07.05.2014 Views

Interleukin 21 in cancer and immunotherapy

Interleukin 21 in cancer and immunotherapy

Interleukin 21 in cancer and immunotherapy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> <strong>immunotherapy</strong><br />

PH.D. THESIS<br />

Henrik Søndergaard, M.Sc.<br />

2009<br />

Faculty of Science<br />

University of Copenhagen<br />

Denmark<br />

Novo Nordisk A/S<br />

Denmark


<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> <strong>immunotherapy</strong><br />

Ph.D. Thesis 2009 © Henrik Søndergaard<br />

ISBN 978-87-7611-388-4<br />

Pr<strong>in</strong>ted by SL grafik, Frederiksberg C, Denmark (www.slgrafik.dk)


Contents<br />

Contents ..................................................................................................................... 1<br />

Preface <strong>and</strong> acknowledgements ................................................................................. 3<br />

Abbreviations ............................................................................................................. 4<br />

Summary .................................................................................................................... 5<br />

Sammendrag (Danish summary) ................................................................................ 7<br />

Chapter 1 – Introduction <strong>and</strong> objectives .................................................................... 9<br />

Specific objectives <strong>in</strong> part 1 ................................................................................... 10<br />

Specific objectives <strong>in</strong> part 2 ................................................................................... 10<br />

Chapter 2 – Background ........................................................................................... 11<br />

Cancer <strong>and</strong> <strong>immunotherapy</strong> ................................................................................... 11<br />

The mouse as experimental system ....................................................................... 14<br />

Chapter 3 – Manuscripts ........................................................................................... 17<br />

Paper I: ................................................................................................................. 19<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: roles <strong>in</strong> immunopathology <strong>and</strong> <strong>cancer</strong> therapy (Review)<br />

Paper II: ................................................................................................................ 35<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>and</strong> <strong>in</strong>hibits<br />

syngeneic tumor growth<br />

Paper III: .............................................................................................................. 49<br />

Intratumoral <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> <strong>in</strong>creases anti-tumor immunity, tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cell<br />

density <strong>and</strong> activity, <strong>and</strong> enlarges dra<strong>in</strong><strong>in</strong>g lymph nodes<br />

Paper IV: ............................................................................................................... 77<br />

Endogenous <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> restricts CD8 + T cell expansion <strong>and</strong> is not required for tumor<br />

immunity<br />

Chapter 4 – Discussion ............................................................................................. 91<br />

Chapter 5 – Conclusion ............................................................................................. 99<br />

Chapter 6 – Future perspectives ............................................................................. 101<br />

References ............................................................................................................. 103<br />

Front page illustration depicts IL-<strong>21</strong> prote<strong>in</strong> structure <strong>and</strong> was provided by Kent Bondensgaard, Department of<br />

Prote<strong>in</strong> Structure <strong>and</strong> Biophysics, Novo Nordisk A/S, Denmark.<br />

1


Preface <strong>and</strong> acknowledgements<br />

The work <strong>in</strong> this thesis has been funded by an Industrial Ph.D. fellowship from the Danish<br />

M<strong>in</strong>istry of Science, Technology <strong>and</strong> Innovation <strong>in</strong> collaboration with Novo Nordisk A/S (NN).<br />

The experimental work was performed at NN facilities <strong>in</strong> Måløv, Denmark, <strong>in</strong> departments of<br />

Cancer Pharmacology, Histology, <strong>and</strong> Immunopharmacology from September 2006 to<br />

September 2009. Dur<strong>in</strong>g this period, 6 month research was performed <strong>in</strong> the department of<br />

Cellular Immunology at the Peter MacCallum Cancer Centre, Melbourne, Australia.<br />

I am deeply <strong>in</strong>debted to my former <strong>and</strong> present supervisors Michael Kragh <strong>and</strong> Kresten Skak<br />

who made this project possible <strong>and</strong> guided me <strong>in</strong>to the world of science; Michael for his<br />

<strong>in</strong>valuable help to kick-start this project with tremendous dedication, <strong>and</strong> Kresten for happily<br />

tak<strong>in</strong>g over as ma<strong>in</strong> supervisor with his endless source of positive energy <strong>and</strong> exceptional<br />

support throughout this entire project, I particularly enjoyed our many runs full of discussion<br />

until our breaths ran out. I am very thankful to Niels Ødum for accept<strong>in</strong>g the task as university<br />

supervisor, safely guid<strong>in</strong>g me through the university maze, <strong>and</strong> to Per Thor Straten for his<br />

commitment as co-supervisor <strong>and</strong> for our many fruitful discussions.<br />

I s<strong>in</strong>cerely acknowledge the collaboration with my great colleagues at NN, especially, Elisabeth<br />

Douglas Galsgaard <strong>and</strong> Birte Jørgensen for <strong>in</strong>troduc<strong>in</strong>g me to immunohistochemistry with their<br />

catch<strong>in</strong>g enthusiasm, Klaus Steensgaard Frederiksen for shar<strong>in</strong>g his quantitative PCR<br />

expertise, Peter Thygesen for his great help with pharmacok<strong>in</strong>etics, Heidi W<strong>in</strong>ther <strong>and</strong> Ken<br />

Hed<strong>in</strong>g who were always ready with help<strong>in</strong>g h<strong>and</strong>s, <strong>and</strong> to everyone <strong>in</strong> departments 903 <strong>and</strong><br />

479 for creat<strong>in</strong>g a great, fun <strong>and</strong> <strong>in</strong>spir<strong>in</strong>g work atmosphere.<br />

A deep gratitude goes to Mark J. Smyth for giv<strong>in</strong>g me the opportunity to visit his laboratory at<br />

the Peter MacCallum Cancer Centre. I s<strong>in</strong>cerely wish to thank Adam Uldrich for shar<strong>in</strong>g his<br />

brilliant m<strong>in</strong>d <strong>and</strong> for teach<strong>in</strong>g me all I know about NKT cells <strong>and</strong> fish<strong>in</strong>g <strong>in</strong> Port Philip Bay. A<br />

special thanks to Nicole Mclaughl<strong>in</strong> for her tireless help with experiments, delivered with the<br />

same enthusiasm as when we were mounta<strong>in</strong> bik<strong>in</strong>g. John Stagg, thank you for your great<br />

friendship <strong>and</strong> for teach<strong>in</strong>g me that surf<strong>in</strong>g joyfully substitutes for science. And, thanks heaps<br />

to all the other amaz<strong>in</strong>g people <strong>in</strong> the <strong>cancer</strong> immunology program who made my stay down<br />

under unforgettable.<br />

F<strong>in</strong>ally, I wish to thank my family <strong>and</strong> friends for their great mental support <strong>and</strong> for always<br />

rem<strong>in</strong>d<strong>in</strong>g me of what is important, especially Krist<strong>in</strong>a, for your love <strong>and</strong> support, <strong>and</strong> for<br />

endur<strong>in</strong>g our long periods of separation.<br />

Måløv, Denmark, September 2009<br />

Henrik Søndergaard<br />

3


Abbreviations<br />

αGC Alpha-galactosylceramide<br />

ACT Adoptive cell transfer<br />

Ag Antigen<br />

ADCC Antibody-dependent ceullular<br />

cytotoxicity<br />

AOI Area of <strong>in</strong>terest<br />

BCR B cell receptor<br />

CCL C-C motif lig<strong>and</strong><br />

CD Crohn’s disease<br />

CIA Collagen-<strong>in</strong>duced arthritis<br />

CTL CD8 + cytotoxic T cells<br />

CTLA-4 Cytotoxic T lymphocyte antigen 4<br />

CXCL Chemok<strong>in</strong>e CXC motif lig<strong>and</strong><br />

DC Dendritic cell<br />

EAE Experimental autoimmune<br />

encephalomyelitis<br />

FasL Fas lig<strong>and</strong><br />

γ c<br />

GC<br />

IBD<br />

IBF<br />

iDC<br />

IDO<br />

IFN<br />

IL<br />

Common IL-2 receptor γ cha<strong>in</strong><br />

Germ<strong>in</strong>al center<br />

Inflammatory Bowel disease<br />

IRF-4-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong><br />

Immature dendritic cells<br />

Indoleam<strong>in</strong>e 2,3-dioxygenase<br />

Interferon<br />

<strong>Interleuk<strong>in</strong></strong><br />

IL-<strong>21</strong> <strong>Interleuk<strong>in</strong></strong> <strong>21</strong><br />

IL-<strong>21</strong>R <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> receptor<br />

I.p. Intraperitoneal<br />

I.t. Intratumoral<br />

LN Lymph node<br />

LPM Lam<strong>in</strong>a propria monocytes<br />

MDSC Myeloid-derived suppressor cells<br />

mAb Monoclonal antibody<br />

mIL-<strong>21</strong> Mur<strong>in</strong>e IL-<strong>21</strong><br />

MCA 3’-methylcholanthrene<br />

MM Metastatic melanoma<br />

MMP Matrix metalloprote<strong>in</strong>ase<br />

MOG Myel<strong>in</strong> oligodendrocyte<br />

glycoprote<strong>in</strong><br />

MS Multiple sclerosis<br />

NK Natural killer cell<br />

NKT Natural killer T cell<br />

NOD Non-obese diabetic<br />

OVA Ovalbum<strong>in</strong><br />

PBL Peripheral blood lymphocytes<br />

PBMCs Peripheral blood mononuclear<br />

cells<br />

PD-L1 Programmed death receptor<br />

lig<strong>and</strong>-1<br />

PLP Proteolipid prote<strong>in</strong><br />

PTI Post tumour <strong>in</strong>jection<br />

RA Rheumatoid arthritis<br />

RCC Renal cell carc<strong>in</strong>oma<br />

rDC Regulatory dendritic cells<br />

RIP Rat <strong>in</strong>sul<strong>in</strong> promoter<br />

S.c. Subcutaneous<br />

SLE Systemic lupus erythematosus<br />

T1D Type 1 diabetes<br />

TCR T cell receptor<br />

TGFβ Transform<strong>in</strong>g growth factor β.<br />

T fh<br />

T h<br />

T h 17<br />

TILs<br />

TRAIL<br />

T regs<br />

UC<br />

WT<br />

Follicular helper T cells<br />

Helper T cells<br />

IL-17-produc<strong>in</strong>g helper T cells<br />

Tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes<br />

Tumour necrosis factor–related<br />

apoptosis-<strong>in</strong>duc<strong>in</strong>g lig<strong>and</strong><br />

Regulatory T cells<br />

Ulcerative colitis<br />

Wild type<br />

4


Summary<br />

<strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> is a recently discovered cytok<strong>in</strong>e with pleiotropic immunomodulatory effects<br />

<strong>and</strong> putative anti-tumor activity. This Ph.D. thesis exam<strong>in</strong>es the functions of IL-<strong>21</strong> prote<strong>in</strong> as<br />

<strong>cancer</strong> <strong>immunotherapy</strong> <strong>and</strong> the role of endogenous IL-<strong>21</strong> <strong>in</strong> tumor immunity <strong>in</strong> precl<strong>in</strong>ical<br />

mouse models. In Chapter 1, the specific objectives for the experimental work are <strong>in</strong>troduced.<br />

Chapter 2 presents the theoretical background to <strong>cancer</strong> immunology <strong>and</strong> <strong>immunotherapy</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g specific barriers to <strong>immunotherapy</strong> <strong>and</strong> current therapeutic advances. This is followed<br />

by a brief review of the mouse as a model organism for drug test<strong>in</strong>g <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunology<br />

with specific considerations for IL-<strong>21</strong>. Chapter 3 conta<strong>in</strong>s four orig<strong>in</strong>al manuscripts; a review<br />

manuscript <strong>in</strong>troduces IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong> receptor (IL-<strong>21</strong>R) immunobiology <strong>and</strong> reviews the<br />

current knowledge concern<strong>in</strong>g IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> therapy <strong>and</strong> immunopathology, <strong>and</strong> the<br />

follow<strong>in</strong>g 3 manuscripts present the experimental work of this thesis:<br />

Paper I:<br />

Søndergaard H. <strong>and</strong> Skak K. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: roles <strong>in</strong> immunopathology <strong>and</strong><br />

<strong>cancer</strong> therapy. Tissue Antigens. 2009 Oct. <strong>21</strong>, (Epub ahead of pr<strong>in</strong>t)<br />

