

O<br />

O<br />

O<br />

N<br />

H<br />

N<br />

N<br />

O<br />

diethylbenzene<br />

O<br />

182 °C<br />

- MeCN<br />

NiCl 2 , NaBH 4<br />

MeO<br />

MeOH, -30 °C<br />

O<br />

O<br />

O<br />

H<br />

N<br />

N<br />

53 %<br />

O<br />

(H 2 O)<br />

P. A. Jacobi, K. Lee, J. Am. Chem. Soc. 1997, 119, 3409-3410.<br />

O<br />

Imerubrine<br />

J. C. Lee, J. K. Cha, J. Am. Chem. Soc. 2001, 123, 3243-3246.<br />

First example for a highly selective intermolecular cycloaddition-retr<strong>of</strong>ragmentation<br />

O<br />

H<br />

OTBS<br />

O<br />

O<br />

Ph N<br />

tetralin, 205 °C TBSO H<br />

O<br />

O O<br />

O<br />

AcO<br />

O O<br />

52 % (at 90% conv.)<br />

O<br />

exclusive regioisomer<br />

(-)-Teubrevin G<br />

I. Efremov, L. A. Paquette, J. Am. Chem. Soc. 2000, 122, 9324-9325.<br />

O<br />

O<br />

O<br />

O<br />

Jacobi1-080301


R. <strong>Breinbauer</strong> DAVIS - Oxaziridine<br />

1) Base<br />

R<br />

O<br />

R'<br />

2)<br />

Ph<br />

O<br />

N<br />

SO 2 Ph<br />

O<br />

R'<br />

R<br />

OH<br />

1.5 eq tBuLi<br />

0.2 eq Et 2 NH<br />

O O THF, -78 °C, 1 h<br />

H then 10 eq Davis oxaziridine<br />

OMe<br />

-78 °C to 0 °C, 1 h<br />

O O<br />

OMe<br />

60 %<br />

CMe 3<br />

O O OH OMe<br />

O O<br />

OMe<br />

CMe 3<br />

O<br />

HO<br />

HO O<br />

O<br />

H<br />

CMe<br />

O 3<br />

Me HO O H<br />

O<br />

(rac)-Ginkgolide B<br />

F. A. Davis, L. C. Vishwakarma, J. M. Billmers, J. Finn, J. Org. Chem. 1984, 49, 3241-3243.<br />

F. A. Davis, A. C. Sheppard, Tetrahedron. 1989, 45, 5703.<br />

M. T. Crimmins, J. M. Pace, P. G. Nantermet, A. S. Kim-Meade, J. B. Thomas, S. H. Watterson, A. S.<br />

Wagman, J. Am. Chem. Soc. 2000, 122, 8453-8463.<br />

O<br />

O<br />

O<br />

O<br />

O Ph<br />

O<br />

O TBS<br />

O<br />

O<br />

O<br />

1) 1.5 eq KHMDS<br />

THF, -78 °C<br />

2) 1.5 eq O<br />

Ph N<br />

SO 2 Ph<br />

THF, -78 °C, 45 min<br />

83 %<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

Ph<br />

O<br />

O TBS<br />

O<br />

O<br />

O<br />

HO<br />

OH<br />

OH<br />

OH OH<br />

J. D. White, H. Shin, T.-S. Kim, N. S. Cutshall, J. Am. Chem. Soc. 1997, 119, 2404-2419.<br />

OH<br />

OH<br />

OH OH<br />

Euonyminol<br />

O<br />

OH<br />

CO 2 Et<br />

1 eq. KHMDS<br />

2 eq Davis oxaziridine<br />

-78 °C to -20 °C / THF<br />

97 % @ 57 % conv.<br />

OH<br />

O<br />

OH<br />

CO 2 Et<br />

Taxol<br />

P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig, T. E. Glass, C. Gränicher, J. B. Houze, J.<br />

Jänichen, D. Lee, D. G. Marquess, P. L. McGrane, W. Meng, T. P. Mucciaro, M. Mühlebach, M. G.<br />

Natchus, H. Paulsen, D. B. Rawlins, J. Satk<strong>of</strong>sky, A. J. Shuker, J. C. Sutton, R. E. Taylor, J. Tomooka,<br />

