08.05.2014 Views

Nonlinear effects in Silicon Waveguides - The Institute of Optics ...

Nonlinear effects in Silicon Waveguides - The Institute of Optics ...

Nonlinear effects in Silicon Waveguides - The Institute of Optics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1/56<br />

<strong>Nonl<strong>in</strong>ear</strong> <strong>effects</strong> <strong>in</strong> <strong>Silicon</strong> <strong>Waveguides</strong><br />

Gov<strong>in</strong>d P. Agrawal<br />

<strong>Institute</strong> <strong>of</strong> <strong>Optics</strong><br />

University <strong>of</strong> Rochester<br />

Rochester, NY 14627<br />

c○2007 G. P. Agrawal<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Outl<strong>in</strong>e<br />

• Why use silicon for photonics?<br />

• <strong>Silicon</strong>-on-Insulator (SOI) <strong>Waveguides</strong><br />

2/56<br />

• Two-Photon Absorption and Free-Carrier Effects<br />

• Self-Phase Modulation and Soliton Formation<br />

• Higher-Order Solitons and Supercont<strong>in</strong>uum Generation<br />

• Cross-Phase Modulation and Optical Switch<strong>in</strong>g<br />

• Four-Wave Mix<strong>in</strong>g and Parametric Amplification<br />

• Raman Amplification and <strong>Silicon</strong> Raman Lasers<br />

• Conclud<strong>in</strong>g Remarks<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>Silicon</strong> Photonics<br />

• <strong>Silicon</strong> dom<strong>in</strong>ates microelectronics <strong>in</strong>dustry totally.<br />

• <strong>Silicon</strong> photonics is a new research area try<strong>in</strong>g to capitalize on the<br />

huge <strong>in</strong>vestment by the microelectronics <strong>in</strong>dustry.<br />

3/56<br />

• It has the potential for provid<strong>in</strong>g a monolithically <strong>in</strong>tegrated<br />

optoelectronic platform on a silicon chip.<br />

Credit:<br />

Intel and IBM Websites<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>Silicon</strong>-on-Insulator Technology<br />

4/56<br />

• Core waveguide layer is made <strong>of</strong> silicon (n 1 = 3.45).<br />

• A silica layer under the core layer is used for lower cladd<strong>in</strong>g.<br />

• Silica layer formed by implant<strong>in</strong>g oxygen, followed with anneal<strong>in</strong>g.<br />

• A rib or ridge structure used for two-dimensional conf<strong>in</strong>ement.<br />

• Air on top conf<strong>in</strong>es mode tightly (large <strong>in</strong>dex difference).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SOI Waveguide Geometry<br />

[0 0 1]<br />

5/56<br />

[1 1 0]<br />

• SEM image <strong>of</strong> an SOI device;<br />

Izhaky et al., JSTQE, (2006).<br />

• Typically W ∼ 1 µm,<br />

H ∼ 1 µm, h ∼ H/2.<br />

• Dispersion normal at telecom<br />

wavelengths (λ 0 ∼ 2.2 µm).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Waveguide Dispersion<br />

• Mode <strong>in</strong>dex ¯n(ω) = n 1 (ω) − δn W (ω).<br />

• Material dispersion results from n 1 (ω) (<strong>in</strong>dex <strong>of</strong> silicon).<br />

6/56<br />

• Waveguide dispersion results from δn W (ω).<br />

• Total dispersion D = D M + D W can be controlled.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Major <strong>Nonl<strong>in</strong>ear</strong> Effects<br />

• Self-Phase Modulation (SPM)<br />

• Cross-Phase Modulation (XPM)<br />

7/56<br />

• Four-Wave Mix<strong>in</strong>g (FWM)<br />

• Stimulated Brillou<strong>in</strong> Scatter<strong>in</strong>g (SBS)<br />

• Stimulated Raman Scatter<strong>in</strong>g (SRS)<br />

Orig<strong>in</strong> <strong>of</strong> <strong>Nonl<strong>in</strong>ear</strong> Effects <strong>in</strong> <strong>Silicon</strong><br />

• Third-order nonl<strong>in</strong>ear susceptibility χ (3) .<br />

• Real part leads to SPM, XPM, and FWM.<br />

• Imag<strong>in</strong>ary part leads to two-photon absorption (TPA).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Third-order <strong>Nonl<strong>in</strong>ear</strong> Response<br />

˜P (3)<br />

i (ω i ) = 3ε ∫∫<br />

0<br />

16π 2<br />

χ (3)<br />

i jkl (−ω i;ω j ,−ω k ,ω l )Ẽ j (ω j )Ẽ ∗ k (ω k )Ẽ l (ω l )dω j dω k<br />

• Two dist<strong>in</strong>ct contributions from electronic and Raman responses:<br />

χ (3)<br />

i jkl = χe i jkl + χ R i jkl.<br />

• Electronic response for silicon is governed by<br />

χ e i jkl = χ e 1122δ i j δ kl + χ e 1212δ ik δ jl + χ e 1221δ il δ jk + χ e dδ i jkl .<br />

• Raman response for silicon is governed by<br />

χ R i jkl = χ R ˜H R (ω l − ω k )(δ ik δ jl + δ il δ jk − 2δ i jkl ) + a similar term.<br />

• A relatively narrow Lorentzian Raman-ga<strong>in</strong> spectrum:<br />

˜H R (Ω) =<br />

Ω 2 R<br />

Ω 2 R − Ω2 − 2iΓ R Ω<br />

(<br />

ΩR<br />

2π = 15.6 THz, Γ R<br />

π = 105 GHz )<br />

.<br />

8/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Third-order <strong>Nonl<strong>in</strong>ear</strong> Susceptibility<br />