Paper II: Søndergaard H., Frederiksen K.S., Thygesen P.,Galsgaard E.D., Skak K.<br />

Kristjansen P.E.G. <strong>and</strong> Kragh M. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density of<br />

tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>and</strong> <strong>in</strong>hibits syngeneic tumor growth.<br />

Cancer Immunol. Immunother. 2007, Sep;56(9):1417-28. Epub. 2007 Feb. 7<br />

Paper III: Søndergaard H., Galsgaard E.D., Bartholomæussen M., Ødum N. <strong>and</strong> Skak K.<br />

Intratumoral <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> <strong>in</strong>creases anti-tumor immunity, tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cell density <strong>and</strong> activity, <strong>and</strong> enlarges dra<strong>in</strong><strong>in</strong>g lymph nodes.<br />

J. Immunother. <strong>in</strong> press<br />

Paper IV:<br />

Søndergaard H., Coquet J.M., Uldrich A.P., McLaughl<strong>in</strong> N, Godfrey D.I.,<br />

Sivakumar P.V. Skak K. <strong>and</strong> Smyth M.J. Endogenous <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> restricts<br />

CD8 + T cell expansion <strong>and</strong> is not required for tumor immunity.<br />

J. Immunol. 2009 Dec 1;183(11):7326-36. Epub 2009 Nov 13<br />

Paper II <strong>and</strong> III focus on the anti-tumor effect of IL-<strong>21</strong> prote<strong>in</strong> therapy follow<strong>in</strong>g<br />

<strong>in</strong>traperitoneal, subcutaneous <strong>and</strong> <strong>in</strong>tratumoral adm<strong>in</strong>istration <strong>in</strong> two precl<strong>in</strong>ical mouse <strong>cancer</strong><br />

models - B16 melanoma <strong>and</strong> RenCa renal cell carc<strong>in</strong>oma. Here<strong>in</strong>, the responsible effector cells<br />

for IL-<strong>21</strong> anti-tumor activity are determ<strong>in</strong>ed <strong>and</strong> the effects of IL-<strong>21</strong> are evaluated on the<br />

density <strong>and</strong> activity of tumor <strong>in</strong>filtrat<strong>in</strong>g T cells <strong>and</strong> on tumor dra<strong>in</strong><strong>in</strong>g lymph nodes. Paper IV<br />

5


<strong>in</strong>vestigates the role of endogenous IL-<strong>21</strong> <strong>in</strong> immunosurveillance, <strong>and</strong> primary <strong>and</strong> secondary<br />

tumor immunity us<strong>in</strong>g various experimental tumor models <strong>in</strong> IL-<strong>21</strong>- <strong>and</strong> IL-<strong>21</strong>R-deficient mice<br />

with focus on NK, NKT <strong>and</strong> CD8 + T cell responses.<br />

The results obta<strong>in</strong>ed <strong>in</strong> Paper II-IV are discussed <strong>in</strong> chapter 4. Chapter 5 summarizes the ma<strong>in</strong><br />

conclusions obta<strong>in</strong>ed <strong>in</strong> this thesis <strong>and</strong> chapter 6 outl<strong>in</strong>es the perspectives for future research<br />

concern<strong>in</strong>g IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>immunotherapy</strong>. A list of references is given at the end of the<br />

thesis (exclud<strong>in</strong>g those <strong>in</strong> Paper I-IV).<br />

6


Sammendrag (Danish summary)<br />

<strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> er et fornyeligt opdaget cytok<strong>in</strong> med omfattende immunmodulerende<br />

effekter og med formodet anti-tumor aktivitet. Denne Ph.d. afh<strong>and</strong>l<strong>in</strong>g undersøger funktionen<br />

af IL-<strong>21</strong> prote<strong>in</strong> som <strong>cancer</strong> immunterapi og rollen af endogent IL-<strong>21</strong> i tumorimmunitet ved<br />

hjælp af prækl<strong>in</strong>iske musemodeller. I kapitel 1 <strong>in</strong>troduceres de specifikke mål for det<br />

eksperimentelle arbejde. I kapitel 2 gives en <strong>in</strong>troduktion til <strong>cancer</strong>immunologi og immunterapi<br />

med fokus på specifikke barrierer overfor immunterapi og nuværende terapeutiske fremskridt.<br />

Dette efterfølges af et kort overblik over musen som modelorganisme for afprøvn<strong>in</strong>g af<br />

lægemidler <strong>in</strong>denfor <strong>cancer</strong> og immunologi med særlige betragtn<strong>in</strong>ger for IL-<strong>21</strong>. Kapitel 3<br />

<strong>in</strong>deholder fire orig<strong>in</strong>ale manuskripter; en oversigtsartikel der <strong>in</strong>troducerer immunbiologien bag<br />

IL-<strong>21</strong> og IL-<strong>21</strong> receptoren (IL-<strong>21</strong>R) samt giver et overblik over den aktuelle viden <strong>in</strong>denfor IL-<br />

<strong>21</strong> som <strong>cancer</strong>terapi og i immunpatologi, og de efterfølgende 3 manuskripter præsenterer det<br />

eksperimentelle arbejde i denne afh<strong>and</strong>l<strong>in</strong>g:<br />

Paper I:<br />

Søndergaard H. <strong>and</strong> Skak K. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: roles <strong>in</strong> immunopathology <strong>and</strong><br />

<strong>cancer</strong> therapy. Tissue Antigens. 2009 Oct. <strong>21</strong>, (Epub ahead of pr<strong>in</strong>t)<br />

Paper II: Søndergaard H., Frederiksen K.S., Thygesen P.,Galsgaard E.D., Skak K.<br />

Kristjansen P.E.G. <strong>and</strong> Kragh M. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density of<br />

tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>and</strong> <strong>in</strong>hibits syngeneic tumor growth.<br />

Cancer Immunol. Immunother. 2007, Sep;56(9):1417-28. Epub. 2007 Feb. 7<br />

Paper III: Søndergaard H., Galsgaard E.D., Bartholomæussen M., Ødum N. <strong>and</strong> Skak K.<br />

Intratumoral <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> <strong>in</strong>creases anti-tumor immunity, tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cell density <strong>and</strong> activity, <strong>and</strong> enlarges dra<strong>in</strong><strong>in</strong>g lymph nodes.<br />

J. Immunother. <strong>in</strong> press<br />

Paper IV:<br />

Søndergaard H., Coquet J.M., Uldrich A.P., McLaughl<strong>in</strong> N, Godfrey D.I.,<br />

Sivakumar P.V. Skak K. <strong>and</strong> Smyth M.J. Endogenous <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> restricts<br />

CD8 + T cell expansion <strong>and</strong> is not required for tumor immunity.<br />

J. Immunol. 2009 Dec 1;183(11):7326-36. Epub 2009 Nov 13<br />

Paper II og III fokuserer på anti-tumor effekten af IL-<strong>21</strong> prote<strong>in</strong>terapi givet som<br />

<strong>in</strong>traperitoneal, subkutan og <strong>in</strong>tratumoral adm<strong>in</strong>istration i to prækl<strong>in</strong>iske musemodeller for<br />

<strong>cancer</strong> - B16 melanom <strong>and</strong> RenCa renalcelle carc<strong>in</strong>om. Heri bestemmes de celler der er<br />

nødvendige for anti-tumor aktiviteten af IL-<strong>21</strong> og effekten af IL-<strong>21</strong> evalueres på densiteten og<br />

7


aktiviteten af tumor <strong>in</strong>filtrerende T celler samt på tumor drænende lymfeknuder. Paper IV<br />

undersøger rollen af endogent IL-<strong>21</strong> i immunovervågn<strong>in</strong>g, samt primær og sekundær<br />

tumorimmunitet, ved hjælp af forskellige eksperimentelle tumormodeller i IL-<strong>21</strong>- og IL-<strong>21</strong>Rdeficiente<br />

mus med fokus på NK, NKT <strong>and</strong> CD8 + T celle responser.<br />

De opnåede resultater i Paper II-IV diskuteres i kapitel 4. Kapitel 5 opsummerer<br />

hovedkonklusionerne der er opnået i denne afh<strong>and</strong>l<strong>in</strong>g og kapitel 6 udstikker perspektiver for<br />

fremtidig forskn<strong>in</strong>g omkr<strong>in</strong>g IL-<strong>21</strong> i <strong>cancer</strong>immunterapi. Til slut er givet en liste over referencer<br />

(eksklusive referencerne i Paper I-IV).<br />

8


Chapter 1 – Introduction <strong>and</strong> objectives<br />

Conventional therapy is rarely curative aga<strong>in</strong>st dissem<strong>in</strong>ated <strong>cancer</strong>s, manifest<strong>in</strong>g the need to<br />

explore new treatment strategies. Recognition of the immune system as an <strong>in</strong>tricate player <strong>in</strong><br />

<strong>cancer</strong> development has prompted the concept of <strong>immunotherapy</strong>, where modulation of the<br />

immune system is proposed as a novel approach to fight <strong>cancer</strong>. Cytok<strong>in</strong>es are signal<strong>in</strong>g<br />

molecules secreted by the immune system <strong>and</strong> represent one way to systemically modulate<br />

immune responses with cl<strong>in</strong>ical proof of concept for the treatment of <strong>cancer</strong> (Rosenberg, 2001;<br />

Smyth et al., 2004).<br />

<strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> is a recently discovered cytok<strong>in</strong>e produced by CD4 + T cells <strong>and</strong> NKT cells<br />

(Parrish-Novak et al., 2000; Coquet et al., 2007), <strong>and</strong> targets a broad range of immune cells<br />

with<strong>in</strong> both the lymphoid <strong>and</strong> myeloid l<strong>in</strong>eage (Spolski <strong>and</strong> Leonard, 2008). IL-<strong>21</strong> has shown<br />

encourag<strong>in</strong>g anti-tumor activity <strong>in</strong> various mouse models, but so far most studies have been<br />

performed <strong>in</strong> models with little cl<strong>in</strong>ical relevance, like artificial cytok<strong>in</strong>e secret<strong>in</strong>g tumors,<br />

models immunogenically enhanced with foreign antigens, or by the use of cytok<strong>in</strong>e produc<strong>in</strong>g<br />

plasmids (Leonard <strong>and</strong> Spolski, 2005).<br />

However, it rema<strong>in</strong>s unknown if these results are reproducible us<strong>in</strong>g recomb<strong>in</strong>ant IL-<strong>21</strong> prote<strong>in</strong><br />

therapy <strong>in</strong> more cl<strong>in</strong>ically relevant models. Also, there is limited <strong>in</strong> vivo data describ<strong>in</strong>g the<br />

anti-tumor mechanisms of IL-<strong>21</strong>, <strong>and</strong> it rema<strong>in</strong>s elusive whether the anti-tumor effect of IL-<strong>21</strong><br />

is caused by an <strong>in</strong>crease <strong>in</strong> the number or function of effector cells, improved hom<strong>in</strong>g, better<br />

survival or perhaps other secondary effects. F<strong>in</strong>ally, there is a general lack of knowledge<br />

concern<strong>in</strong>g feasible routes of adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>and</strong> potential biomarkers of IL-<strong>21</strong> antitumor<br />

activity. Altogether, it will be essential to clarify these issues for the underst<strong>and</strong><strong>in</strong>g <strong>and</strong><br />

development of IL-<strong>21</strong> as a <strong>cancer</strong> <strong>immunotherapy</strong>.<br />

Extensive work <strong>in</strong> experimental animals have recently associated endogenous IL-<strong>21</strong> signal<strong>in</strong>g<br />

with the development of several major autoimmune diseases <strong>in</strong>clud<strong>in</strong>g, systemic lupus<br />

erythematosus (SLE) (Bubier et al., 2009), type 1 diabetes (T1D) (Spolski et al., 2008;<br />

Sutherl<strong>and</strong> et al., 2009), rheumatoid arthritis (RA) (Young et al., 2007), <strong>in</strong>flammatory bowel<br />

disease (IBD) (F<strong>in</strong>a et al., 2008), <strong>and</strong> possibly multiple sclerosis (MS) (Nurieva et al., 2007).<br />