J. Am. Chem. Soc. 1997, 119, 2755-2756.<br />

Davis-Oxaziridine1-9.4.2001


R. <strong>Breinbauer</strong><br />

Mitomycin C<br />

Mitomycin C<br />

Bioreductive Activation and Biological Action:<br />

H 2 N<br />

Me<br />

O<br />

O<br />

O<br />

NH 2<br />

O<br />

OMe<br />

N NH<br />

H 2 N<br />

Me<br />

O<br />

O<br />

O<br />

NH 2<br />

O<br />

OMe<br />

N NH<br />

[H]<br />

inside cell<br />

H 2 N<br />

Me<br />

OH<br />

OH<br />

O<br />

NH 2<br />

O<br />

OMe<br />

N NH<br />

H-A<br />

H 2 N<br />

Me<br />

OH<br />

OH<br />

O<br />

NH 2<br />

O H<br />

OMe<br />

N NH<br />

- isolated from Streptomyces caespitosus<br />

- marketed as an anti-cancer drug ("Mutamycin", Bristol-Myers-Squibb)<br />

H 2 N<br />

OH<br />

O<br />

O<br />

NH 2<br />

H 2 N<br />

OH<br />

O<br />

O<br />

NH 2<br />

H-A<br />

H 2 N<br />

OH<br />

O<br />

O<br />

H<br />

NH 2<br />

A<br />

Compound with similar properties:<br />

Me<br />

OH<br />

N NH 2<br />

A<br />

Me<br />

OH<br />

N<br />

NH<br />

H A<br />

Me<br />

OH<br />

N<br />

NH<br />

H<br />

O<br />

OH<br />

O<br />

O<br />

N O<br />

FR-900482<br />

NH 2<br />

OH<br />

NH<br />

+ 2 e , +2 H<br />

- H 2 O<br />

H<br />

O<br />

OH<br />

O<br />

O<br />

N<br />

NH 2<br />

NH<br />

H 2 N<br />

Me<br />

OH<br />

OH<br />

N<br />

O<br />

O<br />

NH 2<br />

:DNA<br />

NH 2<br />

H 2 N<br />

Me<br />

OH<br />

OH<br />

N<br />

O<br />

O<br />

NH 2<br />

DNA<br />

NH 2<br />

H 2 N<br />

Me<br />

OH<br />

OH<br />

N<br />

:DNA<br />

DNA<br />

NH 2<br />

:DNA<br />

Mitomycin-021105<br />

H<br />

O<br />

OH<br />

N<br />

DNA<br />

DNA<br />

NH 2<br />

Apoptosis<br />

Inhibition <strong>of</strong> Replication<br />

H 2 N<br />

Me<br />

OH<br />

OH<br />

N<br />

DNA<br />

DNA<br />

NH 2


R. <strong>Breinbauer</strong><br />

PAAL-KNORR - Synthesis:<br />

Synthesis <strong>of</strong> Furans<br />

from α-Hydroxy ketones<br />

R 2 R 3 ZnCl R 2 R 3<br />

2 or PPA<br />

R 1<br />

R 4<br />

Br<br />

O O<br />

or conc. H R 1 O R 4<br />

R 2<br />

2 SO 4<br />

O<br />

+<br />

R 1 OH<br />

EtO<br />

R 1 O<br />

EWG<br />

Na 2 CO 3<br />

R 1 EWG<br />

+<br />

X O R 2 O R 2<br />

X = Br, Cl<br />

R 2 R 3<br />

FEIST-BENARY - Synthesis:<br />

JACOBI - Synthesis:<br />

from Allenyl ketones<br />

R 1 O<br />

PPh 3<br />

Ag, Pd<br />

NaH<br />

R 2<br />

R 1<br />

O<br />

R 2<br />

R 1 O R 3<br />

R'<br />

N<br />

+<br />

R<br />

R'<br />

R 1 O<br />

R 2<br />

via DIELS-ALDER<br />

- R-CN<br />

(works especially well for intramolecular reactions)<br />

R'<br />

R'<br />

R 1 O<br />

R 2<br />

R' = EWG, TMS, R 3 Sn<br />

from Alkynyl ketones<br />

O<br />

R 1 R 2<br />

Pd (0)<br />

or<br />

R 1 O<br />

R 2<br />

O R 2<br />

R 1<br />

Furan-Synthesis1-301105


R. <strong>Breinbauer</strong><br />

PAAL - Synthesis:<br />

Thiophens<br />

FIESSELMANN - Syntheses:<br />

R 2 R 3<br />

H 2 S or P 4 S 10<br />

R 1<br />

R 4<br />

O O<br />

or LAWESSON reagent<br />

GEWALD - Synthesis:<br />

R 2 O<br />

+<br />

EWG<br />

S 8<br />

R 1<br />

CN<br />

Morpholin<br />

EtOH<br />

HINSBERG - Synthesis:<br />

R 1 R 2<br />

O O RONa<br />

R 1 R 2<br />

+<br />

RO 2 C<br />

S CO 2 R<br />

RO 2 C S CO 2 R<br />

R 2 R 3<br />

VILSMEIER-HAACK<br />

R 1 S R 4<br />

R 2<br />

H<br />

DMF/POCl 3<br />

HS EWG<br />

R 2<br />

O<br />

R 1 O<br />

R 1<br />

Piperidin<br />

Cl<br />

Pyridin<br />

R 2 HCO H<br />

2R<br />

HS EWG<br />

R 2<br />

O<br />

R 1 O<br />

R 1 O<br />

R 2 EWG<br />

R 1<br />

S NH 2<br />

HS EWG<br />

RO 2 C<br />

R 1<br />

Starting from conjugated diynes:<br />

H 2 S or Na 2 S<br />

R<br />

R<br />

NaOH<br />

1) NaOH<br />

R 1 R 2 2) H 3 O<br />

3) ∆<br />

S<br />

R 1 S<br />

R 2<br />

S EWG<br />

R 2 R 1<br />

S<br />

EWG<br />

OH<br />

R 1 EWG<br />

R<br />

S<br />

R<br />

R = alkyl, aryl<br />

(instead <strong>of</strong> -CO 2 R other EWGs can be used as well)<br />

Thiophen-Synthesis1-301105


R. <strong>Breinbauer</strong><br />

Bioisosterism I<br />

Definitions:<br />

Isosterism: Replacement <strong>of</strong> an atom or a group <strong>of</strong> atoms in an<br />

active molecule by another one, presenting a comparable electronic<br />

and steric arrangement.<br />

GABA agonists:<br />

Key parameters <strong>of</strong> GABA A receptor agonists are an acidic (pKa: ca 4) and a basic (protonated nitrogen)<br />

functions with a ca. 5.1 Angsstrom interchange distance.<br />

HO<br />

O<br />

HO<br />

O<br />

HO<br />

N<br />

O<br />

Bioisosteres are compounds which fit the broadest definition <strong>of</strong><br />

isosteres and have the same type <strong>of</strong> biological activity.<br />

H<br />

H<br />

GABA<br />

N<br />

H<br />

Isoguvacine<br />

N<br />

H<br />

THIP<br />

C. G. Wermuth in C. G. Wermuth (Ed.), The Practice <strong>of</strong> Medicinal <strong>Chemistry</strong>, Elsevier, London (2003).<br />

Antiulcer H 2 -receptor histamine antagonists:<br />

Reviews:<br />

G. A. Patani, E. J. LaVoie "Bioisosterism: A Rational Approach in Drug Design", Chem. Rev. 1996, 96,<br />

3147-3176.<br />

HN N<br />

S<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

O<br />

S<br />

H<br />

N<br />

O<br />

N<br />

O<br />

H<br />

N<br />

N<br />

S<br />

N<br />

S<br />

H<br />

N<br />

O<br />

N<br />

O<br />

H<br />

N<br />

P. H. Olesen "The use <strong>of</strong> bioisosteric groups in lead optimization", Chem. Rev. 1996, 96, 3147-3176.<br />

Cimetidine<br />

Ranitidine<br />

Nizatidine<br />

C. G. Wermuth in C. G. Wermuth (Ed.), The Practice <strong>of</strong> Medicinal <strong>Chemistry</strong>, Elsevier, London (2003),<br />

189-214.<br />

Carboxylic Acid Isosteres:<br />

Ring Isosterism:<br />

O<br />

M = 26 g/mol<br />

bp<br />

:S<br />

M = 32 g/mol<br />

bp<br />

O H<br />

O<br />

N OH<br />

H<br />

high chelating power<br />

Benzene<br />

Methylbenzene<br />

Chlorobenzene<br />

Acetylbenzene<br />

80 °C<br />

110 °C<br />

132 °C<br />

200 °C<br />

Thiophene<br />

2-Methyl-thiophene<br />

2-Chloro-thiophene<br />

2-Acetyl-thiophene<br />

84 °C<br />

113 °C<br />

130 °C<br />

214 °C<br />

N N<br />

N N<br />

H<br />

N O<br />

N<br />

H<br />

O<br />

increased bioavailability, widely used, pKa = 6.6 -7.2<br />

lipophilic replacement<br />

Bioisosterism1-041205


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 9<br />

6.-7.12.2005<br />

Synthesis, Reactivity, and Use <strong>of</strong> Heterocycles:<br />

3-Ring-Systems:<br />

3H-Diazirines:<br />

Synthesis:<br />

- Oxidation <strong>of</strong> Diaziridines<br />

Application:<br />

- Photoaffinity Labelling<br />

Aziridines:<br />

Polyethylenimine (PEI)<br />

Reduced Pyrimidal Inversion <strong>of</strong> N, Bearing EWG Groups<br />

4-Ring-Systems:<br />

Azetidines<br />

Azetidinones (β-Lactams):<br />

Synthesis:<br />

- Reaction between Imines and Ketenes (STAUDINGER-Reaction)<br />

- [2+2]-Cycloaddition between Olefins and Chlorosulfonylisocyanate<br />

Reactivity:<br />

- Nucleophilic Opening<br />

- Carbonly-Reactivity: Wittig-Reaction<br />

Application:<br />

-β-Lactam-Antibiotics (Penicillin, Cephalosporin, Resistence, β-Lactamase)<br />

Synthesis:<br />

- Cyclisation <strong>of</strong> β-Substituted Amines (GABRIEL-Synthesis,<br />

WENKER-Synthesis)<br />

- Cyloaddition <strong>of</strong> Nitrenes to Olefins<br />

- N 2 -Extrusion <strong>of</strong> Triazolines<br />

Reactions:<br />

- Ring Opening Reactions with Nucleophiles<br />

- Thermal /Photochemical Preparation <strong>of</strong> 1,3-Dipoles<br />

Application:<br />

Chemotherapy: DNA Cross-Linking through N-Lost and Mitomycin<br />

Literature<br />

T. Eicher, S. Hauptmann, "The <strong>Chemistry</strong> <strong>of</strong> Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages.<br />

(Excellent chapters about ring systems.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(The chapters about small rings are not as comprehensive and terrific as for 5- and 6-membered<br />

rings, but nevertheless worth reading.)<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Description <strong>of</strong> ring systems not very well structured but nevertheless insightful.)<br />

WWW-Link<br />

http://www.ch.ic.ac.uk/video/woodward/index_embed.html<br />

Lecture9-061205<br />

(A video showing the first minutes <strong>of</strong> R. B. Woodward's recorded lecture at the Technion in Haifa<br />

1966 about the Synthesis <strong>of</strong> Cephalosporin C.)