• <strong>The</strong> tensorial nature <strong>of</strong> χ (3) makes theory quite complicated.<br />

• It can be simplified considerably when a s<strong>in</strong>gle optical beam excites<br />

the fundamental TE or TM mode <strong>of</strong> the Si waveguide.<br />

9/56<br />

• Only the component χ1111 e (−ω;ω,−ω,ω) is relevant <strong>in</strong> this case.<br />

• Its real and imag<strong>in</strong>ary part the Kerr coefficient n 2 and the TPA<br />

coefficient β T as<br />

ω<br />

c n 2(ω) + i 2 β TPA(ω) =<br />

3ω<br />

4ε 0 c 2 n 2 χ1111(−ω;ω,−ω,ω).<br />

e<br />

0<br />

• A recent review provides more details:<br />

Q. L<strong>in</strong>, O. J. Pa<strong>in</strong>ter, G. P. Agrawal, Opt. Express 15, 16604 (2007).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Measured <strong>Nonl<strong>in</strong>ear</strong> Parameters<br />

4<br />

3<br />

0.7<br />

0.6<br />

0.5<br />

10/56<br />

2<br />

0.4<br />

0.3<br />

1<br />

0.2<br />

0.1<br />

0<br />

1200 1400 1600 1800 2000 2200 2400<br />

0.0<br />

1200 1400 1600 1800 2000 2200 2400<br />

L<strong>in</strong> et al, Appl. Phys. Lett. 91, 021111 (2007)<br />

• We measured n 2 and β TPA for silicon <strong>in</strong> the spectral range <strong>of</strong> 1.2 to<br />

2.4 µm us<strong>in</strong>g the z scan technique.<br />

• n 2 larger for silicon by >100 compared with silica fibers.<br />

• As expected, β TPA vanishes for λ > 2.2 µm<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>Nonl<strong>in</strong>ear</strong> Parameters<br />

• Refractive <strong>in</strong>dex depends on <strong>in</strong>tensity as (Kerr effect):<br />

n(ω,I) = ¯n(ω) + n 2 (1 + ir)I(t).<br />

11/56<br />

• Material parameter n 2 = 3 × 10 −18 m 2 /W is larger for silicon by a<br />

factor <strong>of</strong> 100 compared with silica fibers.<br />

• Dimensionless parameter r = β TPA /(2k 0 n 2 ) is related to two-photon<br />

absorption (TPA) occurr<strong>in</strong>g when hν exceeds E g /2.<br />

• TPA parameter: β TPA = 5×10 −12 m/W at wavelengths near 1550 nm.<br />

• Dimensionless parameter r ≈ 0.1 for silicon near 1550 nm.<br />

• TPA is a major limit<strong>in</strong>g factor for SOI waveguides because it creates<br />

free carriers (<strong>in</strong> addition to nonl<strong>in</strong>ear losses).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Free-Carrier Generation<br />

• TPA creates free carriers <strong>in</strong>side a silicon waveguide accord<strong>in</strong>g to<br />

∂N c<br />

∂t<br />

= β TPA<br />

2hν 0<br />

I 2 (z,t) − N c<br />

τ c<br />

.<br />

12/56<br />

• Carrier lifetime is relatively large for silicon (τ c > 10 ns).<br />

• It limits the device response time if carriers cannot be removed<br />

quickly enough.<br />

• Free carriers also <strong>in</strong>troduce loss and change the refractive <strong>in</strong>dex.<br />

• Pulse propagation <strong>in</strong>side silicon waveguides is governed by<br />

∂A<br />

∂z + iβ 2 ∂ 2 A<br />

2 ∂t = ik 0n 2 2 (1 + ir)|A| 2 A − σ 2 (1 + iµ)N cA − α l<br />

2 A.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Free-Carrier Absorption (FCA)<br />

• Loss <strong>in</strong>duced by FCA: α f = σN c with σ = 1.45 × 10 −21 m 2 .<br />

13/56<br />

• Free carriers also change the refractive <strong>in</strong>dex by ∆n = −(µ/2k 0 )σN c<br />

(free-carrier dispersion).<br />

• This change is opposite to the <strong>in</strong>dex change n 2 I result<strong>in</strong>g from the<br />

Kerr effect.<br />

• Parameter µ is known as the “l<strong>in</strong>ewidth enhancement factor” <strong>in</strong> the<br />

context <strong>of</strong> semiconductor lasers.<br />

• Its value for silicon is close to 7.5 <strong>in</strong> the spectral region near 1550 nm.<br />

• Absorption and <strong>in</strong>dex changes result<strong>in</strong>g from free carriers affect the<br />

performance <strong>of</strong> silicon waveguides.<br />

• Quick removal <strong>of</strong> carriers helps (e.g., by apply<strong>in</strong>g a dc electric field).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Removal <strong>of</strong> Free Carriers<br />

14/56<br />

Jones et al, Opt. Exp. 13, 519 (2005)<br />

• A reversed-biased p-n junction is used for this purpose.<br />

• Electric field across the waveguide removes electrons and holes.<br />

• Drift time becomes shorter for larger applied voltages.<br />

• Effective carrier lifetime can be shortened from >20 to


Self-Phase Modulation (SPM)<br />

• Refractive <strong>in</strong>dex depends on <strong>in</strong>tensity as n ′ = ¯n + n 2 I(t).<br />