Together, these data highlight that IL-<strong>21</strong> is ma<strong>in</strong>ly a pro<strong>in</strong>flammatory cytok<strong>in</strong>e <strong>and</strong> for this<br />

reason it has been suggested that neutralization of IL-<strong>21</strong> could be of potential benefit to<br />

patients suffer<strong>in</strong>g from these diseases (Ett<strong>in</strong>ger et al., 2008). However, the role of endogenous<br />

IL-<strong>21</strong> dur<strong>in</strong>g <strong>cancer</strong> development, growth <strong>and</strong> metastasis rema<strong>in</strong>s unknown <strong>and</strong> has potential<br />

ramifications for such approaches.<br />

9


Therefore, the objectives of this thesis is divided <strong>in</strong>to two parts; part 1 is the ma<strong>in</strong> part (Paper<br />

II <strong>and</strong> III) <strong>and</strong> will focus on the evaluation of IL-<strong>21</strong> prote<strong>in</strong> as a <strong>cancer</strong> <strong>immunotherapy</strong> <strong>and</strong><br />

part 2 (Paper IV) will focus on the role of endogenous IL-<strong>21</strong> <strong>in</strong> tumor immunity.<br />

Specific objectives <strong>in</strong> part 1<br />

Here, two cl<strong>in</strong>ically relevant mur<strong>in</strong>e <strong>cancer</strong> models will be established to <strong>in</strong>vestigate the<br />

therapeutic anti-tumor activity of IL-<strong>21</strong> prote<strong>in</strong> us<strong>in</strong>g the mur<strong>in</strong>e orthologue prote<strong>in</strong> (mIL-<strong>21</strong>)<br />

<strong>and</strong> the follow<strong>in</strong>g questions will be addressed:<br />

1. Can IL-<strong>21</strong> prote<strong>in</strong> therapy given by various routes of adm<strong>in</strong>istration <strong>in</strong>hibit established<br />

subcutaneous tumor-growth <strong>in</strong> the B16 melanoma <strong>and</strong> RenCa renal cell carc<strong>in</strong>oma<br />

model?<br />

2. How does IL-<strong>21</strong> anti-tumor effect of local adm<strong>in</strong>istration compare to systemic<br />

adm<strong>in</strong>istration?<br />

3. What immune cells are responsible for the anti-tumor activity of IL-<strong>21</strong>?<br />

4. How does IL-<strong>21</strong> therapy affect the density <strong>and</strong> activity tumor <strong>in</strong>filtrat<strong>in</strong>g T cells <strong>and</strong> the<br />

number <strong>and</strong> proliferation of T cells <strong>in</strong> tumor dra<strong>in</strong><strong>in</strong>g lymph nodes?<br />

Specific objectives <strong>in</strong> part 2<br />

Here, IL-<strong>21</strong>- <strong>and</strong> IL-<strong>21</strong>R-deficient mice will be subjected to various experimental tumors <strong>and</strong><br />

the follow<strong>in</strong>g question will be addressed:<br />

1. How does IL-<strong>21</strong> signal<strong>in</strong>g-deficiency affect tumor immunosurveillance, primary tumor<br />

immunity conducted by NK, NKT <strong>and</strong> CD8 + T cells <strong>and</strong> secondary CD8 + T cell memory?<br />

10


Chapter 2 – Background<br />

Cancer <strong>and</strong> <strong>immunotherapy</strong><br />

Cancer is a lead<strong>in</strong>g cause of death world-wide <strong>and</strong> accounted for a total of 7.4 million deaths <strong>in</strong><br />

2004 (~13% of all deaths); a number which is expected to rise rapidly with the <strong>in</strong>crease <strong>in</strong><br />

global age<strong>in</strong>g 1 . Cancer is a generic term for a large group of diseases that can arise from all<br />

nucleated cells <strong>in</strong> our body. The hallmarks of <strong>cancer</strong> is a transformation of normal cells by a<br />

series of <strong>in</strong>herited <strong>and</strong> acquired genetic mutations, which provide growth <strong>and</strong> survival<br />

advantages, <strong>and</strong> eventually generate malignant neoplasms able to <strong>in</strong>vade adjacent tissues <strong>and</strong><br />

spread to distant organs (Hanahan <strong>and</strong> We<strong>in</strong>berg, 2000). The spread<strong>in</strong>g of <strong>cancer</strong> cells known<br />

as metastasis is a def<strong>in</strong><strong>in</strong>g feature of the disease <strong>and</strong> is the major cause of death from <strong>cancer</strong>.<br />

Chemotherapy is still the first l<strong>in</strong>e treatment of most dissem<strong>in</strong>ated <strong>cancer</strong>s, but despite the<br />

arrival of more than 20 new compounds <strong>in</strong> the last decade, chemotherapy is only curative <strong>in</strong><br />

very few cases (Savage et al., 2009). Daily, patients <strong>and</strong> physicians are faced with the<br />

shortcom<strong>in</strong>gs of these conventional treatments <strong>and</strong> clearly new approaches are needed.<br />

Cancer <strong>immunotherapy</strong> is a novel approach aim<strong>in</strong>g to harness our immune system to combat<br />

<strong>cancer</strong>, <strong>and</strong> has the potential to specifically target <strong>cancer</strong> cells with limited systemic toxicity.<br />

Our immune system is a tremendously potent defense system, which protects us from a large<br />

<strong>and</strong> versatile array of microbial <strong>in</strong>truders, <strong>and</strong> the idea of us<strong>in</strong>g its <strong>in</strong>herent strengths to fight<br />

<strong>cancer</strong> is appeal<strong>in</strong>g. In 1970, the concept of <strong>cancer</strong> immunosurveillance was conceived, which<br />

proposed the existence of immunological mechanisms that elim<strong>in</strong>ate potentially dangerous<br />

mutant cells (Burnet, 1970). S<strong>in</strong>ce then, this concept has been substantiated by evidence that<br />

both the <strong>in</strong>nate <strong>and</strong> adaptive parts of the immune system <strong>in</strong>deed recognize, shape <strong>and</strong> partly<br />

<strong>in</strong>hibit <strong>cancer</strong> development (van der et al., 1991; Shankaran et al., 2001; Smyth et al., 2001;<br />

Dunn et al., 2002). Still, <strong>cancer</strong>s clearly develop <strong>in</strong> the presence of a competent immune<br />

system, show<strong>in</strong>g that the immune system alone is not equipped to protect aga<strong>in</strong>st all <strong>cancer</strong>s.<br />

Immune recognition of transformed cells dur<strong>in</strong>g early <strong>cancer</strong> formation is suggested to shape<br />

an emerg<strong>in</strong>g lesion by delet<strong>in</strong>g particularly abnormal <strong>and</strong> immunogenic cell-clones <strong>in</strong> a process<br />

called immunoedit<strong>in</strong>g. S<strong>in</strong>ce <strong>cancer</strong>s are genetically <strong>in</strong>stable <strong>and</strong> consist of a heterogenic<br />

population of cells, this process eventually promotes the outgrowth of immune-escape variants<br />

(Dunn et al., 2002; Dunn et al., 2004).<br />

1 Accord<strong>in</strong>g to the World Health Organization, Fact sheet N°297, February 2009, www.who.<strong>in</strong>t/<strong>cancer</strong><br />

11


The existence of immunoedit<strong>in</strong>g implies a period of equilibrium where immunoedit<strong>in</strong>g<br />

outbalances tumor-growth, <strong>and</strong> evidence of this was recently shown <strong>in</strong> experimental animals<br />

(Koebel et al., 2007). Whether emerg<strong>in</strong>g human <strong>cancer</strong>s occasionally are elim<strong>in</strong>ated dur<strong>in</strong>g<br />

periods of immunoedit<strong>in</strong>g is difficult to show, but cl<strong>in</strong>ically detectable tumors that have<br />

escaped show signs of an immunological selection process; loss or downregulation of<br />

molecules <strong>in</strong> the antigen-process<strong>in</strong>g mach<strong>in</strong>ery is a typical f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> human <strong>cancer</strong>s (Cabrera<br />

et al., 1996; Hickl<strong>in</strong> et al., 1998; Garcia-Lora et al., 2003), <strong>and</strong> loss of immunogenicity has<br />

been found <strong>in</strong> trials with specific antigen target<strong>in</strong>g (Khong <strong>and</strong> Restifo, 2002; Yee et al., 2002).<br />

Similar shap<strong>in</strong>g <strong>and</strong> generation of treatment-resistant clones with<strong>in</strong> established tumors is often<br />

the reason that chemotherapy fails to control <strong>cancer</strong>s (Mellor <strong>and</strong> Callaghan, 2008).<br />

These <strong>in</strong>herent problems outl<strong>in</strong>e the challenge <strong>in</strong> modern <strong>cancer</strong> therapy, where <strong>in</strong>adequate<br />

host responses <strong>and</strong> poor therapeutic measures result <strong>in</strong> treatment-refractory tumors that<br />

eventually progress. Because <strong>cancer</strong> <strong>immunotherapy</strong> targets the host response, it represents<br />

an entirely new frontl<strong>in</strong>e to comb<strong>in</strong>e with conventional therapies, <strong>and</strong> if properly applied, it<br />

might facilitate additional selection pressure to eradicate <strong>cancer</strong>s.<br />

However, <strong>in</strong> addition to the generation of immune-tolerated variants, <strong>cancer</strong> cells also exploit a<br />

panel of immunosuppressive mechanisms, generally disabl<strong>in</strong>g immune reactivity (Gajewski et<br />

al., 2006; Rab<strong>in</strong>ovich et al., 2007). These <strong>in</strong>clude alterations <strong>in</strong> the antigen presentation<br />

mach<strong>in</strong>ery, poor immune cell chemoattraction, lack of activat<strong>in</strong>g co-stimulatory signals,<br />

secretion of immunosuppressive factors, activation of negative regulatory pathways, <strong>and</strong><br />

specific recruitment of immunosuppressive cell populations. Thus, successful <strong>cancer</strong><br />

<strong>immunotherapy</strong> needs to circumvent these many evasive mechanisms, which are illustrated <strong>in</strong><br />

Figure 1.<br />

The def<strong>in</strong><strong>in</strong>g goal <strong>in</strong> <strong>cancer</strong> <strong>immunotherapy</strong> is to <strong>in</strong>crease the <strong>in</strong>teraction <strong>and</strong> reactivity<br />

between the immune system <strong>and</strong> <strong>cancer</strong>s. Tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes (TILs) are a common<br />

term for immune-effector cells <strong>in</strong> the defence aga<strong>in</strong>st <strong>cancer</strong> <strong>and</strong> several reports show that<br />

TILs are beneficial <strong>in</strong> human <strong>cancer</strong>s. Particularly, the number of CD8 + cytotoxic T cells <strong>and</strong> an<br />

<strong>in</strong>creased ratio of CD8 + cytotoxic T cells/CD4 + regulatory T cells (T regs ) are <strong>in</strong>dependent<br />

prognostic factors for improved overall survival (Clemente et al., 1996; Galon et al., 2006;<br />

Pages et al., 2005; Gao et al., 2007; Naito et al., 1998; Piersma et al., 2007; Sato et al.,<br />

2005; Sharma et al., 2007; Schumacher et al., 2001; Zhang et al., 2003)<br />

12


Figure 1. Tumor-<strong>in</strong>tr<strong>in</strong>sic barriers for successful <strong>cancer</strong> <strong>immunotherapy</strong>. Tumor cells exploit several<br />

immunosuppressive mechanisms to evade immune responses. Generally, tumors do not <strong>in</strong>duce significant<br />

<strong>in</strong>flammation, which is needed for proper immune cell chemotaxis. Secretion of soluble factors from tumor cells or<br />

from resident regulatory cells i.e. natural killer T (NKT) cells, works to ma<strong>in</strong>ta<strong>in</strong> immature dendritic cells (iDC), <strong>and</strong><br />

promote development <strong>and</strong> recruitment of regulatory dendritic cells (rDC), regulatory T cells (T regs) <strong>and</strong> myeloid-derived<br />

suppressor cells (MDSC), which further contribute to the suppressive environment. Increased activity of catabolic<br />

enzymes i.e. <strong>in</strong>doleam<strong>in</strong>e 2,3-dioxygenase (IDO) <strong>in</strong>creases depletion of essential am<strong>in</strong>o acids required for effector cell<br />

activity. Defects <strong>in</strong> the antigen presentation mach<strong>in</strong>ery lead to low levels of tumor antigen presentation, restrict<strong>in</strong>g<br />

immune recognition. Increased expression of negative co-stimulatory receptors such as programmed death receptor<br />

lig<strong>and</strong>-1 (PD-L1) on tumors <strong>and</strong> cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD8 + T cells limit effector cell funtions<br />

