07.05.2014 Views

Glass Fiber Quantum Optics - ifraf

Glass Fiber Quantum Optics - ifraf

Glass Fiber Quantum Optics - ifraf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Trapping and Interfacing Cold Neutral Atoms<br />

Using Optical Nanofibers<br />

Wokshop on Cold Atoms and <strong>Quantum</strong> Engineering,<br />

Paris, France,<br />

May 30–31, 2013<br />

Arno Rauschenbeutel<br />

Vienna Center for <strong>Quantum</strong> Science and Technology,<br />

Atominstitut, TU Wien, Austria


Introduction: <strong>Glass</strong> <strong>Fiber</strong>s: “Backbone” of<br />

the Modern Communication Society<br />

Image: PTB


Introduction: Tapered <strong>Fiber</strong>s<br />

• Problem: Light field in standard optical fibers<br />

cannot be accessed from outside.<br />

• Trick: Narrow down optical fiber until light field<br />

gets to the surface.


Overview<br />

• Optical nanofibers<br />

– Properties and fabrication<br />

• Nanofiber-based atom trap<br />

– Trapping potential<br />

– Experimental realization<br />

– Coherence properties of fiber-trapped atoms<br />

• Summary / Outlook


Optical Nanofibers<br />

• Significant part of the optical power propagates outside of<br />

optical nanofiber in form of evanescent wave:


Tapered Optical <strong>Fiber</strong>s<br />

• Tapered optical fibers allow one to couple light in and out<br />

of nanofiber waist:<br />

125 µm<br />

taper 500 nm<br />

transition<br />

taper<br />

transition<br />

• Adiabatic mode transformation up to 99% transmission!


Tapered <strong>Fiber</strong>s of Predetermined Shape<br />

A. Stiebeiner et al., Opt. Express, 18, 22677 (2010)


Single Atom Absorption<br />

Single atom should have significant effect on transmission!


Overview<br />

• Optical nanofibers<br />

– Properties and fabrication<br />

• Nanofiber-based atom trap<br />

– Trapping potential<br />

– Experimental realization<br />

– Coherence properties of fiber-trapped atoms<br />

• Summary / Outlook


Radial Trapping Potential<br />

Evanescent field around fiber exerts dipole force on atoms.<br />

Blue light is more tightly bound to nanofiber than red light.<br />

Fam Le Kien, V. I. Balykin, and K. Hakuta, PRA 70, 063403 (2004)


Axial Trapping Potential<br />

Two counterpropagating red beams create standing wave<br />

axial confinement:


Azimuthal Trapping Potential<br />

• HE 11 mode, quasi linearly polarized along x.<br />

• Parameters: a = 250 nm, n 1 = 1.46 (silica), n 2 = 1<br />

(vacuum / air), and λ = 852 nm.


Azimuthal Trapping Potential<br />

Linear polarization breaks cylindrical symmetry<br />

azimuthal confinement:


1d Optical Lattice<br />

Resulting potential:<br />

Array of trapping sites on both sides of the fiber!


Overview<br />

• Optical nanofibers<br />

– Properties and fabrication<br />

• Nanofiber-based atom trap<br />

– Trapping potential<br />

– Experimental realization<br />

– Coherence properties of fiber-trapped atoms<br />

• Summary / Outlook


Experimental Setup<br />

1064 nm<br />

852 nm<br />

780 nm<br />

APD<br />

IF<br />

DM<br />

Cs atoms<br />

DM<br />

• Trapping lasers:<br />

- Nd:YAG 1064 nm, 2 x 2.2 mW, standing wave<br />

- Diode laser 780 nm, 25 mW, running wave<br />

• <strong>Fiber</strong> diameter: 500 nm trap depth ~ 0.4 mK


Experimental Setup<br />

1064 nm<br />

852 nm<br />

780 nm<br />

APD<br />

IF<br />

DM<br />

Cs atoms<br />

DM<br />

• Trapping lasers:<br />

- Nd:YAG 1064 nm, 2 x 2.2 mW, standing wave<br />

- Diode laser 780 nm, 25 mW, running wave<br />

• <strong>Fiber</strong> diameter: 500 nm trap depth ~ 0.4 mK


Experimental Setup<br />

1064 nm<br />

852 nm<br />

780 nm<br />

APD<br />

IF<br />

DM<br />

Cs atoms<br />

DM<br />

• Trapping lasers:<br />

- Nd:YAG 1064 nm, 2 x 2.2 mW, standing wave<br />

- Diode laser 780 nm, 25 mW, running wave<br />

• <strong>Fiber</strong> diameter: 500 nm trap depth ~ 0.4 mK


Experimental Setup<br />

1064 nm<br />

852 nm<br />

780 nm<br />

APD<br />

IF<br />

DM<br />

Cs atoms<br />

DM<br />

Fluorescence of ~ 2000 atoms trapped 200 nm above fiber!<br />

• Trapping lasers:<br />

At most 1 atom per potential well (collisional blockade)!<br />

- Nd:YAG 1064 nm, 2 x 2.2 mW, standing wave<br />

- Diode laser 780 nm, 25 mW, running wave<br />

• <strong>Fiber</strong> diameter: 500 nm trap depth ~ 0.4 mK


Spectroscopy of Trapped Atoms<br />

• Inhomogeneous line width ↔ state dependent light shifts.<br />

• Optically dense (OD 32) ensemble of fiber coupled atoms!<br />

• 1.6 % absorption per atom!<br />

E. Vetsch et al., PRL 104, 203603 (2010)


Overview<br />

• Optical nanofibers<br />

– Properties and fabrication<br />

• Nanofiber-based atom trap<br />

– Trapping potential<br />

– Experimental realization<br />

– Coherence properties of fiber-trapped atoms<br />

• Summary / Outlook


<strong>Fiber</strong>-Coupled <strong>Quantum</strong> Memory<br />

Major experimental advantages:<br />

• No thermal motion and collisions (atoms are trapped in<br />

optical lattice with at most one atom per lattice site).<br />

• <strong>Quantum</strong> fields are intrinsically mode matched and<br />

coupled into single mode optical fiber.