• Propagation constant also becomes <strong>in</strong>tensity-dependent:<br />

15/56<br />

β ′ = β + k 0 n 2 (P/A eff ) ≡ β + γP.<br />

• <strong>Nonl<strong>in</strong>ear</strong> parameter γ = k 0 n 2 /A eff can be larger by a factor <strong>of</strong><br />

10,000 compared with silica fibers.<br />

• <strong>Nonl<strong>in</strong>ear</strong> Phase shift:<br />

φ NL =<br />

∫ L<br />

0<br />

(β ′ − β)dz =<br />

∫ L<br />

Here, P(z) = P <strong>in</strong> e −αz and L eff = (1 − e −αL )/α.<br />

• Optical field modifies its own phase (SPM).<br />

0<br />

γP(z)dz = γP <strong>in</strong> L eff .<br />

• Phase shift varies with time for pulses (chirp<strong>in</strong>g).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Chirp<strong>in</strong>g and Spectral Broaden<strong>in</strong>g<br />

1<br />

0.8<br />

(a)<br />

2<br />

1<br />

(b)<br />

16/56<br />

Phase, φ NL<br />

0.6<br />

0.4<br />

Chirp, δωT 0<br />

0<br />

−1<br />

0.2<br />

0<br />

−2 −1 0 1 2<br />

−2<br />

−2 −1 0 1 2<br />

Time, T/T 0<br />

Time, T/T 0<br />

• In the case <strong>of</strong> optical pulses, φ NL (t) = γP(t)L eff .<br />

• Chirp is related to the phase derivative dφ NL /dt.<br />

• Phase and chirp pr<strong>of</strong>iles for super-Gaussian pulses are shown<br />

us<strong>in</strong>g P(t) = P 0 exp[−(t/T ) 2m ] with m = 1 and m = 3.<br />

• SPM creates new frequencies and leads to spectral broaden<strong>in</strong>g.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Self-Phase Modulation and TPA<br />

• Preced<strong>in</strong>g analysis neglected two-photon absorption.<br />

• Its impact on SPM can be studied by solv<strong>in</strong>g:<br />

∂A<br />

∂z = iγ(1 + ir)|A|2 A − α l<br />

2 A.<br />

• This equation ignores dispersive and free-carrier <strong>effects</strong>.<br />

• Us<strong>in</strong>g A = √ Pexp(iφ NL ), we obta<strong>in</strong> the follow<strong>in</strong>g analytic solution:<br />

P(L,t) = P(0,t)exp(−α lL)<br />

1 + 2rγP(0,t)L eff<br />

,<br />

φ NL (L,t) = 1 2r ln[1 + 2rγP(0,t)L eff].<br />

• TPA converts l<strong>in</strong>ear dependence <strong>of</strong> φ NL on power to a logarithmic<br />

one.<br />

17/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Impact <strong>of</strong> Two-Photon Absorption<br />

• TPA reduces the maximum<br />

phase shift:<br />

φ 0 = ln(1 + 2rφ max )/(2r).<br />

• In the absence <strong>of</strong> TPA,<br />

φ 0 = φ max = γP 0 L eff .<br />

nonl<strong>in</strong>ear phase shift φ 0<br />

/ π<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

φ max<br />

= 3π<br />

φ max<br />

= 2π<br />

φ max<br />

= π<br />

• Inset shows the reduction<br />

0.5<br />

us<strong>in</strong>g r = 0.1. 0 0.2 0.4 0.6 0.8 1<br />

β TPA<br />

/(k 0<br />

n 2<br />

)<br />

• TPA-<strong>in</strong>duced reduction becomes severe at high powers.<br />

• When φ max = 100, φ 0 is limited to a value <strong>of</strong> 15.<br />

φ 0<br />

/ π<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10<br />

φ max<br />

/ π<br />

18/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Impact <strong>of</strong> Free-Carrier Generation<br />

Spectral density J/(cm 2 ⋅nm)<br />

Spectral density J/(cm 2 ⋅nm)<br />

φ max<br />

= 1.5π, I 0<br />

= 1.2 GW/cm 2 φ max<br />

= 7.5π, I 0<br />

= 6.0 GW/cm 2<br />

0.015 TPA=0<br />

TPA<br />

only<br />

0.025<br />

0.02<br />

0.01<br />

Full 0.015<br />

0.005<br />

0.01<br />

0.005<br />

0<br />

0<br />

1.549 1.5495 1.55 1.5505 1.551 1.548 1.55<br />

λ (µm)<br />

λ (µm)<br />

1.552<br />

0.015<br />

0.01<br />

0.005<br />

φ max<br />

= 15.5π, I 0<br />

= 12.5 GW/cm 2 φ max<br />

= 15.5π, I 0<br />

= 12.5 GW/cm 2<br />

TPA<br />

only<br />

TPA<br />

+FCA<br />

Full<br />

Phase shift φ / π<br />

0<br />

1.548 1.549 1.55 1.551 1.552<br />

λ (µm)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

TPA<br />

+FCA<br />

TPA<br />

only<br />

Full<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

t / T 0<br />

P(t) = P 0 e −t2 /T 2<br />

T 0 = 10 ps<br />

L = 2 cm<br />

τ c = 1 ns<br />

α l = 1 dB/cm<br />

Y<strong>in</strong> and Agrawal,<br />

Opt. Lett. (2007)<br />

Free carriers produce a nonl<strong>in</strong>ear phase shift <strong>in</strong> the opposite direction.<br />