<strong>and</strong> expression of apoptosis-<strong>in</strong>duc<strong>in</strong>g lig<strong>and</strong>s by tumors can term<strong>in</strong>ate effector cells. TRAIL, tumour necrosis factor–<br />

related apoptosis-<strong>in</strong>duc<strong>in</strong>g lig<strong>and</strong>; FasL, Fas lig<strong>and</strong>; TGFβ, transform<strong>in</strong>g growth factor β. (Drawn with <strong>in</strong>spiration from<br />

(Gajewski et al., 2006; Rab<strong>in</strong>ovich et al., 2007))<br />

For that reason, many <strong>cancer</strong> immunotherapeutic approaches focus on boost<strong>in</strong>g the amount<br />

<strong>and</strong> functionality of TILs (reviewed <strong>in</strong> Blattman <strong>and</strong> Greenberg, 2004; Dougan <strong>and</strong> Dranoff,<br />

2009). The passive <strong>in</strong>fusion of monoclonal antibodies (mAb) is the new paradigm <strong>in</strong> <strong>cancer</strong><br />

therapy; several are approved for cl<strong>in</strong>ical use <strong>and</strong> are either target<strong>in</strong>g tumor-associated<br />

surface prote<strong>in</strong>s or growth factor receptors overexpressed by tumors. The anti-tumor function<br />

of these antibodies is not completely understood, but <strong>in</strong>cludes steric <strong>in</strong>hibition of target<br />

receptors, complement activation, <strong>and</strong> activation of cell-mediated cytotoxicity. The next<br />

generation of mAb ma<strong>in</strong>ly focuses on re-generat<strong>in</strong>g immune co-stimulation or block<strong>in</strong>g of<br />

regulatory pathways as outl<strong>in</strong>ed <strong>in</strong> figure 1. Tumor-specific vacc<strong>in</strong>es based on attenuated<br />

tumor cells, viral vectors express<strong>in</strong>g tumor-associated antigens or modified dendritic cells (DC)<br />

have all been explored to boost the pool of tumor reactive cells, but so far only prophylactic<br />

vacc<strong>in</strong>es aga<strong>in</strong>st virally-<strong>in</strong>duced <strong>cancer</strong> has been approved. Adoptive cell transfer (ACT) is<br />

another approach that relies on ex vivo expansion of <strong>cancer</strong>-specific T cells isolated from<br />

13


patient TIL populations. While this type of therapy is restricted to highly specialized<br />

<strong>in</strong>stitutions, it has shown response rates of ~50% <strong>in</strong> traditionally unmanageable <strong>cancer</strong>s e.g.<br />

metastatic melanoma, emphasiz<strong>in</strong>g the potential of approaches that modulate TILs (Rosenberg<br />

et al., 2008).<br />

Cytok<strong>in</strong>es are secreted prote<strong>in</strong>s able to systemically modulate immune responses. <strong>Interleuk<strong>in</strong></strong><br />

(IL)-2 <strong>and</strong> <strong>in</strong>terferon (IFN)-α are approved cytok<strong>in</strong>e-therapies for metastatic melanoma (MM)<br />

<strong>and</strong> advanced renal cell carc<strong>in</strong>oma (RCC) (Dougan <strong>and</strong> Dranoff, 2009). IFN-α has important<br />

anti-viral activities <strong>and</strong> IL-2 is a potent T cell growth factor, <strong>and</strong> while both therapies show<br />

evidence of immune-mediated anti-tumor activity their mechanism of action rema<strong>in</strong>s unclear.<br />

Although these therapies offer moderate response rates, they still represent the only effective<br />

<strong>and</strong> potentially curative treatment for patients with MM <strong>and</strong> RCC. However, the side effects of<br />

these therapies are considerable <strong>and</strong> resemble symptoms of systemic <strong>in</strong>fections with<br />

hypotension, fever <strong>and</strong> malaise. IL-2 can <strong>in</strong>duce a potentially lethal vascular leak syndrome,<br />

which requires <strong>in</strong>tensive care, <strong>and</strong> this has limited its general use.<br />

In addition to their therapeutic effects, cytok<strong>in</strong>es are important tools for many of the new<br />

approaches outl<strong>in</strong>ed above; cytok<strong>in</strong>es are used as adjuvants boost<strong>in</strong>g anti-tumor vacc<strong>in</strong>es <strong>and</strong><br />

are critical for the ex vivo expansion of TILs for ACT.<br />

Clearly, cytok<strong>in</strong>es are attractive c<strong>and</strong>idates for <strong>cancer</strong> <strong>immunotherapy</strong> <strong>and</strong> the exploration of<br />

new cytok<strong>in</strong>e-therapies is warranted. <strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> is a novel cytok<strong>in</strong>e related to IL-2,<br />

with profound immunomodulatory effects <strong>and</strong> putative anti-tumor activity, which is reviewed <strong>in</strong><br />

Paper I of this thesis.<br />

The mouse as experimental system<br />

The mouse was used as the model organism <strong>in</strong> all experiments throughout this thesis due to<br />

its biological similarity, practicality <strong>and</strong> pedigree <strong>in</strong> studies of <strong>cancer</strong>, immunology <strong>and</strong> IL-<strong>21</strong>.<br />

Generally, the mouse reflects human immunobiology remarkably well <strong>and</strong> although the mouse<br />

<strong>and</strong> human immune systems clearly are not identical, the mouse is the model of choice <strong>in</strong><br />

experimental immunology (Mestas <strong>and</strong> Hughes, 2004).<br />

In IL-<strong>21</strong> research, the mouse is almost exclusively used as the experimental animal <strong>and</strong> for<br />

several reasons. Mouse <strong>and</strong> human IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R show great overall sequence homology<br />

with specific conservation <strong>in</strong> areas of cytok<strong>in</strong>e-receptor <strong>in</strong>teractions (Parrish-Novak et al.,<br />

2000). Furthermore, the tissue distribution of the IL-<strong>21</strong>R seems to be analogous between mice<br />

<strong>and</strong> humans, <strong>and</strong> although some discrepancies have been described, most of the cellular<br />

responses to IL-<strong>21</strong> are similar <strong>in</strong> mice <strong>and</strong> humans (Spolski <strong>and</strong> Leonard, 2008). Thus, it is<br />

reasonable to assume that results from mice us<strong>in</strong>g the mur<strong>in</strong>e orthologue prote<strong>in</strong> mIL-<strong>21</strong> will<br />

be guidel<strong>in</strong>es for what to expect <strong>in</strong> the human organism.<br />

14


The mouse has a long history <strong>in</strong> models of <strong>cancer</strong> (Frese <strong>and</strong> Tuveson, 2007) <strong>and</strong> for many<br />

reasons. Mice are easy to h<strong>and</strong>le, require low amounts of drug for pharmacologic activity <strong>and</strong><br />

are practical for larger group sizes desired for statistical comparisons. The use of<br />

transplantable tumors where <strong>cancer</strong> cells are <strong>in</strong>jected e.g. subcutaneously or <strong>in</strong>travenously<br />

gives a very reproducible onset of disease <strong>and</strong> homogenous disease development, which is<br />

critical for controlled pharmacological drug test<strong>in</strong>g. Measureable endpo<strong>in</strong>ts are also a<br />

necessity; subcutaneous <strong>in</strong>jection of tumor cells allows objective monitor<strong>in</strong>g of disease<br />

progression through direct measurement of tumor size <strong>and</strong> <strong>in</strong>travenous <strong>in</strong>jection results <strong>in</strong><br />

quantifiable lung metastasis development. Furthermore, the existence of numerous mutant<br />

mouse stra<strong>in</strong>s with specific immunodeficiencies <strong>and</strong> the wide use of mice for gene-target<strong>in</strong>g<br />

are both very helpful tools to clarify the mechanism of action of immunotherapies <strong>and</strong> also to<br />

determ<strong>in</strong>e the contribution of endogenous prote<strong>in</strong>s <strong>in</strong> disease development <strong>and</strong> control, which<br />

are both objectives <strong>in</strong> this thesis.<br />

However, translation of results from mice to humans should always be done with careful<br />

considerations for the different size, metabolism, pharmacok<strong>in</strong>etics <strong>and</strong> vary<strong>in</strong>g biology that<br />

exist between these species <strong>and</strong> importantly how well the model depicts the development <strong>and</strong><br />

course of the human disease. But generally, the mouse seems to be a suitable animal model to<br />

study the anti-tumor effects of IL-<strong>21</strong> <strong>and</strong> evaluate the role of IL-<strong>21</strong>-deficiency <strong>in</strong> tumor<br />

immunity.<br />

15


Chapter 3 – Manuscripts<br />

The work <strong>in</strong> this thesis is covered by 3 orig<strong>in</strong>al manuscripts preceded by a review manuscript<br />

which will add to the <strong>in</strong>troduction of the thesis. Papers II <strong>and</strong> III will cover the objectives of<br />

part 1 <strong>and</strong> Paper IV will cover the objectives of part 2.<br />

Paper I. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: roles <strong>in</strong> immunopathology <strong>and</strong> <strong>cancer</strong> therapy (Review)<br />

This review will <strong>in</strong>troduce the biology of IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R, <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>tracellular signal<strong>in</strong>g<br />

properties, identified target genes <strong>and</strong> expression pattern of the IL-<strong>21</strong>R. The cellular<br />

immunobiology of IL-<strong>21</strong> is reviewed describ<strong>in</strong>g the cell types that produce IL-<strong>21</strong> <strong>and</strong> the<br />

effects of IL-<strong>21</strong> on the major immune cell subsets. F<strong>in</strong>ally, the review covers the most recent<br />

advances of IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>immunotherapy</strong> <strong>and</strong> the emerg<strong>in</strong>g role of IL-<strong>21</strong> <strong>in</strong> various<br />

immunopathologies.<br />

Paper II. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells <strong>and</strong> <strong>in</strong>hibits syngeneic tumor growth<br />

This manuscript exam<strong>in</strong>es the anti-tumor effect of IL-<strong>21</strong> prote<strong>in</strong> by <strong>in</strong>traperitoneal <strong>and</strong><br />

subcutaneous adm<strong>in</strong>istration <strong>in</strong> B16 melanomas <strong>and</strong> RenCa renal cell carc<strong>in</strong>omas. The antitumor<br />

effect of early <strong>and</strong> delayed adm<strong>in</strong>istration of IL-<strong>21</strong> is explored along with the<br />

pharmacok<strong>in</strong>etics <strong>and</strong> biodistribution of IL-<strong>21</strong>. The responsible effector cells for the anti-tumor<br />

effect of IL-<strong>21</strong> are determ<strong>in</strong>ed <strong>and</strong> the effect of IL-<strong>21</strong> on the density of tumor <strong>in</strong>filtrat<strong>in</strong>g T<br />

cells is evaluated.<br />

Paper III. Intratumoral <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> <strong>in</strong>creases anti-tumor immunity, tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cell density <strong>and</strong> activity, <strong>and</strong> enlarges dra<strong>in</strong><strong>in</strong>g lymph nodes<br />

This manuscript compares the anti-tumor effect of <strong>in</strong>tratumoral <strong>and</strong> subcutaneous<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong> B16 melanomas <strong>and</strong> RenCa renal cell carc<strong>in</strong>omas. The effect of<br />

<strong>in</strong>tratumoral adm<strong>in</strong>istration of IL-<strong>21</strong> is exam<strong>in</strong>ed on the density <strong>and</strong> activity of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g T cells, on local versus systemic tumor-growth, <strong>and</strong> on the number <strong>and</strong> proliferation<br />

of T cells <strong>in</strong> tumor dra<strong>in</strong><strong>in</strong>g lymph nodes.<br />