R. <strong>Breinbauer</strong> ACHMATOWICZ - Rearrangement<br />

E. F. Ullman, J. E. Milks, J. Am. Chem. Soc. 1962, 84, 1315.<br />

The pyranulose products allow the generation <strong>of</strong> 3-oxidopyryllium species, which undergo cycloaddition<br />

reactions.<br />

J. B. Hedrickson, J. S. Farina, J. Org. Chem. 1980, 45, 3359.<br />

Review: P. G. Sammes, Gazz. Chim. Ital. 1986, 116, 109-114.<br />

O<br />

OH<br />

R 1 R 2<br />

MeO<br />

O<br />

OMe<br />

R 1 R 2<br />

OH<br />

O<br />

O<br />

H<br />

HO R 2<br />

R 1<br />

HO<br />

O<br />

O<br />

R 1<br />

R 2<br />

O OBn<br />

O CH 3 OAc<br />

1) NaBH 4 , MeOH, 0 °C<br />

2) mCPBA, THF, 0 °C<br />

3) Ac 2 O,pyr, DMAP<br />

96 % (3 steps)<br />

TBSO<br />

AcO<br />

O<br />

O<br />

OBn<br />

CH 3 OAc<br />

OTBS<br />

C6-epimers<br />

Ph<br />

O<br />

OH<br />

Me<br />

Br 2 , MeOH, -35 °C<br />

then NH 3(g)<br />

92 %<br />

MeO<br />

O<br />

2% H 2 SO 4 , 90 min, RT<br />

OMe<br />

Me<br />

O. Achmatowicz Jr., P. Bukowski, B. Szechner, Z. Zwierzchowska, A. Zamojski,<br />

Tetrahedron 1970, 27, 1973-1996.<br />

OH<br />

99 %<br />

HO<br />

O<br />

O<br />

Me<br />

H O<br />

O O<br />

OHO<br />

O<br />

O<br />

(+)-Resiniferatoxin<br />

OMe<br />

OH<br />

P. A. Wender, C. D. Jesudason, H. Nakahira, N. Tamaura, A. L. Tebbe, Y. Ueno,<br />

J. Am. Chem. Soc. 1997, 119, 12976-12977.<br />

HO<br />

MeO<br />

OH<br />

O<br />

O<br />

mCPBA<br />

O<br />

65 %<br />

MeO<br />

Y. Lefebvre, Tetrahedron Lett. 1972, 13, 133-136.<br />

O<br />

OTBS<br />

OHCH 3<br />

OAc<br />

1) VO(acac) 2<br />

tBuOOH, DCM<br />

2) Ac 2 O,pyr, DMAP<br />

88 %<br />

TBSO<br />

AcO<br />

O<br />

O<br />

CH 3<br />

OAc<br />

2:1 C6-epimers<br />

OH<br />

H OH<br />

OH<br />

OHO<br />

OH<br />

Phorbol<br />

Achmatowicz-Rearrangement1-30.5.2001 P. A. Wender, K. D. Rice, M. E. Schnute J. Am. Chem. Soc. 1997, 119, 7897-7898.


R. <strong>Breinbauer</strong> Aza - ACHMATOWICZ - Rearrangement<br />

Review:<br />

M. A. Ciufolini, C. Y. W. Hermann, Q. Dong, T. Shimizu, S. Swaminathan, N. Xi, Synlett 1998, 105-114.<br />

O<br />

R 1<br />

HN R<br />

2<br />

Ox<br />

O<br />

R 1<br />

N<br />

R 2<br />

OH<br />

N 3<br />

O<br />

H<br />

H<br />

N<br />

H<br />

Br 2 , MeOH, -20 °C<br />

then NH 3<br />

95 %<br />

MeO<br />

H H<br />

N 3 O<br />

OMe<br />

N<br />

O H<br />

Raney-Ni<br />

H 2 , 1500 psi<br />

50 °C<br />

99 %<br />

MeO<br />

H H<br />

H 2 N<br />

N<br />

H<br />

O<br />

OMe<br />

H<br />

iBuO HN<br />

O<br />

O<br />

O<br />

N<br />

O<br />

This direct oxidation route, is only amenable if R 2 = SO 2 R, otherwise 3-pyridinols form by aromatization.<br />

Hydrogenation <strong>of</strong> the double bond before the rearrangement prevents the substrate from aromatization.<br />

O<br />

H<br />

OMe<br />

10 % TFA<br />

CHCl 3 , 0 °C<br />

99 %<br />

MeO<br />

H H<br />

iBuO HN<br />

O N<br />

O H<br />

O<br />

OMe<br />

85 %<br />

iBuOOCCl<br />

satd. NaHCO 3<br />

0 °C<br />

O<br />

HN<br />

X O<br />

Br 2 , MeOH, Et 2 O, -40 °C<br />

then NH 3(g)<br />

85 - 95 %<br />

MeO<br />

O<br />

OMe<br />

HN<br />

X O<br />

M. A. Ciufolini, Q. Dong, J. Chem. Soc., Chem. Commun. 1996, 881.<br />

X = CH 2 , O<br />

O<br />

H<br />

N<br />

OH<br />

X<br />

O<br />

15 mol-% TfOH<br />

2 eq H 2 O<br />

THF, RT<br />

80 - 91 %<br />

95 - 99 %<br />

MeO<br />

O<br />

Raney-Ni<br />

H 2 , 1500 psi<br />

50 °C<br />

OMe<br />

HN<br />

M. A. Ciufolini, C. Wood, Tetrahedron Lett. 1986, 27, 5085.<br />

X<br />

O<br />

O<br />

OCH 3<br />

NHTs<br />

Ti(OiPr) 4 , L-(+)-DIPT<br />

TBHP, silica gel, CaH 2<br />

DCM, RT, 5 d<br />

40 %<br />

(from 2-furaldehyde)<br />

O<br />

HO<br />

OCH 3<br />

NHTs<br />

OH<br />

N<br />

H<br />

OH<br />

OH<br />

Deoxymannojirimycin<br />

+<br />

HO<br />

N<br />

Ts<br />

O<br />

OCH 3<br />

Achmatowicz-Rearrangement2-27.9.2001<br />

Y.-M. Xu, W.-S. Zhou, Tetrahedron Lett. 1996, 37, 1461-1462.