19/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Results<br />

20/56<br />

Boyraz et al., Opt. Exp. 12, 829 (2004).<br />

• First observation <strong>of</strong> SPM-<strong>in</strong>duced spectral broaden<strong>in</strong>g <strong>in</strong> 2004.<br />

• 4-ps pulses launched <strong>in</strong>side a 2-cm-long SOI waveguide.<br />

• <strong>The</strong> 3-peak output spectrum broadened by a factor <strong>of</strong> 2 when peak<br />

<strong>in</strong>tensity was 2.2 GW/cm 2 (P 0 ≈ 100 W).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


itted <strong>in</strong>tensity but not <strong>in</strong> spectral shape and position. <strong>The</strong> spectral full width at half<br />

(FWHM) is identical to pulses measured without sample. Hence, the applied<br />

the two low-power spectra belong to the regime where the waveguide is respond<strong>in</strong>g<br />

<strong>in</strong>ear. However, by <strong>in</strong>creas<strong>in</strong>g the peak power to P = 1.55 W (I ≈ 2.6 GW/cm 2 ), the<br />

ape <strong>of</strong> the pulses broadens dramatically; now exhibit<strong>in</strong>g several spectral side w<strong>in</strong>gs.<br />

en<strong>in</strong>g Experimental cont<strong>in</strong>ues for higher powers which Results can be seen <strong>in</strong> the spectrum with P = 6.85<br />

6 GW/cm 2 ).<br />

-70<br />

Transmission (dBm)<br />

-75<br />

-80<br />

-85<br />

-90<br />

-95<br />

-100<br />

-105<br />

6.85 W<br />

1.55 W<br />

8 mW<br />

1.8 mW<br />

100 200 300 400<br />

1480 1500 1520<br />

Wavelength (nm)<br />

Fig. 1. Transmission spectra <strong>of</strong> a 4 mm long SOI waveguide as a function <strong>of</strong> coupled peak<br />

power. L<strong>in</strong>ear optical response is observed for low powers (black and red) whereas SPM<strong>in</strong>duced<br />

spectral<br />

Dulkeith<br />

broaden<strong>in</strong>g<br />

et<br />

occurs<br />

al.,<br />

for<br />

Opt.<br />

high powers<br />

Exp.<br />

(green<br />

14,<br />

and<br />

5524<br />

blue). Inset: Time- and<br />

spectrally resolved FROG trace <strong>of</strong> <strong>in</strong>put pulses at 1500 nm.<br />

(2006).<br />

easured spectral pulse distortions can be expla<strong>in</strong>ed by self-phase-modulation,<br />

nown to cause an <strong>in</strong>tensity dependent phase shift <strong>of</strong> the pulse carrier frequency.<br />

own duration, the pulse experiences an <strong>in</strong>tensity- and thus time-dependent<br />

<strong>in</strong>dex. New frequency components are generated and the <strong>in</strong>itial pulse spectrum<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

53.2<br />

49.9<br />

43.6<br />

37.4<br />

31.2<br />

24.9<br />

18.7<br />

12.5<br />

6.23<br />

0<br />

• Larger broaden<strong>in</strong>g by 2006.<br />

• 1.8-ps pulses launched<br />

<strong>in</strong>side a 4-mm-long<br />

waveguide.<br />

• Width 470 nm<br />

height 226 nm.<br />

• Spectral asymmetry is due<br />

to free-carrier <strong>effects</strong>.<br />

• Inset shows the FROG<br />

trace.<br />

21/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


e broadened and asymmetric. <strong>The</strong> significant difference is that SPM-<strong>in</strong>duced<br />

g becomes more efficient for longer wavelengths. <strong>The</strong> spectral distance between the<br />

length SPM oscillation and the orig<strong>in</strong>ally <strong>in</strong>jected laser wavelength <strong>in</strong>creases from<br />

when the OPA is tuned from 1400 to 1650 nm. As will be discussed <strong>in</strong> the next<br />

is enhancement for longer wavelengths is probably due to an <strong>in</strong>crease <strong>of</strong> group<br />

d nonl<strong>in</strong>ear<br />

Wavelength<br />

refractive <strong>in</strong>dex n 2 .<br />

Dependence <strong>of</strong> SPM<br />

Transmission (dB)<br />

-75<br />

-80<br />

-85<br />

-90<br />

-95<br />

-100<br />

-105<br />

1400 1450 1500 1550 1600 1650<br />

Wavelength (nm)<br />

Fig. 4. SPM-<strong>in</strong>duced spectral broaden<strong>in</strong>g <strong>of</strong> optical pulses for the same coupled<br />

peak power (6.85 W) <strong>in</strong>jected <strong>in</strong>to the SOI waveguide at 1400, 1500 and 1600 nm.<br />

<strong>The</strong> spectral Dulkeith broaden<strong>in</strong>g et<strong>in</strong>creases al., with Opt. the wavelength. Exp. 14, 5524<br />

(2006).<br />

Experimental Results agree with theoretical predictions.<br />

• SPM-broadened spectra at<br />

three different wavelengths.<br />

• 1.8-ps pulses tunable from<br />

1400 to 1650 nm.<br />

• Larger broaden<strong>in</strong>g at longer<br />

wavelengths.<br />

• Consistent with a larger n 2<br />

near 1550 nm<br />

rison with theory and discussion<br />

description<br />

e the experimental data we have used a recently developed theoretical model to<br />

e pulse dynamics <strong>in</strong> Si photonic wires. It accounts for GVD, parametric and nonnonl<strong>in</strong>ear<br />

<strong>effects</strong> such as SPM, XPM, TPA, or Raman <strong>in</strong>teraction; free carrier-<br />