Paper IV. Endogenous IL-<strong>21</strong> restricts CD8 + T cell expansion <strong>and</strong> is not required for<br />

tumor immunity<br />

This manuscript exam<strong>in</strong>es the role of endogenous IL-<strong>21</strong> signal<strong>in</strong>g dur<strong>in</strong>g natural tumor<br />

immunosurveillance, <strong>and</strong> primary <strong>and</strong> secondary tumor immunity us<strong>in</strong>g IL-<strong>21</strong>- <strong>and</strong> IL-<strong>21</strong>Rdeficient<br />

mice subjected to various experimental tumors controlled by NK, NKT or CD8 + T cells<br />

or with responsiveness to IL-<strong>21</strong> therapy.<br />

17


Dur<strong>in</strong>g the course of this work, contributions have also been made to two separate orig<strong>in</strong>al<br />

manuscripts, which are not <strong>in</strong>cluded <strong>in</strong> this thesis <strong>and</strong> will only be referenced <strong>in</strong> the text:<br />

1. Eriksen, K.W., Søndergaard H, Woetmann A, Krejsgaard T, Skak K, Geisler C, Wasik<br />

M.A., Ødum N., The comb<strong>in</strong>ation of IL-<strong>21</strong> <strong>and</strong> IFN-α boosts STAT3 activation,<br />

cytotoxicity <strong>and</strong> experimental tumor therapy. Mol Immunol. 2009 Feb;46(5):812-20.<br />

Epub 2008 Oct 22.<br />

2. Skak K, Søndergaard H, Frederiksen K.S., Ehrnrooth E, In vivo antitumor efficacy of<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> comb<strong>in</strong>ation with chemotherapeutics. Cytok<strong>in</strong>e. 2009 Dec;48(3):231-<br />

8. Epub 2009 Aug 25.<br />

18


Paper I:<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: roles <strong>in</strong> immunopathology <strong>and</strong> <strong>cancer</strong> therapy (Review)<br />

Søndergaard H. <strong>and</strong> Skak K., Tissue Antigens. 2009 Oct. <strong>21</strong>, (Epub ahead of pr<strong>in</strong>t)<br />

19


Tissue Antigens ISSN 0001-2815<br />

R E V I E W A R T I C L E<br />

IL-<strong>21</strong>: roles <strong>in</strong> immunopathology <strong>and</strong> <strong>cancer</strong> therapy<br />

H. Søndergaard & K. Skak<br />

Immunopharmacology, Novo Nordisk A/S, Måløv, Denmark<br />

Key words<br />

autoimmunity; <strong>cancer</strong>; cytok<strong>in</strong>e;<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong><br />

Correspondence<br />

Henrik Søndergaard<br />

Novo Nordisk A/S<br />

Department of Immunopharmacology<br />

Novo Nordisk Park F6.2.30<br />

DK-2760 Måløv<br />

Denmark<br />

Tel: +45 4443 1376<br />

Fax: +45 4443 4537<br />

e-mail: hris@novonordisk.com<br />

Received <strong>21</strong> August 2009;<br />

accepted <strong>21</strong> August 2009<br />

doi: 10.1111/j.1399-0039.2009.01382.x<br />

Abstract<br />

Cytok<strong>in</strong>es are secreted signall<strong>in</strong>g molecules with decisive effects on haematopoiesis,<br />

<strong>in</strong>nate <strong>and</strong> adaptive immunity, <strong>and</strong> immunopathology. <strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> is a novel<br />

cytok<strong>in</strong>e produced by activated CD4 + T cells <strong>and</strong> natural killer T (NKT) cells. IL-<strong>21</strong><br />

is part of a family of cytok<strong>in</strong>es which <strong>in</strong>clude IL-2, -4, -7, -9 <strong>and</strong> -15 that all<br />

share the common IL-2 receptor γ cha<strong>in</strong> (γ c ) <strong>in</strong> their <strong>in</strong>dividual receptor complexes.<br />

IL-<strong>21</strong> receptor (IL-<strong>21</strong>R) is widely expressed on both myeloid <strong>and</strong> lymphoid cell<br />

l<strong>in</strong>eages <strong>and</strong> IL-<strong>21</strong> actions <strong>in</strong>clude co-stimulation of B cell differentiation <strong>and</strong><br />

immunoglobul<strong>in</strong> (Ig) production, co-mitogen of T cells, <strong>and</strong> stimulation of NK <strong>and</strong><br />

CD8 + T cell cytotoxic function. Initially, IL-<strong>21</strong> was recognized for its anti-tumour<br />

effects <strong>in</strong> several precl<strong>in</strong>ical tumour models, warrant<strong>in</strong>g its currently ongo<strong>in</strong>g cl<strong>in</strong>ical<br />

development as a <strong>cancer</strong> immunotherapeutic. More recently, IL-<strong>21</strong> has been associated<br />

with the development of a panel of autoimmune <strong>and</strong> <strong>in</strong>flammatory diseases, where<br />

neutralization of IL-<strong>21</strong> has been suggested as a potential new therapy. In this review,<br />

we will cover the latest discoveries of IL-<strong>21</strong> as a <strong>cancer</strong> therapy <strong>and</strong> its implications<br />

<strong>in</strong> immunopathologies.<br />

Introduction<br />

Cytok<strong>in</strong>es are secreted polypeptides used primarily by the<br />

immune system for <strong>in</strong>tercellular communication. Cytok<strong>in</strong>es are<br />

vital <strong>in</strong> all aspects of immunology from early haematopoiesis<br />

to the generation, ma<strong>in</strong>tenance <strong>and</strong> contraction of both<br />

<strong>in</strong>nate <strong>and</strong> adaptive immune responses. Therefore, the timely<br />

<strong>in</strong>troduction of cytok<strong>in</strong>es or blockade of their signall<strong>in</strong>g<br />

pathway can have decisive effects on immune processes.<br />

Historically, identification of novel cytok<strong>in</strong>es, <strong>and</strong> underst<strong>and</strong><strong>in</strong>g<br />

of their production <strong>and</strong> function have been fundamental<br />

for the development of new cl<strong>in</strong>ical strategies. The<br />

use of recomb<strong>in</strong>ant cytok<strong>in</strong>es have pioneered <strong>in</strong> the field of<br />

<strong>cancer</strong> <strong>immunotherapy</strong> where <strong>in</strong>terleuk<strong>in</strong> (IL)-2 <strong>and</strong> <strong>in</strong>terferon<br />

(IFN)-α have been used for more than two decades<br />

<strong>and</strong> still represent effective treatments for certa<strong>in</strong> <strong>cancer</strong>s, e.g.<br />

melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma (RCC). The blockade of<br />

endogenous cytok<strong>in</strong>es <strong>and</strong> their signall<strong>in</strong>g pathways represent<br />

novel approaches <strong>in</strong> the fight aga<strong>in</strong>st many autoimmune diseases;<br />

particularly the neutralization of tumour necrosis factor<br />

(TNF)-α <strong>and</strong> its signall<strong>in</strong>g have revolutionized the treatment<br />

of rheumatoid arthritis.<br />

The discovery of IL-<strong>21</strong> adds to a still grow<strong>in</strong>g panel of<br />

human cytok<strong>in</strong>es, <strong>and</strong> this cytok<strong>in</strong>e has not only shown potential<br />

as <strong>cancer</strong> therapy, but also as an attractive target for<br />

several autoimmune diseases. Here, we will briefly review<br />

the immunobiology of IL-<strong>21</strong> <strong>and</strong> cover the advances of this<br />

<strong>in</strong>terest<strong>in</strong>g cytok<strong>in</strong>e <strong>in</strong> <strong>cancer</strong> therapy <strong>and</strong> its emerg<strong>in</strong>g role<br />

<strong>in</strong> autoimmune <strong>and</strong> <strong>in</strong>flammatory diseases.<br />

IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong> receptor biology, signall<strong>in</strong>g<br />

<strong>and</strong> expression<br />

In 2000, a new type 1 cytok<strong>in</strong>e receptor was discovered <strong>and</strong><br />

denoted novel orphan <strong>in</strong>terleuk<strong>in</strong> receptor (NILR) (1). Soon<br />

after, a functional clon<strong>in</strong>g approach identified a four-helixbundle<br />

cytok<strong>in</strong>e with structural relation to IL-2, IL-4 <strong>and</strong><br />

IL-15 as the natural lig<strong>and</strong> to NILR, nam<strong>in</strong>g the new entities<br />

IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong> receptor (IL-<strong>21</strong>R) (2). The IL-<strong>21</strong>R gene<br />

is located directly downstream of IL-4R-α on human chromosome<br />

16, <strong>and</strong> IL-<strong>21</strong>R has an am<strong>in</strong>o acid sequence with<br />

greatest homology to the IL-2 receptor beta-cha<strong>in</strong> (IL-2R-β).<br />

The IL-<strong>21</strong> gene is located on human chromosome 4q26-q27<br />

approximately 180 kb from the IL-2 gene <strong>and</strong> the mature<br />

IL-<strong>21</strong> polypeptide consists of 131 am<strong>in</strong>o acid residues most<br />

similar to IL-15 (2).<br />

Human <strong>and</strong> mur<strong>in</strong>e IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R show approximately<br />

60% overall am<strong>in</strong>o acid sequence homology with significant<br />

conservation <strong>in</strong> regions of cytok<strong>in</strong>e–receptor <strong>in</strong>teraction (2),<br />

<strong>and</strong> to a large extent the function of IL-<strong>21</strong> has been shown to<br />

be similar <strong>in</strong> mouse <strong>and</strong> human, although several discrepancies<br />

have also been described.<br />

© 2009 John Wiley & Sons A/S 1<br />

<strong>21</strong>


IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

H. Søndergaard & K. Skak<br />

Figure 1 The common gamma cha<strong>in</strong> (γ c) cytok<strong>in</strong>e family <strong>and</strong> <strong>in</strong>terleuk<strong>in</strong> (IL)-<strong>21</strong> <strong>in</strong>tracellular signall<strong>in</strong>g. IL-2, IL-4, IL-7, IL-9, IL-15 <strong>and</strong> IL-<strong>21</strong> all share<br />

the common IL-2 receptor (IL-2R)γ c <strong>in</strong> their <strong>in</strong>dividual receptor complexes. IL-<strong>21</strong> signals through its unique IL-<strong>21</strong> receptor (IL-<strong>21</strong>R) <strong>in</strong> a heterodimeric<br />

complex with γ c. Upon lig<strong>and</strong> <strong>in</strong>teraction, the IL-<strong>21</strong>R/γ c complex recruits <strong>and</strong> phosphorylates janus k<strong>in</strong>ases (JAK)1 <strong>and</strong> JAK3, which downstream<br />

activates signal transducers <strong>and</strong> activators of transcription (STAT). IL-<strong>21</strong> primarily activates STAT3, but also STAT1 <strong>and</strong> more transiently STAT5a <strong>and</strong><br />

5b. The phosphatidyl<strong>in</strong>ositol-3-k<strong>in</strong>ase (PI-3K)-AKT <strong>and</strong> mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase (MAPK) pathways are also <strong>in</strong>volved <strong>in</strong> IL-<strong>21</strong> signall<strong>in</strong>g. Target<br />

genes positively regulated by IL-<strong>21</strong> are <strong>in</strong>dicated.<br />

The IL-<strong>21</strong>R signals as a heterodimeric complex with the<br />

common IL-2 receptor gamma cha<strong>in</strong> (γ c , CD132) (3), mak<strong>in</strong>g<br />

IL-<strong>21</strong> the newest member of the γ c cytok<strong>in</strong>e family, which<br />

also <strong>in</strong>cludes IL-2, IL-4, IL-7, IL-9 <strong>and</strong> IL-15 (Figure 1).<br />

Like other type 1 cytok<strong>in</strong>e receptors, the IL-<strong>21</strong>R/γ c complex<br />

is a receptor tyros<strong>in</strong>e k<strong>in</strong>ase, which upon lig<strong>and</strong> <strong>in</strong>teraction<br />

recruits <strong>and</strong> phosphorylates janus k<strong>in</strong>ases (JAK) that<br />

subsequently activates signal transducers <strong>and</strong> activators of<br />

transcription (STAT). Similar to its other family members<br />

IL-<strong>21</strong>R recruits <strong>and</strong> activates JAK1 <strong>and</strong> JAK3 (3). Downstream,<br />