R. <strong>Breinbauer</strong><br />

Synthesis <strong>of</strong> Pyrroles I<br />

PAAL-KNORR - Synthesis:<br />

R 1<br />

R 1<br />

X<br />

O<br />

R 2 R 3<br />

O<br />

O<br />

R 2 R 3<br />

R 4<br />

R 1 R 4<br />

O<br />

CH 3 O OCH 3<br />

HANTZSCH - Synthesis:<br />

X = Br, Cl<br />

KNORR - Synthesis:<br />

R 1 O<br />

EWG<br />

+<br />

R 2 NH 2 O R 3<br />

R 3<br />

R 2 O +<br />

H 2 N CO 2 R<br />

R 1 O<br />

+<br />

(can be produced<br />

by in-situ-reduction<br />

<strong>of</strong> α-oximinoketones)<br />

NH 3 or R-NH 2<br />

AcOH<br />

EWG<br />

NH 3 or R-NH 2<br />

R 2<br />

R 3<br />

AcOH<br />

R 1<br />

N R 4<br />

NH 3 or R-NH 2<br />

from 1,3-Dicarbonyls and Glycine Esters<br />

R<br />

VAN LEUSEN - Synthesis:<br />

R 1<br />

EWG<br />

R 1 EWG<br />

R 1 R 2<br />

R 2 N R 3<br />

Zn/AcOH<br />

RO 2 C CO 2 R<br />

H<br />

N N<br />

(from Hetero--Diels-Alder-reaction)<br />

HUISGEN - Synthesis<br />

R 3 EWG<br />

R 2 R 3<br />

+<br />

R 1<br />

R 1 R 1<br />

N<br />

CO 2 R<br />

HN<br />

O<br />

H<br />

N<br />

O<br />

R 2 O<br />

R 2 O<br />

Tos N C<br />

R 2 R 3<br />

(TosMIC)<br />

R 1<br />

N R 4<br />

R<br />

BARTON-ZARD - Synthesis:<br />

R 1 NO 2<br />

EWG<br />

R 2<br />

+<br />

DBU<br />

R 1<br />

RO<br />

N<br />

R 2<br />

2 C N C<br />

R<br />

(isocyanoacetate)<br />

Ring Contraction <strong>of</strong> Pyridazines:<br />

+<br />

NaH<br />

R 1<br />

N<br />

H<br />

RO 2 C<br />

RO 2 C<br />

EWG<br />

R 1 R 2<br />

R 1<br />

R 2 R 3<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

R 2<br />

CO 2 R<br />

EWG<br />

R 1<br />

(azlactone)<br />

Pyrrole-Synthesis1-061205


R. <strong>Breinbauer</strong><br />

Synthesis <strong>of</strong> Imidazoles<br />

MARCKWALD - Synthesis:<br />

R 2 O H 2 N<br />

+<br />

C<br />

N<br />

R 1 NH 2<br />

(cyanamide)<br />

R 2 O R 3<br />

N<br />

+ C<br />

R 1 NH 2 S<br />

(isothiocyanate)<br />

R 2 O<br />

+ NH 2<br />

R 1 X HN R 2<br />

X = Br, Cl, OH<br />

from Amidines:<br />

BREDERECK - Synthesis:<br />

R 1 O<br />

+<br />

R 2 OH<br />

O<br />

H 2 N<br />

H<br />

from 1,2-Dicarbonyls:<br />

2<br />

R 2 O H<br />

+<br />

R 1 O<br />

O R 3<br />

2 NH 3<br />

VAN LEUSEN - Synthesis:<br />

R 2<br />

N<br />

Tos N C<br />

R 1 N NH 2<br />

(TosMIC)<br />

H<br />

K 2 CO 3<br />

N<br />

+<br />

H<br />

R 1 N<br />

R 1 R 2 N<br />

R 2<br />

R 2 R 3<br />

N<br />

R 1 N S<br />

H<br />

by Dehydrogenation:<br />

MnO 2 or<br />

R 2<br />

R 2<br />

CuBr 2 /Base or<br />

N<br />

R 2 NH<br />

BrCCl 3 /DBU<br />

R 1<br />

N<br />

R 1 N<br />

N R 3<br />

R 1 N<br />

H<br />

NR 3<br />

H<br />

H<br />

(from 1,2- diamines and aldehydes)<br />

R 1<br />

R 2 N<br />

H<br />

(2-unsubstituted imidazoles)<br />

R 2 N<br />

R 1 N<br />

R 3<br />

H<br />

R 3<br />

Imidazole-Synthesis1-071205


R. <strong>Breinbauer</strong> TosMIC - Imidazol-Synthesis<br />

Large Scale Preparation <strong>of</strong> Aryl-substituted TosMIC:<br />

Process by GlaxoSmithKline:<br />

F<br />

O<br />

H<br />

HCONH 2<br />

TMSCl<br />

50 °C<br />

PhMe/CH 3 CN<br />

F<br />

H<br />

O<br />

N<br />

H<br />

O<br />

N H<br />

H<br />

TolSO 2 H<br />

50 °C<br />

93 %<br />

F<br />

SO 2 O<br />

N<br />

H<br />

H<br />

SPr 3 N HCl<br />

N N<br />

OMe<br />

OMe<br />

SPr<br />

N N<br />

H<br />

O<br />

+<br />

OH<br />

NH 2<br />

N<br />

SPr<br />

N<br />

N<br />

OH<br />

2 eq POCl 3<br />

ex Et 3 N<br />

THF, 0 °C<br />

HO<br />

O<br />

O<br />

H<br />

50 % aqueous<br />

+ +<br />

H 2 N CO 2 Me<br />

Cl<br />

Tol<br />

Cl<br />

SO 2<br />

N<br />

C<br />

>500 kg scale<br />

K 2 CO 3<br />

DMF<br />

F<br />

Cl<br />

Cl<br />

SO 2<br />

N<br />

C<br />

J. Sisko, M. Mellinger, P. W. Sheldrake, N. H. Baine, Tetrahedron Lett. 1996, 37, 8113-8116.<br />

J. Sisko, M. Mellinger, P. W. Sheldrake, N. H. Baine, Org. Synth. 2000, 77, 198-205.<br />

J. Sisko, M. Mellinger, Pure Appl. Chem. 2002, 74, 1349-1357.<br />

87 %<br />

(98 % ee)<br />

N<br />

N<br />

CO 2 Me<br />

MeO<br />

N<br />

F<br />

N<br />

OH<br />

N<br />

N<br />

p38 Kinase Inhibitor<br />

F<br />

1) Oxone<br />

MeOH, H 2 O<br />

2) NaOH<br />

90 %<br />

SO 2<br />

N<br />

C<br />

K 2 CO 3<br />

DMF, RT<br />

PrS<br />

N<br />

F<br />

60 % (one pot)<br />

N<br />

OH<br />

J. Sisko, M. Mellinger, Pure Appl. Chem. 2002, 74, 1349-1357.<br />

N<br />

N<br />

O<br />

H<br />

+ NH 4 OH +<br />

S<br />

Tol<br />

SO 2<br />

N<br />

C<br />

piperazine<br />

THF, RT<br />

78 %<br />

H<br />

N<br />

N<br />

S<br />

TOSMIC-Imidazol-221002<br />

J. Sisko, M. Mellinger, Pure Appl. Chem. 2002, 74, 1349-1357.


R. <strong>Breinbauer</strong><br />

Synthesis <strong>of</strong> Oxazoles<br />

ROBINSON-GABRIEL - Synthesis:<br />

Rh 2 (OAc) 4<br />

R 2 R 2<br />

H<br />

H 2 SO 4 or PPA<br />

N<br />

N<br />

R 1<br />

R 3<br />

R 1 O R 3<br />

O O<br />

R 1 O NH 2<br />

R 2<br />

+<br />

R 2 X O R 3 N<br />