22/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Formation <strong>of</strong> Optical Solitons<br />

• SPM-<strong>in</strong>duced phase shift φ NL > 1 is easily realized.<br />

• φ NL = 1 occurs at z = L NL = 1/(γP 0 ).<br />

• <strong>Nonl<strong>in</strong>ear</strong> length L NL ∼1 cm at moderate peak powers


Formation <strong>of</strong> Optical Solitons<br />

Normalized P ower<br />

S pectral Density<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

P ulse S hape<br />

0<br />

500 400 300 200 100 0 100 200 300 400 500<br />

time (fs)<br />

P ulse S pectrum<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

P ath averaged<br />

T P A<br />

P ath averaged<br />

Input<br />

Input<br />

0<br />

1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59<br />

Wavelength (µm)<br />

Y<strong>in</strong>, L<strong>in</strong>, and Agrawal, Opt. Lett. 31, 1295 (2006)<br />

130-fs pulses launched <strong>in</strong>side a 5-mm-long waveguide (N = 1).<br />

T P A<br />

α<br />

24/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Path-Averaged Solitons<br />

• Perfect solitons do not for <strong>in</strong>side silicon waveguides.<br />

• L<strong>in</strong>ear and nonl<strong>in</strong>ear (TPA) losses broaden the pulse as N = 1 is<br />

not ma<strong>in</strong>ta<strong>in</strong>ed along the whole device.<br />

25/56<br />

• Concept <strong>of</strong> path-averaged solitons can be used to reduce<br />

pulse broaden<strong>in</strong>g.<br />

• Input peak power <strong>in</strong>creased such that N = 1 on average.<br />

• Required peak power is estimated us<strong>in</strong>g<br />

¯P 0 = 1 L<br />

∫ L<br />

0<br />

P 0 (z)dz = 1<br />

γL D<br />

.<br />

• Solion formation has been observed <strong>in</strong> a recent experiment.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Observation <strong>of</strong> Optical Solitons<br />

26/56<br />

• In a 2007 experiment, Zhang et al. [Opt. Exp. 15, 7682 (2007)]<br />

launched 110-fs Gaussian pulses <strong>in</strong>side a 5-mm-long waveguide.<br />

• Gaussian spectrum broadened at 1250 nm because <strong>of</strong> β 2 > 0.<br />

• It narrowed and acquired a “sech” shape at 1484 nm where β 2 < 0.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Numerical Simulations<br />

0<br />

0<br />

−5<br />

−5<br />

27/56<br />

−10<br />

−10<br />

Normalized Intensity (dB)<br />

−15<br />

−20<br />

−25<br />

Normalized Spectrum (dB)<br />

−15<br />

−20<br />

−25<br />

−30<br />

−30<br />

−35<br />

−35<br />

−40<br />

−8 −6 −4 −2 0 2 4 6 8<br />

Time τ/T 0<br />

• Numerical results under experimental conditions.<br />

−40<br />

1420 1440 1460 1480 1500 1520 1540<br />

Wavelength (nm)<br />

• Input: blue curves; Output: red curves; low power case (green).<br />

• Experimental data <strong>in</strong> agreement with numerical predictions.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Supercont<strong>in</strong>uum Generation<br />

• Ultrashort pulses are affected by a multitude <strong>of</strong> nonl<strong>in</strong>ear <strong>effects</strong>,<br />

such as SPM, XPM, FWM, and SRS, together with dispersion.<br />

• All <strong>of</strong> these nonl<strong>in</strong>ear processes are capable <strong>of</strong> generat<strong>in</strong>g new<br />

frequencies outside the <strong>in</strong>put pulse spectrum.<br />

• For sufficiently <strong>in</strong>tense pulses, the pulse spectrum can become so<br />

broad that it extends over a frequency range exceed<strong>in</strong>g 100 THz.<br />

• Such extreme spectral broaden<strong>in</strong>g is referred to as supercont<strong>in</strong>uum<br />

generation.<br />

• This phenomenon was first observed <strong>in</strong> solid and gases more than<br />

35 years ago (late 1960s.)<br />

• S<strong>in</strong>ce 2000, microstructure fibers have been used for supercont<strong>in</strong>uum<br />

generation.<br />

28/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SC Generation <strong>in</strong> a microstructured fiber<br />

29/56<br />

Ranka et al., Opt. Lett. 25, 25 (2000)<br />

• Output spectrum generated <strong>in</strong> a 75-cm section <strong>of</strong> microstructured<br />

fiber us<strong>in</strong>g 100-fs pules with 0.8 pJ energy.<br />

• Even for such a short fiber, supercont<strong>in</strong>uum extends from<br />

400 to 1600 nm.<br />

• Supercont<strong>in</strong>uum is also relatively flat over the entire bandwidth.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SC Generation through Soliton Fission<br />

• Input pulses correspond to a higher-order soliton <strong>of</strong> large order;<br />

typically N = (γP 0 T 2<br />

0 /|β 2|) 1/2 exceeds 5.<br />

• Higher-order <strong>effects</strong> lead to their fission <strong>in</strong>to much narrower<br />

fundamental solitons: T k = T 0 /(2N + 1 − 2k).<br />

30/56<br />

• Each <strong>of</strong> these solitons is affected by <strong>in</strong>trapulse Raman scatter<strong>in</strong>g.<br />