<strong>Fiber</strong>-Coupled <strong>Quantum</strong> Memory<br />

Central open question:<br />

Spin wave (ground state) coherence properties<br />

• two hundred nanometers from a dielectric surface?<br />

• in optical near fields with complex polarization?


Coherence Properties?


HE 11 Mode: Field Components<br />

• HE 11 mode, quasi linearly polarized along x.<br />

• Parameters: a = 250 nm, n 1 = 1.46 (silica), n 2 = 1 (vacuum /<br />

air), and λ = 852 nm.<br />

along (x, y = 0)<br />

along (x = 0, y)


Fictitious B-Field<br />

Fam Le Kien, P. Schneeweiß & A.R., in preparation (2013)


trap potential (mK)<br />

State-Dependent Azimuthal Potential<br />

groud<br />

state<br />

wave<br />

function<br />

spread<br />

azimuthal position φ


Experimental Setup<br />

Typical experimental parameters<br />

• microwave frequency: cesium clock transition @ 9.2 GHz<br />

• Rabi frequency: Ω/2π ≈ 18 kHz @ 1 W<br />

• Initial temperature of ensemble: ≈ 30 μK<br />

D. Reitz et al., Phys. Rev. Lett. in press (2013).


Simplified Experimental Sequence<br />

• Atoms are initially in F=3, m F =0<br />

• Drive the clock transition via microwave pulses<br />

• Probe F=4 on the Cesium D2 line, F=4 => F’=5<br />

Cesium<br />

level scheme<br />

}


Rabi Oscillations<br />

• Rabi frequency: Ω/2π ≈ 17 kHz<br />

• Exponential decay time: τ Rabi = (3.2 ± 0.2) μs limited by<br />

power fluctuations of MW<br />

D. Reitz et al., Phys. Rev. Lett. in press (2013).


Ramsey & Spin-Echo Signals<br />

• Reversible dephasing time: T 2 ∗ ≈ 0.6 ms<br />

• Current limit: temperature ⇒ spread of differential light shift


Ramsey & Spin-Echo Signals<br />

• Irreversible dephasing time: T 2 ′ ≈ 3.7 ms<br />

• Current limit: heating rate of ≈ 3 mK/s ⇒ change of<br />

differential light shift<br />

D. Reitz et al., Phys. Rev. Lett. in press (2013).


Summary<br />

• Nanofiber-based atom trap:<br />

– Trapping of cold atoms in the evanescent field around<br />

nanofibers.<br />

– Realization of optically dense 1d arrays of individual<br />

fiber-coupled atoms (collisional blockade).<br />

– Coherence properties encouraging for realization of<br />

coherent operations.


<strong>Fiber</strong> Coupled Atoms!


Outlook: Nanofiber-Based F.-P. Resonator<br />

Write two fiber Bragg gratings (FBGs) into unprocessed part<br />

of tapered optical fiber.<br />

C. Wuttke et al., Opt. Lett. 37, 1949 (2012)


Outlook: Nanofiber-Based F.-P. Resonator<br />

Write two fiber Bragg gratings (FBGs) into unprocessed part<br />

of tapered optical fiber.<br />

C. Wuttke et al., Opt. Lett. 37, 1949 (2012)<br />

• Exp. finesse: F = 86 (T TOF = 98.3%)<br />

• Single atom coop.: C = g 2 /2κγ = 30<br />

• Cs, F = 4, m F = 0 → F ′ = 5, m F<br />

′ = 0<br />

g, κ, γ /2π = (33, 8.6, 2.6) MHz<br />

Coherent strong coupling !<br />

Combination with atom trapping scheme possible:<br />

⇒ OD eff ≈ 1000 @ 2000 atoms !


Outlook: Double Helix Potential<br />

s + -s - -polarized red-detuned standing wave combined with<br />

s + -polarized blue-detuned running wave


Outlook: Double Helix Potential<br />

D. Reitz & A.R., Opt. Commun. 285, 4705 (2012)


People<br />

Students: Bernhard Albrecht, Christian Junge, Rudolf Mitsch,<br />

David Papencordt, Jan Petersen, Daniel Reitz, Michael<br />

Scheucher, Danny O‘Shea, Ariane Stiebeiner, Christian Wuttke<br />

Group Technician: Thomas Hoinkes<br />

Postdocs & Senior Scientist: Pham Le Kien, Clément Sayrin,<br />

Philipp Schneeweiß, Jürgen Volz


Funding<br />

: Lichtenberg Professorship<br />

: European Young Investigator Award


Thank you…<br />

… for your attention.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!