R 1 O R 3<br />

(α-(acylimino)ketones)<br />

H<br />

R 2 NH 3<br />

R 2 O<br />

O<br />

R 1<br />

R 3 R 1 N<br />

R 3<br />

O O<br />

R 1 O<br />

Cl<br />

R 1 O<br />

from α-(Acyloxy)ketones:<br />

BLÜMLEIN-LEWY - Synthesis:<br />

X = Br, Cl, OH<br />

VAN LEUSEN - Synthesis:<br />

+<br />

Tos<br />

Li<br />

R 2<br />

N C<br />

(TosMIC)<br />

SCHÖLLKOPF - Synthesis:<br />

+<br />

by Dehydrogenation:<br />

R 1 R 2<br />

N C<br />

(α-metallated isonitrile<br />

NH<br />

O R 3<br />

K 2 CO 3<br />

MnO 2 or<br />

CuBr 2 /Base or<br />

BrCCl 3 /DBU<br />

N<br />

R 1<br />

O<br />

R 2<br />

N<br />

R 1 O<br />

R 2<br />

N<br />

R 1 O R 3<br />

(from β-aminoalcohols and aldehydes)<br />

from α-Diazocarbonyl Compounds:<br />

R 2 N 2 N<br />

+ C R<br />

3<br />

R 1 O<br />

R 1 R 2<br />

N<br />

O R 3<br />

(via carbene intermediate)<br />

Oxazole-Synthesis1-071205


R. <strong>Breinbauer</strong> WIPF - Oxazole Synthesis<br />

One-Pot method:<br />

R<br />

NH<br />

HO<br />

O R'<br />

R<br />

O<br />

N<br />

R'<br />

A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno, D. R. Williams, Organic Lett. 2000, 2, 1165-1168.<br />

CO 2 Me<br />

CO 2 Me<br />

H<br />

O<br />

DAST, DCM, -20 °C<br />

NH<br />

N<br />

N<br />

OH<br />

BrCCl 3 , DBU, 0 °C<br />

O<br />

O<br />

O<br />

64 %<br />

NHCO 2 Me<br />

NHCO 2 Me<br />

NHCO 2 Me<br />

P. Wipf, S. Lim, J. Am. Chem. Soc. 1995, 117, 558.<br />

Application:<br />

O<br />

OH<br />

Boc O<br />

Me<br />

N<br />

OTES<br />

O<br />

Me Me<br />

Phorboxazole A<br />

+<br />

HO<br />

H 2 N O<br />

PMBO<br />

O<br />

OTBDPS<br />

Boc<br />

N<br />

O<br />

1) EDC*MeI, HOBt, DCM<br />

87 %<br />

2) Dess-Martin-periodinane<br />

3) a) (BrCCl 2 ) 2 , Ph 3 P, DCM<br />

2,6-lutidine<br />

b) DBU, CH 3 CN<br />

Me<br />

77% (2 steps)<br />

O<br />

Me<br />

O<br />

Me<br />

N<br />

OTES<br />

O<br />

PMBO<br />

OTBDPS<br />

O<br />

MeO 2 C<br />

N 3<br />

K. R. Hornberger, C. L. Hamblett, J. L. Leighton, J. Am. Chem. Soc. 2000, 122,<br />

12894-12895.<br />

In the Smith Calyculin Synthesis the Wipf method proved out to be superior to other methods, which all<br />

led to empimerization at the α-methyl group:<br />

HN<br />

O<br />

OH<br />

1) MeO 2 CNSO 2 NEt 3<br />

THF, 55 °C<br />

84 %<br />

2) CuBr 2 , HMTA, DBU<br />

DCM<br />

80 %<br />

CN<br />

MeO 2 C<br />

N 3<br />

OH<br />

N<br />

OH<br />

O<br />

HO<br />

HO<br />

P O<br />

O<br />

OMe<br />

MeO<br />

(+)-Calyculin A<br />

O<br />

20<br />

O<br />

OH<br />

OH<br />

NMe 2<br />

OH<br />

O<br />

25<br />

N<br />

H<br />

N<br />

O<br />

Wipf-Oxazol-101205<br />

C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc. 1998, 120, 5597-5598.<br />

A. B. Smith III, G. K. Friestad, J. Barbosa, E. Bertounesque, K. G. Hall, M. Iwashima, Y. Qiu, B. A.<br />

Salvatore, P. G. Spoors, J. J.-W. Duan, J. Am. Chem. Soc. 1999, 121, 10478-10486.


R. <strong>Breinbauer</strong><br />

Synthesis <strong>of</strong> Thiazoles<br />

GABRIEL - Synthesis:<br />

R 2 R 2<br />

H<br />

P 4 S 10<br />

N<br />

N<br />

R 1<br />

R 3 R 1 S R 3<br />

O O<br />

(α-(acylimino)ketones)<br />

R 1 O NH 2<br />

R 2<br />

+<br />

R 2 X S R 3<br />

N<br />

R 1 S<br />

R 3<br />

X = Br, Cl<br />

R 1 R<br />

NH 1<br />

2<br />

N<br />

S<br />

C + C<br />

H 2 N<br />

N<br />

S<br />

S SH<br />

(α-aminonitriles)<br />

R 2 NH 3 R 2<br />

S<br />

S<br />

R 1<br />

R 3 R 1 N R 3<br />

O O<br />

HANTZSCH - Synthesis:<br />

COOK-HEILBRON - Synthesis<br />

from α-(Acylthio)ketones:<br />

by Dehydrogenation:<br />

R 2<br />

NH<br />

R 1 S<br />

R 3<br />

(from β-aminothiols and aldehydes)<br />

MnO 2 or<br />

CuBr 2 /Base or<br />

BrCCl 3 /DBU<br />

R 1 R 2<br />

N<br />

S R 3<br />

Thiazole-Synthesis1-071205


R. <strong>Breinbauer</strong><br />

Synthesis, Reactivity, and Use <strong>of</strong> Heterocycles:<br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 10<br />

Literature<br />

14.12.2005<br />

5-Ring-Systems:<br />

Furans:<br />

Synthesis:<br />

Reactions:<br />

- Achmatowicz-Rearrangement<br />

- Aza-Achmatowicz-Rearrangement<br />

Thiophens:<br />

Synthesis:<br />

- Mechanism <strong>of</strong> GEWALD-Synthesis<br />

Application:<br />

-Bioisosterism<br />

T. Eicher, S. Hauptmann, "The <strong>Chemistry</strong> <strong>of</strong> Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages.<br />

(Excellent chapters about ring systems.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(The chapters about small rings are not as comprehensive and terrific as for 5- and 6-membered<br />

rings, but nevertheless worth reading.)<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Descrption <strong>of</strong> ring systems not very well structured but nevertheless insightful.)<br />

G. Pohnert, "Wundverschlüsse durch Biopolymerisation", Nachrichten Chemie 2005, Heft 6, 638ff.<br />

(Descrption <strong>of</strong> the green algae Caulerpa taxifolia and how it spread through the mediterrean sea.)<br />