• Spectrum <strong>of</strong> each soliton is shifted toward longer and longer wavelengths<br />

with propagation <strong>in</strong>side the fiber.<br />

• At the same time, each soliton emits nonsolitonic radiation at a<br />

different wavelength on the blue side.<br />

• XPM and FWM generate additional bandwidth and lead to a broad<br />

supercont<strong>in</strong>uum.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SC Generation <strong>in</strong> <strong>Silicon</strong> <strong>Waveguides</strong><br />

• SOI waveguides also support higher-order solitons when<br />

N = (γP 0 T 2<br />

0 /|β 2|) 1/2 exceeds 1.<br />

• Higher-order dispersion leads to their fission <strong>in</strong>to much<br />

shorter fundamental solitons: T k = T 0 /(2N + 1 − 2k).<br />

• Spectrum <strong>of</strong> each soliton shifts toward longer wavelengths by a<br />

smaller amount because <strong>of</strong> a narrower Raman-ga<strong>in</strong> spectrum <strong>of</strong> silicon.<br />

• Similar to the case <strong>of</strong> optical fibers, each soliton is expected to emit<br />

dispersive waves with frequencies on the blue side.<br />

• Numerical simulations confirm the potential <strong>of</strong> SOI waveguides for<br />

SC generation.<br />

• Spectral broaden<strong>in</strong>g over 350 nm is predicted for femtoseond pulses.<br />

31/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Spectral and Temporal Evolution<br />

Normalized Power<br />

Normalized Power (dB)<br />

0.1<br />

0.05<br />

0<br />

−0.2 0 0.2 0.4 0.6 0.8<br />

time (ps)<br />

0<br />

−10<br />

−20<br />

Solitons<br />

Dispersive<br />

wave<br />

−30<br />

Cherenkov<br />

radiation<br />

Solitons<br />

−40<br />

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

λ (µm)<br />

Y<strong>in</strong>, L<strong>in</strong>, and Agrawal, Opt. Lett. 32, 391 (2007)<br />

50-fs pulses launched with 25-W peak power <strong>in</strong>to a 1.2-cm waveguide.<br />

32/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Impact <strong>of</strong> TPA on SC Generation<br />

Normalized Power (dB)<br />

0<br />

−10<br />

−20<br />

L=3 mm<br />

TPA=0<br />

−30<br />

L=3 mm<br />

with TPA<br />

−40<br />

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

λ (µm)<br />

Y<strong>in</strong>, L<strong>in</strong>, and Agrawal, Opt. Lett. 32, 391 (2007)<br />

• TPA reduces SC bandwidth but is not detrimental.<br />

• Nearly 400-nm-wide supercont<strong>in</strong>uum created with<strong>in</strong><br />

a 3-mm-long waveguide.<br />

• Required pulse energies are relatively modest (∼1 pJ).<br />

33/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Optical Switch<strong>in</strong>g<br />

34/56<br />

• A Mach-Zehnder <strong>in</strong>terferometer can be made us<strong>in</strong>g two Si waveguides.<br />

Such a device exhibits SPM-<strong>in</strong>duced optical switch<strong>in</strong>g.<br />

• In each arm, optical field accumulates l<strong>in</strong>ear and nonl<strong>in</strong>ear<br />

phase shifts.<br />

• Transmission through the bar port <strong>of</strong> the<strong>in</strong>terferometer:<br />

T = s<strong>in</strong> 2 (φ L + φ NL ); φ NL = (γP 0 /4)(L 1 − L 2 ).<br />

• T changes with <strong>in</strong>put power P 0 <strong>in</strong> a nonl<strong>in</strong>ear fashion.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Cross-Phase Modulation<br />

• Consider two optical fields propagat<strong>in</strong>g simultaneously.<br />

• <strong>Nonl<strong>in</strong>ear</strong> refractive <strong>in</strong>dex seen by one wave depends on the<br />

<strong>in</strong>tensity <strong>of</strong> the other wave as<br />

35/56<br />

∆n NL = n 2 (|A 1 | 2 + b|A 2 | 2 ).<br />

• Total nonl<strong>in</strong>ear phase shift <strong>in</strong> a fiber <strong>of</strong> length L:<br />

φ NL = (2πL/λ)n 2 [I 1 (t) + bI 2 (t)].<br />

• An optical beam modifies not only its own phase but also <strong>of</strong> other<br />

copropagat<strong>in</strong>g beams (XPM).<br />

• XPM <strong>in</strong>duces nonl<strong>in</strong>ear coupl<strong>in</strong>g among overlapp<strong>in</strong>g optical pulses.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


XPM-Induced Spectral Changes<br />

36/56<br />

Hsieh et al., Opt. Exp. 15, 1135 (2007)<br />

• 200-fs pump and probe pulses (at 1527 and 1590 nm) launched <strong>in</strong>to<br />

a 4.7-mm-long SOI waveguide (w = 445 nm, h = 220 nm).<br />

• Pump and probe pulses travel at different speeds (walk-<strong>of</strong>f effect).<br />

• XPM-<strong>in</strong>duced phase shifts occurs as long as pulses overlap.<br />

• Asymmetric XPM-<strong>in</strong>duced spectral broaden<strong>in</strong>g depends on pump<br />

power (blue curve); Probe spectra without pump (red curve).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


XPM-Induced Switch<strong>in</strong>g<br />

37/56<br />

• A Mach–Zehnder <strong>in</strong>terferometer is <strong>of</strong>ten used for optical switch<strong>in</strong>g.<br />