IL-<strong>21</strong> signall<strong>in</strong>g primarily activates STAT3, but also<br />

STAT1 <strong>and</strong> more transiently STAT5a <strong>and</strong> STAT5b (3, 4).<br />

The phosphatidyl<strong>in</strong>ositol-3-k<strong>in</strong>ase (PI-3K)-AKT <strong>and</strong> mitogenactivated<br />

prote<strong>in</strong> k<strong>in</strong>ase (MAPK) pathways have also been<br />

suggested to transmit IL-<strong>21</strong> signals (4). The target genes for<br />

IL-<strong>21</strong> signall<strong>in</strong>g still rema<strong>in</strong>s to be fully elucidated, but target<br />

genes identified so far <strong>in</strong>clude cycl<strong>in</strong> A/B/E, granzyme<br />

A/B, IFN -γ, CXCR3, CXCR6, Bcl-3, JAK3, IL-<strong>21</strong> <strong>and</strong> IL-<br />

<strong>21</strong>R (5–7), <strong>in</strong>dicat<strong>in</strong>g that IL-<strong>21</strong> plays a role <strong>in</strong> cell cycle<br />

progression, cellular activation, traffick<strong>in</strong>g, cell survival <strong>and</strong><br />

positively regulates its own expression (Figure 1).<br />

IL-<strong>21</strong> production is restricted to activated CD4 + T cells (2),<br />

<strong>and</strong> activated natural killer T (NKT) cells (8), whereas<br />

the IL-<strong>21</strong>R is much more widely expressed, <strong>in</strong>clud<strong>in</strong>g<br />

B cells, T cells, NK cells, NKT cells, dendritic cells (DC),<br />

macrophages, kerat<strong>in</strong>ocytes <strong>and</strong> <strong>in</strong>test<strong>in</strong>al fibroblasts (9, 10),<br />

<strong>in</strong>dicat<strong>in</strong>g a broad range of actions of IL-<strong>21</strong>.<br />

Studies <strong>in</strong> IL-<strong>21</strong>R-deficient mice show that IL-<strong>21</strong> is not critical<br />

for normal haematopoiesis (11, 12). In the T cell l<strong>in</strong>eage,<br />

IL-<strong>21</strong>R is not expressed until thymocytes differentiate <strong>in</strong>to<br />

CD4 <strong>and</strong> CD8 double positive cells. Low levels of IL-<strong>21</strong>R are<br />

found on mature CD4 + <strong>and</strong> CD8 + T cells which <strong>in</strong>crease <strong>in</strong><br />

response to T cell receptor (TCR) stimulation (13). In contrast,<br />

NKT cells express IL-<strong>21</strong>R ex vivo without prior activation. In<br />

the B cell l<strong>in</strong>eage the earliest detection of IL-<strong>21</strong>R is on pre-<br />

B cells, <strong>and</strong> mature follicular B cells express higher levels<br />

compared with T cells, <strong>and</strong> this is further <strong>in</strong>creased upon B<br />

cell activation. Mature marg<strong>in</strong>al zone B cells have lower IL-<br />

<strong>21</strong>R expression compared with follicular B cells, <strong>and</strong> plasma<br />

cells express very low IL-<strong>21</strong>R levels (13, 14). Overall, IL-<strong>21</strong>R<br />

shows the highest expression on activated lymphocytes, <strong>in</strong>dicat<strong>in</strong>g<br />

that IL-<strong>21</strong> ma<strong>in</strong>ly acts as a co-stimulant of activated<br />

lymphocytes.<br />

IL-<strong>21</strong> <strong>in</strong> immunobiology<br />

Humans deficient of the γ c receptor suffer from X-l<strong>in</strong>ked<br />

severe comb<strong>in</strong>ed immunodeficiency (XSCID) syndrome, a<br />

condition where T cells <strong>and</strong> NK cells are completely absent<br />

<strong>and</strong> B cells are present but functionally impaired. This shows<br />

the sum of actions <strong>and</strong> impact that the γ c -dependent cytok<strong>in</strong>es<br />

have on normal immunobiology. IL-<strong>21</strong> is no exception <strong>and</strong> its<br />

pleiotropic effects correspond to the cellular distribution of its<br />

receptor. These are summarized <strong>in</strong> Figure 2.<br />

2 © 2009 John Wiley & Sons A/S<br />

22


H. Søndergaard & K. Skak IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

Figure 2 The major actions of IL-<strong>21</strong>. IL-<strong>21</strong> is produced by CD4 + T cells <strong>and</strong> natural killer (NK) T cells <strong>in</strong> response to T cell receptor (TCR) activation,<br />

<strong>and</strong> modulates a broad range of both myeloid <strong>and</strong> lymphoid immune cells. The effects of IL-<strong>21</strong> are generally context dependent <strong>and</strong> various forms of<br />

co-stimulation determ<strong>in</strong>e the cellular response: B cells proliferate <strong>and</strong> differentiate <strong>in</strong> response to B cell receptor (BCR) <strong>and</strong> CD40 co-stimulation, but<br />

undergo apoptosis without; CD8 + T cells primarily exp<strong>and</strong> <strong>and</strong> <strong>in</strong>crease their cytotoxicity together with IL-15 or TCR co-stimulation; rest<strong>in</strong>g NK cells<br />

express very little IL-<strong>21</strong>R, but <strong>in</strong> concert with IL-2 or IL-15, IL-<strong>21</strong> drives term<strong>in</strong>al NK cell differentiation. IL-<strong>21</strong> shows autocr<strong>in</strong>e stimulation of its own<br />

production, activation of NKT cells <strong>and</strong> regulation of CD4 + T cell differentiation <strong>and</strong> proliferation. IL-<strong>21</strong> does not directly modulate regulatory T cells<br />

(T regs), but it has been suggested to reduce T reg differentiation. Dendritic cells (DC) rema<strong>in</strong> immature <strong>in</strong> response to IL-<strong>21</strong>, whereas macrophages<br />

become activated.<br />

B cells<br />

B cells express the highest levels of IL-<strong>21</strong>R, mak<strong>in</strong>g B cells<br />

prime responders to IL-<strong>21</strong>. Initially, IL-<strong>21</strong> was found to<br />

augment anti-CD40-<strong>in</strong>duced B cell proliferation but <strong>in</strong>hibit<br />

proliferation <strong>in</strong>duced by anti-IgM <strong>and</strong> IL-4 (2). IL-<strong>21</strong> also<br />

<strong>in</strong>hibited B cell proliferation <strong>and</strong> <strong>in</strong>duced apoptosis when<br />

B cells were activated via <strong>in</strong>nate toll-like receptors (TLR)<br />

recogniz<strong>in</strong>g the bacterial component lipopolysaccaride (LPS)<br />

or viral DNA cytos<strong>in</strong>e-guan<strong>in</strong>e motifs (CpG) (13). Further<br />

studies have clarified that IL-<strong>21</strong> ma<strong>in</strong>ly <strong>in</strong>hibits B cell responses<br />

<strong>and</strong> <strong>in</strong>duces apoptosis of rest<strong>in</strong>g B cells <strong>in</strong> the absence of<br />

proper co-stimulation, whereas cross-l<strong>in</strong>k<strong>in</strong>g of both the B cell<br />

receptor (BCR) <strong>and</strong> CD40 <strong>in</strong>duces extensive proliferation <strong>and</strong><br />

differentiation <strong>in</strong>to immunoglobul<strong>in</strong> (Ig) produc<strong>in</strong>g plasma<br />

cells with enhanced IgG production (15).<br />

IL-<strong>21</strong>R knockout mice had reduced serum levels of IgG,<br />

but <strong>in</strong>creased levels of IgE (12), <strong>and</strong> IL-<strong>21</strong> given at the time<br />

of immunization reduces switch<strong>in</strong>g to IgE, but not IgG by specific<br />

<strong>in</strong>hibition of germl<strong>in</strong>e C(ε) transcription <strong>in</strong> B cells (16).<br />

However, the regulation of Ig class switch<strong>in</strong>g by IL-<strong>21</strong> is<br />

also context dependent, because IL-<strong>21</strong> <strong>in</strong>hibits IgE switch<strong>in</strong>g<br />

<strong>in</strong>duced by IL-4 <strong>and</strong> PHA stimulation, whereas it promotes<br />

IgE switch<strong>in</strong>g <strong>in</strong>duced by IL-4 <strong>and</strong> anti-CD40 stimulation<br />

(17).<br />

IL-<strong>21</strong> co-stimulation is a strong <strong>in</strong>ducer of B lymphocyte<strong>in</strong>duced<br />

maturation prote<strong>in</strong>-1 (BLIMP-1), a transcriptional<br />

master switch controll<strong>in</strong>g the term<strong>in</strong>al differentiation of<br />

B cells <strong>in</strong>to plasma cells, <strong>and</strong> IL-<strong>21</strong> can directly <strong>in</strong>duce plasma<br />

cell differentiation of anti-IgM-stimulated B cells. In addition,<br />

IL-<strong>21</strong> <strong>in</strong>duces Bcl-6, which has been hypothesized to be<br />

© 2009 John Wiley & Sons A/S 3<br />

23


IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

H. Søndergaard & K. Skak<br />

<strong>in</strong>volved <strong>in</strong> the differentiation of germ<strong>in</strong>al center (GC) B cells<br />

<strong>in</strong>to memory B cells (15), suggest<strong>in</strong>g a more complex role of<br />

IL-<strong>21</strong> <strong>in</strong> B cell differentiation.<br />

Taken together, IL-<strong>21</strong> is a critical regulator of B cell<br />

responses; B cells faced with IL-<strong>21</strong> <strong>in</strong> the context of antigenspecific<br />

BCR stimulation <strong>and</strong> T cell co-stimulation will<br />

undergo class switch recomb<strong>in</strong>ation <strong>and</strong> differentiate <strong>in</strong>to antibody<br />

produc<strong>in</strong>g plasma cells. In contrast, B cells encounter<strong>in</strong>g<br />

IL-<strong>21</strong> dur<strong>in</strong>g unspecific TLR stimulation or without proper<br />

T cell help will undergo apoptosis.<br />

CD4 + T cells<br />

CD4 + T cells stimulated via their TCR are ma<strong>in</strong> producers of<br />

IL-<strong>21</strong>, <strong>and</strong> TCR stimulation <strong>in</strong>creases CD4 + T cell expression<br />

of IL-<strong>21</strong>R, giv<strong>in</strong>g IL-<strong>21</strong> an autocr<strong>in</strong>e role <strong>in</strong> CD4 + T cell<br />

responses.<br />

IL-<strong>21</strong> is not a classical helper T cell (T h )1 or T h 2 cytok<strong>in</strong>e,<br />

but can be produced by CD4 + T cells dur<strong>in</strong>g both highly T h 1<br />

<strong>and</strong> T h 2 skewed immune responses <strong>in</strong> vivo (18). CD4 + follicular<br />

helper T cells (T fh ), identified by their expression of<br />

the chemok<strong>in</strong>e receptor CXCR5, express high levels of IL-<br />

<strong>21</strong> required for T fh cell development, cognate B cell help<br />

<strong>and</strong> GC formation (19). The recently characterized IL-17-<br />

produc<strong>in</strong>g CD4 + helper T cells (T h 17) also produce IL-<strong>21</strong><br />

<strong>and</strong> are dist<strong>in</strong>ct from the classical T h 1 <strong>and</strong> T h 2 cells. T h 17<br />

cells are <strong>in</strong>volved <strong>in</strong> the clearance of certa<strong>in</strong> pathogens <strong>and</strong><br />

<strong>in</strong> autoimmune pathogenesis (20). Regulatory CD4 + T cells<br />

(T regs ), known for their immunosuppressive effects <strong>and</strong> characterized<br />

by high expression of IL-2Rα (CD25) <strong>and</strong> the transcription<br />

factor forkhead box P3 (FoxP3), have not yet shown<br />

evidence of IL-<strong>21</strong> production.<br />

In response to anti-CD3/CD28 stimulation, IL-<strong>21</strong> potently<br />

co-stimulates CD4 + T cell proliferation <strong>and</strong> IFN-γ production,<br />

which counteracts T reg suppression (<strong>21</strong>, 22), but IL-<strong>21</strong><br />

has not shown any direct effects on T regs (<strong>21</strong>, 23). Although,<br />

dur<strong>in</strong>g CD4 + T cell differentiation IL-<strong>21</strong> has been suggested<br />

to <strong>in</strong>hibit FoxP3 expression <strong>and</strong> <strong>in</strong> turn <strong>in</strong>crease T h 17 cell<br />

development (24). IL-<strong>21</strong> can drive the differentiation of T h 17<br />

cells <strong>in</strong> concert with transform<strong>in</strong>g growth factor (TGF)β, but<br />