Pyrroles:<br />

Synthesis:<br />

Application:<br />

- Neurotoxicity <strong>of</strong> n-Hexanes<br />

- Wound Healing <strong>of</strong> Caulerpa taxifolia<br />

Lecture10-090106


R. <strong>Breinbauer</strong><br />

Privileged Structures<br />

Definition:<br />

Privileged Structures:<br />

Privileged structures are defined as a single molecular framework<br />

able to provide ligands for diverse protein receptors.<br />

N<br />

"...judicious modification <strong>of</strong> such structures could be a viable alternative in the<br />

search for new receptor agonists and antagonists"<br />

H<br />

N<br />

N<br />

N N<br />

N<br />

R<br />

R<br />

N<br />

R<br />

B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPrado, R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F.<br />

Veber, P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino, T. B. Chen, P. J. Kling, K. A. Kunkel, J. P.<br />

Springer, J. Hirshfield, J. Med. Chem. 1988, 31, 2235-2246.<br />

Biphenyltetrazoles Diphenylmethanes Arylspiropiperidines Arylalkylamines<br />

Cl<br />

Benzodiazepines:<br />

H<br />

N<br />

N<br />

O<br />

N<br />

H<br />

F<br />

H 3 C<br />

N<br />

N<br />

NH<br />

O<br />

S<br />

H<br />

N<br />

N<br />

O<br />

O<br />

N<br />

CH 3<br />

CF 3<br />

CF 3<br />

Substructure Analysis <strong>of</strong> Drugs:<br />

5120 known drugs were analysed for molecular frameworks and side chains:<br />

- 1179 frameworks identified; 32 <strong>of</strong> these account for half <strong>of</strong> all drugs<br />

(Cholecystokinin antagonist)<br />

Trifluadom<br />

(Opiate receptor)<br />

(NK-1 antagonist)<br />

606 247 195 142 129 119 119<br />

H 3 C<br />

N<br />

N<br />

N<br />

O<br />

N<br />

H<br />

O<br />

H<br />

N<br />

O<br />

(K-Secretase inhibitor)<br />

F<br />

F<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

O<br />

O<br />

F 3 C<br />

(Farnesyl transferase inhibitor)<br />

G. W. Bemis, M. A. Murcko, J. Med. Chem. 1996, 39, 2887-2893.<br />

- 20 different side-chains account for 75 % <strong>of</strong> the total<br />

CH 3 OH OCH 3 Cl HN CH 3 NH 2 O<br />

OH<br />

3125 2566 916 823 719 549 454<br />

F S O<br />

O<br />

OH CH 3<br />

O<br />

NO 2<br />

355 331 235 214 155 137<br />

PrivilegedStructures1-111202<br />

G. W. Bemis, M. A. Murcko, J. Med. Chem. 1999, 42, 5095-5099.


R. <strong>Breinbauer</strong><br />

<strong>Heterocyclic</strong> <strong>Chemistry</strong> - Week 11<br />

10.-11.1.2006<br />

Synthesis, Reactivity, and Use <strong>of</strong> Heterocycles:<br />

5-Ring-Systems:<br />

Imidazoles:<br />

Synthesis:<br />

- Mechanism <strong>of</strong> the Reaction based on TosMIC<br />

Application:<br />

- Histidine: Metalloenzymes, Ser-Proteases<br />

- Histamine:<br />

- Coupling with 1,1'-Carbonyldiimidazolide (CDI)<br />

- Ionic Liquids: BASIL-Process<br />

- Organocatalysis: MACMILLAN's Catalyst: Asymmetric Hydrogenation<br />

Oxazoles:<br />

Literature<br />

T. Eicher, S. Hauptmann, "The <strong>Chemistry</strong> <strong>of</strong> Heterocycles", Wiley-VCH, Weinheim 2003, 572 pages.<br />

(Excellent chapters about ring systems.)<br />

J. A. Joule, K. Mills, "<strong>Heterocyclic</strong> <strong>Chemistry</strong>", 4th ed., Blackwell Science, Oxford 2000, 589 pp.<br />

(The chapters about small rings are not as comprehensive and terrific as for 5- and 6-membered<br />

rings, but nevertheless worth reading.)<br />

T. L. Gilchrist, "Heterocyclenchemie", Wiley-VCH, Weinheim 1995, 445 pp.<br />

(Description <strong>of</strong> ring systems not very well structured but nevertheless insightful.)<br />

J. W. Yang, M. H. Fonseca, Ni. Vignola, B. List, "Metal-Free, Organocatalytic Asymmetric Transfer<br />

Hydrogenation <strong>of</strong> α,β-Unsaturated Aldehydes", Angew. Chem. 2005, 117, 110-112.<br />