• Output switched to a different port us<strong>in</strong>g a control signal that shifts<br />

the phase through XPM.<br />

• If control signal is <strong>in</strong> the form <strong>of</strong> a pulse tra<strong>in</strong>, a CW signal can be<br />

converted <strong>in</strong>to a pulse tra<strong>in</strong>.<br />

• Turn-on time quite fast but the generation <strong>of</strong> free carriers widens<br />

the switch<strong>in</strong>g w<strong>in</strong>dow (depends on the carrier lifetime).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Demonstration<br />

38/56<br />

Boyraz et al., Opt. Exp. 12, 4094 (2004)<br />

• A Mach–Zehnder <strong>in</strong>terferometer used for optical switch<strong>in</strong>g.<br />

• Short pump pulses (


XPM-Induced Switch<strong>in</strong>g<br />

39/56<br />

Boyraz al., Opt. Exp. 12, 4094 (2004)<br />

• Instantaneous switch<strong>in</strong>g on the lead<strong>in</strong>g edge, as expected, with high<br />

on–<strong>of</strong>f contrast.<br />

• Long trail<strong>in</strong>g edge results from the free-carrier <strong>effects</strong>.<br />

• Free carriers provide an additional contribution to the probe phase<br />

by chang<strong>in</strong>g the refractive <strong>in</strong>dex.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Four-Wave Mix<strong>in</strong>g (FWM)<br />

40/56<br />

• FWM is a nonl<strong>in</strong>ear process that transfers energy from pumps<br />

to signal and idler waves.<br />

• FWM requires conservation <strong>of</strong><br />

⋆ Energy ω 1 + ω 2 = ω 3 + ω 4<br />

⋆ Momentum β 1 + β 2 = β 3 + β 4<br />

• Degenerate FWM: S<strong>in</strong>gle pump (ω 1 = ω 2 ).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Parametric Amplifiers<br />

• FWM can be used to amplify a weak signal.<br />

• Pump power is transferred to signal through FWM.<br />

• <strong>The</strong> idler (generated as a byproduct) acts as a copy <strong>of</strong> the signal at<br />

a new wavelength (useful for wavelength conversion).<br />

41/56<br />

• Parametric amplifiers can provide ga<strong>in</strong> at any wavelength us<strong>in</strong>g<br />

suitable pumps.<br />

• <strong>The</strong>y are also useful for all-optical signal process<strong>in</strong>g.<br />

• Optical fibers are <strong>of</strong>ten used, but the use <strong>of</strong> SOI waveguides would<br />

result <strong>in</strong> a much more compact device.<br />

• Impact <strong>of</strong> two-photon and free-carrier absorption requires further<br />

study.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


FWM <strong>The</strong>ory for <strong>Silicon</strong> <strong>Waveguides</strong><br />

• <strong>The</strong>ory should <strong>in</strong>clude TPA and free-carrier <strong>effects</strong> fully.<br />

• Polarization and Raman <strong>effects</strong> should also be <strong>in</strong>cluded.<br />

• Full vector theory by L<strong>in</strong> et al., Opt. Exp. 14, 4786 (2006).<br />

• Free-carrier absorption limits the ga<strong>in</strong> for a CW pump.<br />

• β 2 < 0 (red); β 2 = 0 (blue); β 2 > 0 (green).<br />

42/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


FWM with Short Pump Pulses<br />

43/56<br />

L<strong>in</strong> et al., Opt. Exp. 14, 4786 (2006)<br />

• FCA is reduced significantly for pump pulses much shorter than<br />

carrier lifetime τ c .<br />

• Figure shows the case <strong>of</strong> 10-ps pump pulses with τ c = 1 ns.<br />

• Phase-match<strong>in</strong>g condition is satisfied even for signal that is shifted<br />

by 70 nm from the pump wavelength.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


S<strong>in</strong>ge and Dual-Pump Configurations<br />

44/56<br />

L<strong>in</strong> et al., Opt. Exp. 14, 4786 (2006)<br />

• Parametric amplifiers with a large bandwidth can be realized by<br />

pump<strong>in</strong>g an SOI waveguide with two pumps.<br />

• This is possible because <strong>of</strong> a relatively short device length.<br />

• Recent experiments with SOI waveguides are encourag<strong>in</strong>g.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Results (S<strong>in</strong>gle Pump)<br />

45/56<br />

Foster et al., Nature 441, 760 (2006)<br />

• 3.5-ps pump pulses at 1550 nm; signal tunable over 80 nm.<br />

• Up to 5 dB <strong>of</strong> ga<strong>in</strong> observed <strong>in</strong> devices


Photon-Pair Generation<br />

46/56<br />

L<strong>in</strong> et al., Opt. Lett. 31, 3140 (2006)<br />

• Spontaneous FWM <strong>in</strong> fibers creates entangled photon pairs but<br />

suffers from the noise <strong>in</strong>duced by Raman scatter<strong>in</strong>g.<br />

• <strong>The</strong> use <strong>of</strong> SOI waveguides avoids this problem because Raman<br />

scatter<strong>in</strong>g does not occur when TM mode is excited.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Results<br />

47/56<br />

Sharp<strong>in</strong>g et al., Opt. Exp. 14, 12388 (2006)<br />

• 5-ps pump pulses launched <strong>in</strong>to a 9-mm-long SOI waveguide.<br />

• Total (red) and accidental (blue) co<strong>in</strong>cidence rates measured.<br />

• <strong>The</strong>ir ratio exceeded 10 at low pump powers.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Stimulated Raman Scatter<strong>in</strong>g<br />

• Scatter<strong>in</strong>g <strong>of</strong> a pump beam from vibrat<strong>in</strong>g molecules creates a<br />