<strong>in</strong> the presence of other pro<strong>in</strong>flammatory cytok<strong>in</strong>es such as<br />

IL-6, IL-<strong>21</strong> is dispensable for T h 17 differentiation <strong>and</strong> rather<br />

serves as an auto-amplification loop for T h 17 cell expansion<br />

(25). In addition, IL-<strong>21</strong> regulates its own production <strong>in</strong><br />

an autocr<strong>in</strong>e fashion through STAT3 activation (6).<br />

Overall, IL-<strong>21</strong> is produced by several different CD4 + T cell<br />

subtypes, it is essential <strong>in</strong> T fh cell development <strong>and</strong> GC<br />

formation, <strong>and</strong> serves as an autocr<strong>in</strong>e amplification loop for<br />

its own production <strong>and</strong> for CD4 + T cell proliferation <strong>and</strong><br />

survival.<br />

CD8 + T cells<br />

In addition to B cells, CD8 + T cells are the primary responders<br />

to IL-<strong>21</strong>. CD8 + T cells also <strong>in</strong>crease their expression<br />

of the IL-<strong>21</strong>R <strong>in</strong> response to TCR stimulation, show<strong>in</strong>g that<br />

IL-<strong>21</strong> primarily affects activated CD8 + T cells. Alone, IL-<strong>21</strong><br />

does not <strong>in</strong>duce significant proliferation of CD8 + T cells,<br />

but <strong>in</strong> response to antigen-<strong>in</strong>dependent stimulation IL-<strong>21</strong> costimulates<br />

proliferation <strong>and</strong> expansion together with IL-7 or<br />

IL-15 of both naïve <strong>and</strong> activated CD8 + T cells (7, 26). IL-<br />

<strong>21</strong> <strong>in</strong>creases IFN-γ <strong>and</strong> IL-2 production <strong>and</strong> susta<strong>in</strong>s the<br />

expression of CD62L <strong>and</strong> CD28 on IL-15-stimulated CD8 +<br />

T cells. CD28 is an important co-receptor engaged by DC<br />

lig<strong>and</strong>s dur<strong>in</strong>g TCR stimulation, which is lost on senescent<br />

T cells (26).<br />

IL-<strong>21</strong>R-deficient mice showed reduced antigen-specific<br />

CD8 + T cell expansion <strong>and</strong> cytotoxicity compared with WT <strong>in</strong><br />

response to viral stimulation (7), highlight<strong>in</strong>g a role for IL-<strong>21</strong><br />

also <strong>in</strong> antigen-specific CD8 + T cell expansion <strong>and</strong> function.<br />

Similarly, <strong>in</strong> vitro expansion of antigen-specific CD8 +<br />

T cells <strong>in</strong> blood from melanoma patients was substantially<br />

<strong>in</strong>creased by IL-<strong>21</strong> <strong>in</strong> concert with autologous DCs pulsed<br />

with a melanoma-specific antigen (27). This effect was caused<br />

by <strong>in</strong>creased proliferation <strong>and</strong> survival, <strong>and</strong> could not be<br />

mimicked by IL-2, IL-7 or IL-15. Consistent with antigen<strong>in</strong>dependent<br />

stimulation, IL-<strong>21</strong>-co-stimulated antigen-specific<br />

CD8 + T cells showed high CD28 expression, <strong>in</strong>creased IL-<br />

2 production, high-avidity TCRs <strong>and</strong> <strong>in</strong>creased cytotoxic<br />

activity.<br />

Taken together, IL-<strong>21</strong> co-stimulates antigen-dependent <strong>and</strong><br />

-<strong>in</strong>dependent proliferation, expansion, survival, <strong>and</strong> cytotoxicity<br />

of CD8 + T cells. Furthermore, IL-<strong>21</strong> ma<strong>in</strong>ta<strong>in</strong>s CD8 + T<br />

cell expression of CD28 <strong>and</strong> <strong>in</strong>creases their IFN-γ <strong>and</strong> IL-2<br />

production, creat<strong>in</strong>g a more robust <strong>and</strong> <strong>in</strong>dependent CD8 + T<br />

cell response.<br />

NK cells<br />

Mature rest<strong>in</strong>g NK cells show very low expression of IL-<br />

<strong>21</strong>R, but IL-<strong>21</strong>R expression is up-regulated on both mature<br />

NK cells <strong>and</strong> on NK cell precursors upon activation. IL-<strong>21</strong><br />

enhances NK cell differentiation from bone-marrow-derived<br />

precursors (2), but IL-<strong>21</strong>R knockout mice have normal development<br />

<strong>and</strong> activity of mature NK cells (11), show<strong>in</strong>g that<br />

IL-<strong>21</strong> is redundant for normal NK cell development <strong>and</strong><br />

maturation. This is because NK precursor cells do not<br />

express IL-<strong>21</strong>R, but IL-15, which is critical for normal<br />

NK cell development, <strong>in</strong>duces IL-<strong>21</strong>R expression (28) <strong>and</strong><br />

subsequently IL-<strong>21</strong> can accelerate the NK cell maturation<br />

process (29).<br />

Stimulation of NK cells with viral particles, IL-2 or IL-15<br />

greatly enhances responsiveness to IL-<strong>21</strong>, which then <strong>in</strong>duces<br />

a large granular phenotype with <strong>in</strong>creased cytolytic activity,<br />

IFN-γ production <strong>and</strong> perfor<strong>in</strong> expression (11, 30). However,<br />

despite the co-stimulation of NK cell maturation <strong>and</strong> function,<br />

IL-<strong>21</strong> <strong>in</strong>hibits proliferation of NK cells <strong>in</strong>duced by IL-2 <strong>and</strong><br />

IL-15 <strong>and</strong> <strong>in</strong>creases NK cell apoptosis (11, 30).<br />

4 © 2009 John Wiley & Sons A/S<br />

24


H. Søndergaard & K. Skak IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

NKT cells<br />

NKT cells express <strong>in</strong>hibitory <strong>and</strong> activat<strong>in</strong>g NK cell receptors<br />

together with a restricted repertoire of TCRs. In contrast<br />

to conventional T cells, the NKT cell TCR recognizes<br />

lipid antigens such as the agonist alpha-galactosylceramide (α-<br />

GC), presented by the MHC-like molecule CD1d expressed<br />

on DCs. Rest<strong>in</strong>g NKT cells express the IL-<strong>21</strong>R <strong>and</strong> produce<br />

IL-<strong>21</strong> <strong>in</strong> response to anti-CD3 or α-GC stimulation (8). Follow<strong>in</strong>g<br />

anti-CD3 stimulation, the level of IL-<strong>21</strong> production<br />

is even higher <strong>in</strong> NKT cells compared with splenic CD4 +<br />

T cells, suggest<strong>in</strong>g that NKT cells may represent an important<br />

source of IL-<strong>21</strong>. NKT cells also respond to IL-<strong>21</strong> stimulation;<br />

IL-<strong>21</strong> <strong>in</strong>creases survival <strong>and</strong> proliferation of NKT cells <strong>and</strong><br />

enhances α-GC-stimulated proliferation <strong>and</strong> expansion. Furthermore,<br />

IL-<strong>21</strong> co-stimulation of NKT cells <strong>in</strong>creases their<br />

granular morphology, granzyme B expression <strong>and</strong> cytok<strong>in</strong>e<br />

production (8). These data suggest that NKT cells represent an<br />

important source of IL-<strong>21</strong> <strong>and</strong> that IL-<strong>21</strong> generally <strong>in</strong>creases<br />

NKT cell activation.<br />

Dendritic cells<br />

IL-<strong>21</strong> has ma<strong>in</strong>ly shown <strong>in</strong>hibitory effects on DCs. IL-<strong>21</strong><br />

ma<strong>in</strong>ta<strong>in</strong>s bone-marrow-derived DCs <strong>in</strong> a more immature<br />

state characterized by <strong>in</strong>creased phagocytotic activity <strong>and</strong><br />

decreased antigen presentation, thereby limit<strong>in</strong>g the activation<br />

of antigen-specific T cell responses (31, 32). This <strong>in</strong>dicates a<br />

potential role for IL-<strong>21</strong> also <strong>in</strong> the restriction or term<strong>in</strong>ation<br />

of immune responses. However, DCs pretreated with IL-<br />

<strong>21</strong> <strong>and</strong> α-GC <strong>in</strong>creases stimulation of NKT cell IFN-γ<br />

production (33), <strong>in</strong>dicat<strong>in</strong>g that the role of IL-<strong>21</strong> on DCs is<br />

more complex <strong>and</strong> needs further <strong>in</strong>vestigation.<br />

Macrophages<br />

IL-<strong>21</strong>R is expressed on both mouse <strong>and</strong> human macrophages<br />

<strong>and</strong> <strong>in</strong> contrast to DCs, there is limited evidence that IL-<strong>21</strong><br />

has pro<strong>in</strong>flammatory effects on macrophages. IL-<strong>21</strong> signall<strong>in</strong>g<br />

is not required for macrophage development, but <strong>in</strong>creases<br />

macrophage production of the neutrophil chemoattractant<br />

CXCL8/IL-8, <strong>in</strong>creases phagocytosis <strong>and</strong> protease activity,<br />

<strong>and</strong> also the ability to stimulate antigen-specific CD4 + T cell<br />

proliferation (34, 35).<br />

IL-<strong>21</strong> as <strong>cancer</strong> therapy<br />

Precl<strong>in</strong>ical data<br />

The stimulatory effects of IL-<strong>21</strong> on NK cells <strong>and</strong> CD8 +<br />

T cells suggest that IL-<strong>21</strong> may possess anti-tumour activity.<br />

In 2003, the first evidence of IL-<strong>21</strong> anti-tumour activity<br />

was shown: mur<strong>in</strong>e colon carc<strong>in</strong>oma cells transduced with<br />

the IL-<strong>21</strong> gene were completely rejected <strong>in</strong> syngeneic mice.<br />

Rejection was dependent on both NK <strong>and</strong> T cells <strong>and</strong> with<br />

concomitant immunity to parental cell rechallenge (36). S<strong>in</strong>ce<br />

then, several groups have studied IL-<strong>21</strong> anti-tumour effects<br />

by this approach, us<strong>in</strong>g genetically modified tumour cells<br />

from both mouse <strong>and</strong> humans (see Table 1). In general, these<br />

studies show very potent anti-tumour activity of IL-<strong>21</strong> with<br />

reports of complete tumour rejection <strong>in</strong> most studies. In these<br />

studies, NK cells <strong>and</strong> CD8 + T cells were responsible for the<br />

anti-tumour activity, with <strong>in</strong>volvement of both IFN-γ <strong>and</strong><br />

perfor<strong>in</strong>, but with no role for CD4 + T cells (see Table 1).<br />

Although these data reflect the potential of IL-<strong>21</strong> therapy <strong>and</strong><br />

po<strong>in</strong>t out possible effector mechanisms of IL-<strong>21</strong>, tumour cells<br />

secret<strong>in</strong>g IL-<strong>21</strong> are not cl<strong>in</strong>ically translatable.<br />

A more relevant approach came with therapeutic adm<strong>in</strong>istration<br />

of IL-<strong>21</strong>-express<strong>in</strong>g plasmids. Us<strong>in</strong>g this approach,<br />

Wang et al. showed significant anti-tumour activity aga<strong>in</strong>st<br />

B16 melanomas <strong>and</strong> MCA205 fibrosarcomas mediated by NK<br />

cells, with a m<strong>in</strong>or role for CD8 + T cells but not CD4 +<br />

T cells (39). Brady et al. showed that IL-<strong>21</strong>-express<strong>in</strong>g plasmids<br />

<strong>in</strong>jected at the time of tumour cell <strong>in</strong>oculation mediated<br />