Synthesis:<br />

- Mechanism <strong>of</strong> the WIPF-Synthesis<br />

Application:<br />

- Ligands: Bis(oxazolines), PhoBox-Ligand<br />

- Auxiliary: EVANS-Auxiliary<br />

Thiazoles:<br />

Synthesis:<br />

Application:<br />

- DONDONI-Reagent<br />

1,2-Azoles:<br />

Synthesis:<br />

- from 1,3-Dicarbonyl Compounds<br />

- by [3+2]-Cycloaddition<br />

- Isothiazoles by Oxidation <strong>of</strong> β-Iminothiones<br />

Lecture11-110106


R. <strong>Breinbauer</strong> Isoxazol - Coupling<br />

Preparation <strong>of</strong> nitro compunds from bromides<br />

Isoxazoles are a synthon for 1,3-diketones.<br />

N. Kornblum, B. Taub, H. E. Ungnade, J. Am. Chem. Soc. 1954, 76, 3209-3211.<br />

N. Kornblum, H. E. Ungnade, Org. Synth. 1963, Coll Vol. IV, 724-727.<br />

Preparation <strong>of</strong> Nitrile Oxides from Nitroalkanes:<br />

T. Mukaiyama, T. Hoshino, J. Am. Chem. Soc. 1960, 82, 5339-5342.<br />

Macrolactonization via intramolecular [3+2] cycloaddition:<br />

Br<br />

O<br />

Me<br />

Me<br />

Me<br />

OTBS<br />

1) AgNO 2 , Et 2 O<br />

78 %<br />

2) HF.pyr, pyr/THF<br />

85 %<br />

O 2 N<br />

O<br />

Me<br />

Me<br />

Me<br />

OH<br />

S. S. Ko, P. N. Confalone, Tetrahedron 1985, 41, 3511-3518.<br />

Me<br />

O<br />

N<br />

O<br />

O<br />

Me<br />

Me<br />

O<br />

O<br />

Me<br />

OTES O<br />

Me<br />

OMe<br />

3-ClPhNCO, DIPEA<br />

benzene, 90 °C<br />

20 h addition <strong>of</strong> substrate<br />

68 %<br />

O 2 N<br />

Me<br />

O<br />

Me<br />

Me<br />

O O<br />

O<br />

Me<br />

OTES O<br />

Me<br />

OMe<br />

Me<br />

Me<br />

X p<br />

Me<br />

O<br />

OPMB<br />

CO 2 Me<br />

X p<br />

Me<br />

O<br />

OPMB<br />

CO 2 Me<br />

M<br />

e<br />

O<br />

X p<br />

N<br />

O<br />

O<br />

Me<br />

O<br />

Me<br />

O<br />

O<br />

Me<br />

OTES<br />

O<br />

OPMB<br />

Me<br />

OH<br />

CO 2 Me<br />

A: Mo(CO) 6<br />

H 2 O, MeCN, 70 °C<br />

B:<br />

69 %<br />

or<br />

W-2 Raney-Ni<br />

1 atm H 2<br />

EtOAc/AcOH<br />

74 %<br />

Me<br />

H<br />

O<br />

O<br />

Me<br />

Me<br />

OH<br />

Me<br />

O<br />

O<br />

O<br />

OPMB<br />

CO 2 Me<br />

D. A. Evans, D. H. B. Ripin, D. P. Halstead, K. R. Campos, J. Am. Chem. Soc. 1999, 121, 6816-6826.<br />

H<br />

N<br />

Me<br />

OH<br />

H<br />

O<br />

Me<br />

O<br />

O<br />

Me<br />

Me<br />

O<br />

O<br />

Me<br />

OH O<br />

Me<br />

OH<br />

1) pH 10 buffer<br />

95 %<br />

2) DDQ, H 2 O, DCM<br />

77 %<br />

Me<br />

O<br />

H<br />

Me<br />

Me<br />

O<br />

O<br />

OH<br />

Me<br />

O O<br />

Me<br />

OH<br />

Me<br />

OPMB<br />

CO 2 Me<br />

OH<br />

Me<br />

OH<br />

CO 2 Me<br />

(+)-Miyakolide<br />

Isoxazol-coupling1-15.3.2001<br />

D. A. Evans, D. H. B. Ripin, D. P. Halstead, K. R. Campos, J. Am. Chem. Soc. 1999, 121, 6816-6826.


R. <strong>Breinbauer</strong><br />

FISCHER - Indole Synthesis:<br />

Synthesis <strong>of</strong> Indoles<br />

REISSERT - Synthesis:<br />

H<br />

or Lewis-acid<br />

R 2 R 1<br />

N<br />

H<br />

N<br />

H<br />

R 2<br />

R 3<br />

+<br />

R 3 NH<br />

CH 3 R 2 O OR 2<br />

N 2<br />

R 1<br />

CO 2 R 2 H 2 /Pd<br />

O<br />

R 1 R<br />

H<br />

1 R 1<br />

NO<br />

O<br />

2<br />

NO 2<br />

works best if R 3 = EDG<br />

BATCHO-LEIMGRUBER - Synthesis:<br />

NENITZESCU - Synthesis:<br />

MeO<br />

O<br />

CO 2 R<br />

NMe 2<br />

R 1<br />

HO<br />

+<br />

CH 3 MeO<br />

NMe 2 H 2 /Pd<br />

R 1 R 1<br />

R 1<br />

O NH 2<br />

N<br />

H<br />

NO 2<br />

NO 2<br />

LAROCK - Synthesis:<br />

MADELUNG - Synthesis:<br />

cat. Pd(OAc) 2<br />

I<br />

CH 3O NaNH 2<br />

R 1 R 1 R 2<br />

R 1<br />

R 3 Base<br />

+<br />

R 2 DMF<br />

R 1<br />

N<br />

NH<br />

N<br />

H<br />

R 2<br />

250 °C<br />

H<br />

R<br />

due to harsh reaction conditions is limited to R 2 = alkyl<br />

BARTOLI - Synthesis:<br />

BISCHLER - Synthesis:<br />

3 eq MgBr<br />

R 3<br />

O R 3<br />

H<br />

R 3<br />

NO 2<br />

R 1 R1 N R 3<br />

N<br />

R 1 R 1<br />

R 2 R 2<br />

O<br />

O<br />

ortho-substituted nitrobenzenes<br />

N<br />

H<br />

CO 2 R<br />

R 1<br />

R 3<br />

N<br />

H<br />

N<br />

R<br />

R 2<br />

CO 2 R 2<br />

Indole-Synthesis1-110106


R. <strong>Breinbauer</strong><br />

BORCHARDT - Indole -Synthesis<br />

The reductive cyclization <strong>of</strong> 2,β-dinitrostyrenes is the most convenient method for the<br />

synthesis <strong>of</strong> N-unsubstituted alkoxyindoles. The usually moderate yields (30-50 %)<br />

can be increased by the addition <strong>of</strong> silica following the modificaton by Borchardt.<br />