Stokes beam down-shifted <strong>in</strong> frequency by a specific amount.<br />

48/56<br />

• Frequency shift is set by a vibrational mode (phonons).<br />

• Raman ga<strong>in</strong> spectrum exhibits a dom<strong>in</strong>ant peak at 15.6 THz with<br />

a 105-GHz bandwidth (≈1 nm wide near 1550 nm).<br />

• Peak ga<strong>in</strong> for silicon >1000 larger compared with silica.<br />

Claps et al., Opt. Exp.<br />

13, 2459 (2006)<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Raman Amplifiers<br />

49/56<br />

Jalali et al., IEEE JSTQE 12, 412 (2006)<br />

• CW pump<strong>in</strong>g leads to accumulation <strong>of</strong> free carriers through TPA.<br />

• Free-carrier absorption <strong>in</strong>troduces losses for pump and signal.<br />

• No signal ga<strong>in</strong> occurs for τ eff > 10 ns.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Pulsed Raman Amplifiers<br />

50/56<br />

Jalali et al., IEEE JSTQE 12, 412 (2006)<br />

• Pulsed pump<strong>in</strong>g can provide >20-dB ga<strong>in</strong> if spac<strong>in</strong>g among pulses<br />

is much larger than τ eff (R p τ eff ≪ 1).<br />

• Free carriers can then decay before the next pulse arrives.<br />

• Pump pulses (∼30 ps) at 1540 used to amplify a 1673-nm signal.<br />

• 20-dB net ga<strong>in</strong> realized at 37-W peak power <strong>of</strong> pump pulses.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Raman Lasers<br />

51/56<br />

Boyraz and Jalali, Opt. Exp. 12, 5269 (2004)<br />

• Pumped with 30-ps pulses at 1540 nm at 25-MHz repetition rate.<br />

• Produced 18 ps pulses at 1675 nm at the same repetition rate.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


CW Raman Amplifiers<br />

52/56<br />

Jones et al, Opt. Exp. 13, 519 (2005)<br />

• CW pump<strong>in</strong>g can be used if free carriers are removed quickly.<br />

• A reversed-biased p-n junction is used for this purpose.<br />

• Electric field across the waveguide removes electrons and holes.<br />

• Drift time <strong>of</strong> carriers is shorter for larger applied voltages.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


CW Raman Amplifiers<br />

53/56<br />

Jones et al, Opt. Exp. 13, 519 (2005)<br />

• A 4.8-cm-long waveguide CW pumped at 1458 nm (signal at 1684 nm).<br />

• Output pump and signal powers <strong>in</strong>crease with applied voltage.<br />

• Effective carrier lifetime decreases from 16 to 1 ns.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>The</strong>ory beh<strong>in</strong>d Raman Amplifiers and Lasers<br />

• Pump and signal powers satisfy the set <strong>of</strong> two coupled equations:<br />

∂P p<br />

∂z<br />

∂P s<br />

∂z<br />

= −(α lp + α fp )P p − β Tpp P 2 p − 2β Tps P s P p − g R P s P p<br />

= −(α ls + α fs )P s − β Tss P 2 s − 2β Tsp P p P s + g R P p P s .<br />

54/56<br />

• Signal loss α fs by free carriers (generated from the pump-<strong>in</strong>duced<br />

TPA) limit the performance severely.<br />

• For net amplification to occur, the carrier lifetime should satisfy<br />

τ 0 < τ th ≡ ¯hω pn s ā 2 pp(g R − 2β Tsp ) 2<br />

.<br />

2α ls σ as n 0s β Tpp ā 2 sp<br />

• A Raman laser cannot function if this condition does not hold.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Conclud<strong>in</strong>g Remarks<br />

• <strong>Nonl<strong>in</strong>ear</strong> <strong>effects</strong> <strong>in</strong> silicon waveguides can be used to make many<br />

active and passive components.<br />

55/56<br />

• SPM is useful for soliton formation and supercont<strong>in</strong>uum generation.<br />

• SPM and XPM can also be used for optical switch<strong>in</strong>g, wavelength<br />

conversion, and all-optical regeneration.<br />

• Four-wave mix<strong>in</strong>g converts silicon waveguides <strong>in</strong>to parametric<br />

amplifiers.<br />

• It can also be used for quantum applications requir<strong>in</strong>g entangled<br />

photon pairs.<br />

• Stimulated Raman scatter<strong>in</strong>g converts silicon waveguides <strong>in</strong>to<br />

Raman amplifiers.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Further Read<strong>in</strong>g<br />

• L. Pavesi and D. J. Lockwood, <strong>Silicon</strong> Photonics (Spr<strong>in</strong>ger, 2004).<br />

• G. T. Reed, <strong>Silicon</strong> Photonics: State <strong>of</strong> the Art (Wiley, 2007).<br />

56/56<br />

• IEEE J. Sel. Topics Quantum Electron., Special issue on <strong>Silicon</strong><br />

Photonics, 12 (2006).<br />

• B. Jalali and S. Fathpour, “<strong>Silicon</strong> Photonics,” J. Lightwave Technol.<br />

24, 4600 (2006).<br />

• B. Jalali, “Teach<strong>in</strong>g silicon new tricks,” Nature Photonics 1, 193<br />

(2007).<br />

• Q. L<strong>in</strong>, O. J. Pa<strong>in</strong>ter, G. P. Agrawal, “<strong>Nonl<strong>in</strong>ear</strong> optical phenomena<br />

<strong>in</strong> silicon waveguides,” Opt. Express 15, 16604 (2007).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!