excess Fe-powder<br />

R 2 silica gel<br />

R 3 NO 2<br />

AcOH<br />

R 4 R 1 benzene/cyclohexane<br />

NO 2 or<br />

R 5 toluene<br />

reflux, 1 h<br />

R 3 R 2 R 1<br />

R 4 R 5 N<br />

H<br />

NO 2<br />

NO 2<br />

OMe<br />

OMe<br />

excess Fe-powder<br />

silica gel<br />

AcOH/toluene<br />

reflux, 15 min<br />

71 %<br />

MeO<br />

OMe<br />

N<br />

H<br />

MeO<br />

F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 6771-6772.<br />

N<br />

O<br />

N H<br />

OMe Me<br />

Aspidophytine<br />

O<br />

A. K. Sinhababu, R. T. Borchardt, J. Org. Chem. 1983, 48, 3347.<br />

Examples:<br />

MeO<br />

NO 2<br />

Me<br />

MeO NO 2<br />

excess Fe-powder<br />

silica gel<br />

AcOH<br />

benzene/cyclohexane = 1:3<br />

reflux, 1 h<br />

93 %<br />

MeO<br />

MeO<br />

N<br />

H<br />

Me<br />

O<br />

O<br />

NO 2<br />

NO 2<br />

excess Fe-powder<br />

silica gel<br />

AcOH<br />

benzene/cyclohexane = 1:3<br />

reflux, 1 h<br />

91 %<br />

O<br />

O<br />

N<br />

H<br />

PhCH 2 O<br />

PhCH 2 O<br />

NO 2<br />

NO 2<br />

excess Fe-powder<br />

silica gel<br />

AcOH<br />

toluene<br />

reflux, 1 h<br />

75 %<br />

PhCH 2 O<br />

PhCH 2 O<br />

N<br />

H<br />

Borchardt-Indole-Synthesis1-2.6.2001


R. <strong>Breinbauer</strong> FUKUYAMA - Synthesis <strong>of</strong> 2,3-disubstituted Indoles<br />

S<br />

NH<br />

R'<br />

R<br />

1-2 eq Bu 3 SnH<br />

0.1 eq Et 3 B<br />

toluene, RT, 5-40 min<br />

N<br />

H<br />

R<br />

R'<br />

Alternative method starting from phenyl isonitriles:<br />

S. Kobayashi, G. Peng, T. Fukuyama, Tetrahedron Lett. 1999, 40, 1519-1522.<br />

H. Tokuyama, T. Yamashita, M. T. Reding, Y. Kaburagi, T. Fukuyama, J. Am. Chem. Soc. 1999, 121,<br />

3791-3792.<br />

Mechanism:<br />

R<br />

. SnBu3<br />

R<br />

H<br />

R<br />

S<br />

NH<br />

R'<br />

N<br />

H<br />

R'<br />

SSnBu 3<br />

N<br />

H<br />

R'<br />

SSnBu 3<br />

- HSSnBu 3<br />

N<br />

R<br />

R'<br />

N<br />

H<br />

R<br />

R'<br />

Examples:<br />

Br<br />

N<br />

H<br />

OTHP<br />

N<br />

H<br />

OAc<br />

N<br />

H<br />

OTHP<br />

O<br />

NTBS<br />

N<br />

H<br />

OH<br />

81 % yield 89 % yield 93 % yield<br />

71 % yield<br />

Fukuyama-Indol-Synthesis1-100703


R. <strong>Breinbauer</strong><br />

HANTZSCH - Synthesis:<br />

Synthesis <strong>of</strong> Pyridines<br />

BOHLMANN-RAHTZ - Synthesis:<br />

R 1 R 2 R 2 H<br />

O H<br />

NH 3 EWG EWG<br />

EWG<br />

+ + EWG<br />

R 1 N<br />

R 1 O O R 1<br />

H<br />

R 1<br />

R 2 R 2 H<br />

O<br />

H 2 N R 3<br />

R 1 N<br />

H<br />

R 3<br />

EWG<br />

EWG EWG<br />

EWG<br />

+<br />

Synthesis via 1,5-Dicarbonyl Compounds:<br />

oxidation<br />

oxidation<br />

R 2 R 3<br />

R 2 +<br />

EWG EWG<br />

R 1 NH 2<br />

O R 4<br />

R 1 N R 1<br />

R 2<br />

EWG EWG<br />

R 1 N R 3<br />

KRÖHNKE - Reaction:<br />

R 2<br />

N<br />

+<br />

R 1 O<br />

O R 3<br />

NH 4 OAc<br />

AcOH<br />

R 3<br />

R 2 R 1 N R 4<br />

R 2<br />

R 1 N R 3<br />

R 1 R 2<br />

OO<br />

H 2 NOH<br />

R 1 R 2<br />

OO<br />

R 3<br />

O +<br />

EWG<br />

R 1 O<br />

H 2 N R 4<br />

H<br />

R 1 N R 2<br />

OH<br />

NH 3<br />

Synthesis via 1,3-Dicarbonyl Compounds:<br />

H<br />

R 1 N R 2<br />

R 1 +<br />

N<br />

- HNMe 2<br />

EWG<br />

R 1 N R 2<br />

NMe 2<br />

R 2<br />

R 3<br />

N<br />

+<br />

R 3<br />

N N<br />

N R 4 - N 2<br />

R 2 EWG<br />

R 1 - HN<br />

R 1 N R 4<br />

Synthesis via Cycloaddition:<br />

EWG<br />

BÖNNEMANN - Synthesis:<br />

R 1 EWG<br />

N EWG<br />

R 3<br />

R 2 R 4<br />

N R 1<br />

R 1<br />

CpCo(I)-complex<br />

N R 1<br />

Pyridine-Synthesis1-110106


R. <strong>Breinbauer</strong><br />

Synthesis <strong>of</strong> Quinolines<br />

FRIEDLÄNDER - Synthesis:<br />

DOEBNER-MILLER - Synthesis:<br />

R 1<br />

O<br />

R 2<br />

NH 2<br />

O<br />

KOH<br />

R 1 R 1 O<br />

N<br />

H<br />

isatin<br />

+ O<br />

R 2<br />

NH 2 O<br />

R 3<br />

O<br />

R 3<br />

R 4<br />

PFITZINGER - Synthesis:<br />

COMBES - Synthesis:<br />

+<br />

isatic acid<br />

COO<br />

NH 2<br />

O<br />

R 1<br />

- H 2 O<br />

O<br />

N<br />

H<br />

1)<br />

2)<br />

R 2<br />

O<br />

H<br />

R 3<br />

R 2<br />

R 3<br />

H<br />

R 1 R 1 R 1<br />

N<br />

R 2 R 2<br />

R 3<br />

O R 2<br />

O R 3 R 3<br />

H<br />

R 1 +<br />

R 1 R 1<br />

R 4<br />

NH 2<br />

R 3<br />

N R 4 As 2 O<br />

N R 4<br />

5<br />

R 4<br />

H (oxidant)<br />

SKRAUP - Synthesis: involves in situ-preparation <strong>of</strong> acrolein from glycerin/H 2 SO 4<br />

(is best synthesis for quinolines unsubstituted on the hetero-ring)<br />

METH-COHN - Synthesis:<br />

CO 2 H<br />

R 2<br />

R 3<br />

DMF<br />

N<br />

R 2<br />

Cl<br />

R 1 POCl 3<br />

R 2<br />

R 2<br />

R 1 R 1<br />

R 2 N O<br />

N O<br />

N Cl<br />

H<br />

H<br />

N R 3<br />

R 2 N<br />

Quinoline-Synthesis1-110106


R. <strong>Breinbauer</strong><br />

GOULD-JACOBS - Synthesis:<br />

Synthesis <strong>of</strong> Quinolones<br />

GROHE - Synthesis:<br />

NH 2<br />

+<br />

RO<br />

O<br />

R'O<br />

O<br />

OR<br />

O<br />

N<br />

H<br />

O<br />

OR<br />

O<br />

F<br />

Cl<br />

+<br />

O<br />

N<br />

O R1<br />

1) CHCl 3 , Et 3 N<br />

2) H 2 N R 2<br />

O<br />

N<br />

O<br />

O R1<br />

O<br />

N<br />

H<br />

R<br />

F<br />

F<br />

O<br />

F<br />

Cl<br />

O<br />

N<br />

O<br />

2) H 2 N<br />

F<br />

F<br />

O<br />

F<br />

O<br />

O<br />

N H<br />

R 2<br />

O<br />

O<br />

N<br />

H R 1<br />

OH<br />

O<br />

N<br />

H<br />

R 2<br />

R 1<br />

HN<br />

O O<br />

F<br />

OH<br />

N N<br />

Cipr<strong>of</strong>loxacin<br />

HN<br />

NH<br />

F<br />

F<br />

R 2 O<br />

Industrial Application:<br />

KONRAD-LIMPACH - Synthesis:<br />

OR<br />

250 °C<br />

+ O<br />

diphenylether<br />

NH 2 O R<br />

+<br />

1) CHCl 3 , Et 3 N<br />

KOtBu/tBuOH<br />

NMP<br />

CAMPS - Synthesis:<br />

1)<br />

2) NaOH<br />

N<br />

O<br />

O<br />

R 2<br />

N<br />

H<br />

O<br />

O<br />

R 1<br />

OH<br />

R 2<br />

N<br />

H<br />

R 1<br />

O<br />

Quinolone-Synthesis1-061205


R. <strong>Breinbauer</strong><br />

BISCHLER-NAPIERALSKI - Synthesis:<br />

Synthesis <strong>of</strong> Isoquinolines<br />

POMERANZ-FRITSCH - Synthesis:<br />

R 1<br />

R 1<br />

O<br />

R 2<br />

NH<br />

R 1 N<br />

R 2 R 2<br />

OH<br />

PPA or POCl 3<br />

R 1 R 1<br />

NH<br />

O<br />

R 2<br />

NH 2<br />

+<br />

H O<br />

PPA or POCl 3<br />

PICTET-GAMS - Synthesis:<br />

PICTET-SPENGLER - Synthesis:<br />

H<br />

R 1<br />

R 2<br />

NH<br />

dehydration<br />

R 2<br />

N<br />

dehydration<br />

R 1 R 1<br />

OR<br />

OR<br />

RO<br />

N R 1 + RO<br />

R 1<br />

NH 2 N<br />

R 2 CHO<br />

N<br />

R 2<br />

H<br />

R 1<br />

N<br />

Isoquinoline-Synthesis1-110106

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!