NK cell- <strong>and</strong> perfor<strong>in</strong>-dependent reduction <strong>in</strong> lung <strong>and</strong><br />

liver metastasis, whereas IFN-γ, Fas lig<strong>and</strong> or TNF-related<br />

apoptosis-<strong>in</strong>duc<strong>in</strong>g lig<strong>and</strong> (TRAIL) did not contribute (30).<br />

Nakano et al. showed significant tumour growth <strong>in</strong>hibition of<br />

subcutaneous head <strong>and</strong> neck squamous cell carc<strong>in</strong>omas us<strong>in</strong>g<br />

IL-<strong>21</strong> plasmids, dependent on T cells, NK cells <strong>and</strong> with generation<br />

of tumour-specific Ig (42). Together, these data show<br />

that IL-<strong>21</strong> adm<strong>in</strong>istration by a more therapeutic approach has<br />

a similar mechanism of anti-tumour activity even add<strong>in</strong>g a<br />

possible role for B cells, but perhaps with less dramatic antitumour<br />

effects compared with the IL-<strong>21</strong>-secret<strong>in</strong>g tumours.<br />

Moroz et al. were the first to use recomb<strong>in</strong>ant IL-<strong>21</strong> prote<strong>in</strong><br />

<strong>and</strong> showed significant tumour growth <strong>in</strong>hibition <strong>and</strong><br />

prolonged survival <strong>in</strong> an ovalbum<strong>in</strong> (OVA)-express<strong>in</strong>g lymphoma<br />

model when IL-<strong>21</strong> was <strong>in</strong>jected <strong>in</strong>traperitoneally (i.p.)<br />

early (from day 2 to day 12 post-tumour <strong>in</strong>oculation) or late<br />

(from day 12 to day 22 post-tumour <strong>in</strong>oculation) (40). This<br />

was a CD8 + T cell-dependent effect where IL-<strong>21</strong> <strong>in</strong>creased<br />

the expansion <strong>and</strong> cytotoxicity of OVA-specific CD8 + T cells,<br />

<strong>and</strong> generated a more durable response compared with IL-2<br />

<strong>and</strong> IL-15 lead<strong>in</strong>g to concomitant immunity towards tumour<br />

rechallenge. Interest<strong>in</strong>gly, pretreatment with IL-<strong>21</strong> (day −4<br />

to day 6 post-tumour <strong>in</strong>oculation) completely abrogated the<br />

anti-tumour effect of IL-<strong>21</strong>, <strong>in</strong>dicat<strong>in</strong>g that the tim<strong>in</strong>g of<br />

IL-<strong>21</strong> is critical for the outcome. In a fully syngeneic system,<br />

we have shown significant tumour growth <strong>in</strong>hibition of<br />

B16 melanomas <strong>and</strong> RenCa RCCs <strong>in</strong> response to therapeutic<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> prote<strong>in</strong>, particularly by subcutaneous<br />

adm<strong>in</strong>istration (43). The anti-tumour activity was CD8 +<br />

T cell-dependent, <strong>and</strong> IL-<strong>21</strong> <strong>in</strong>creased the density of tumour<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells, a f<strong>in</strong>d<strong>in</strong>g associated with improved<br />

prognosis <strong>in</strong> human <strong>cancer</strong>s. Us<strong>in</strong>g stereotactical <strong>in</strong>jections of<br />

IL-<strong>21</strong> prote<strong>in</strong>, Daga et al. showed significant tumour rejection<br />

of <strong>in</strong>tracranially implanted gliomas, mediated by NK cells <strong>and</strong><br />

© 2009 John Wiley & Sons A/S 5<br />

25


IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

H. Søndergaard & K. Skak<br />

Table 1 Precl<strong>in</strong>ical anti-tumour activity <strong>and</strong> mechanisms of IL-<strong>21</strong> monotherapy<br />

Tumour model Treatment Anti-tumour effect Mechanism of action References<br />

Colon 26 carc<strong>in</strong>oma (syngeneic) IL-<strong>21</strong>-secret<strong>in</strong>g tumour Complete tumour rejection NK- <strong>and</strong> T cells, ↑ IFN-γ<br />

production (spleen)<br />

B16F1 melanoma, MethA IL-<strong>21</strong>-secret<strong>in</strong>g tumour Complete tumour rejection CTL, NK-, not CD4 + T cells<br />

fibrosacoma (syngeneic)<br />

partly perfor<strong>in</strong> mediated, not<br />

IFN-γ dependent<br />

AsPC1 pancreatic carc<strong>in</strong>oma IL-<strong>21</strong>-secret<strong>in</strong>g tumour<br />

Significant tumour growth Partly NK cells, ↑ IFN-γ<br />

(human xenograft)<br />

<strong>in</strong>hibition<br />

production (spleen cells)<br />

B16 melanoma, MCA205<br />

fibrosarcoma (syngeneic)<br />

B16F10 melanoma, RenCa renal<br />

cell carc<strong>in</strong>oma, DA3 mammary<br />

carc<strong>in</strong>oma (syngeneic)<br />

OVA-express<strong>in</strong>g, E.G7 thymoma<br />

(semi-syngeneic)<br />

Several carc<strong>in</strong>omas with<br />

endogenous or transfected<br />

NKG2D lig<strong>and</strong>s (syngeneic)<br />

SCCVII head <strong>and</strong> neck<br />

squamous cell carc<strong>in</strong>oma<br />

(syngeneic)<br />

B16F0 melanoma, RenCa renal<br />

cell carc<strong>in</strong>oma (syngeneic)<br />

GL261 glioma (syngeneic)<br />

IL-<strong>21</strong>-express<strong>in</strong>g plasmids<br />

(d5 <strong>and</strong> 12 PTI)<br />

IL-<strong>21</strong>-express<strong>in</strong>g plasmids<br />

(d -2 or 1 PTI)<br />

IL-<strong>21</strong> prote<strong>in</strong> 20–100 μg i.p.<br />

early (d2–12 PTI) 1×/day<br />

late (d12–22 PTI) 1×/day<br />

IL-<strong>21</strong> prote<strong>in</strong> 50 μg i.p.<br />

i.v. metastasis: (d0–3 PTI)<br />

spontaneous: (d10–12 PTI)<br />

IL-<strong>21</strong>-express<strong>in</strong>g plasmids<br />

(d5, 12, 19 <strong>and</strong> 26 PTI)<br />

IL-<strong>21</strong> prote<strong>in</strong> 50 μg i.p. or s.c.<br />

d3 or 8 PTI, 1×/day, B16<br />

d7 or 12 PTI, 3×/week, RenCa<br />

IL-<strong>21</strong>-secret<strong>in</strong>g tumour or IL-<strong>21</strong><br />

prote<strong>in</strong> 1 μg i.t.<br />

Significant tumour growth<br />

<strong>in</strong>hibition <strong>and</strong> <strong>in</strong>creased<br />

survival<br />

Reduced number of lung <strong>and</strong><br />

liver metastasis<br />

Significant tumour growth<br />

<strong>in</strong>hibition <strong>and</strong> <strong>in</strong>creased<br />

survival compared with IL-2<br />

<strong>and</strong> IL-15<br />

Reduced number of lung<br />

metastasis<br />

Significant tumour growth<br />

<strong>in</strong>hibition <strong>and</strong> <strong>in</strong>creased<br />

survival<br />

Significant tumour growth<br />

<strong>in</strong>hibition<br />

Significant tumour rejection<br />

NK cells, m<strong>in</strong>or CTL role not<br />

CD4 + T cells, ↑ NK cell<br />

cytotoxicity, no IFN-γ <strong>in</strong>crease<br />

(serum)<br />

NK cells, perfor<strong>in</strong> dependent,<br />

not IFN-γ, Fas lig<strong>and</strong> or TRAIL<br />

CTL, early moderate role for NK<br />

cells, not CD4 + T cells, ↑ <strong>and</strong><br />

susta<strong>in</strong>ed Ag-specific CTL<br />

response, ↑ cytotoxicity<br />

NK cells, NKG2D <strong>and</strong> perfor<strong>in</strong><br />

dependent, not IFN-γ <strong>and</strong> Fas<br />

lig<strong>and</strong><br />

T cells, NK cells <strong>and</strong><br />

tumour-specific<br />

immunoglobul<strong>in</strong>s<br />

CTL, not NK cells<br />

↑ density of tumour <strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells<br />

B cells <strong>and</strong> NK cells<br />

↑ tumour-specific IgG,<br />

↑ serum-<strong>in</strong>duced ADCC <strong>and</strong><br />

complement-mediated lysis<br />

(36)<br />

(37)<br />

(38)<br />

(39)<br />

(30)<br />

(40)<br />

(41)<br />

(42)<br />

(43)<br />

(44)<br />

PTI, post tumour <strong>in</strong>jection; NK, natural killer; IFN, <strong>in</strong>terferon; IL, <strong>in</strong>terleuk<strong>in</strong>; CTL, CD8 + cytotoxic T cells; OVA, ovalbum<strong>in</strong>; TRAIL, tumour necrosis<br />

factor-related apoptosis-<strong>in</strong>duc<strong>in</strong>g lig<strong>and</strong>; ADCC, antibody-dependent ceullular cytotoxicity.<br />

B cells, with <strong>in</strong>creases <strong>in</strong> tumour-specific antibodies, serum<strong>in</strong>duced<br />

antibody-dependent cellular cytotoxicity (ADCC) <strong>and</strong><br />

complement-dependent tumour cell lysis (44). Taken together,<br />

these results show that therapeutic use of recomb<strong>in</strong>ant IL-<br />

<strong>21</strong> prote<strong>in</strong> is effective <strong>in</strong> the treatment of various precl<strong>in</strong>ical<br />

tumours.<br />

Taken as a whole, IL-<strong>21</strong> anti-tumour activity depends<br />

on NK cells, CD8 + T cells or both, with a possible role<br />

for B cell-derived tumour-specific Ig. CD4 + T cells seem<br />

less important, but so far total CD4 + T cell depletions<br />

have been made, <strong>and</strong> more specific depletion of CD4 + T<br />

cell subsets, e.g. T regs <strong>and</strong> T h 17 cells is needed to fully<br />

clarify their role. Perfor<strong>in</strong>, which is critical for both NK<br />

<strong>and</strong> CD8 + T cell cytotoxicity, is up-regulated by IL-<strong>21</strong><br />

<strong>and</strong> <strong>in</strong> contrast to Fas lig<strong>and</strong> or TRAIL, perfor<strong>in</strong> seems<br />

to be important for IL-<strong>21</strong> anti-tumour activity. IL-<strong>21</strong> also<br />

<strong>in</strong>creases IFN-γ production, but the need for IFN-γ is more<br />

varied than perfor<strong>in</strong>, probably depend<strong>in</strong>g on specific tumour<br />

cell susceptibility to this molecule. IL-<strong>21</strong> generally <strong>in</strong>creases<br />

tumour <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells, but it rema<strong>in</strong>s to be shown<br />

whether this is secondary to <strong>in</strong>creases <strong>in</strong> CD8 + T cell<br />

expansion or whether IL-<strong>21</strong> also has direct effects on T cell<br />

traffick<strong>in</strong>g. Generally, it rema<strong>in</strong>s to be clarified at what stage<br />

dur<strong>in</strong>g a tumour immune response IL-<strong>21</strong> is beneficial; does<br />

IL-<strong>21</strong> ma<strong>in</strong>ly shape the <strong>in</strong>itiation <strong>and</strong> expansion processes <strong>in</strong><br />

tumour dra<strong>in</strong><strong>in</strong>g lymph nodes or does it primarily modulate<br />

tumour <strong>in</strong>filtrat<strong>in</strong>g lymphocytes dur<strong>in</strong>g the effector phase.<br />

In addition to its immune-mediated anti-tumour mechanisms,<br />

IL-<strong>21</strong> has direct cytotoxic effects on certa<strong>in</strong> B cell lymphomas<br />

(45), <strong>and</strong> potential anti-angiogenic effects of IL-<strong>21</strong><br />

has been suggested (46). Table 1 summarizes the ma<strong>in</strong> precl<strong>in</strong>ical<br />

<strong>in</strong> vivo anti-tumour data of IL-<strong>21</strong> monotherapy.<br />

In addition to hav<strong>in</strong>g anti-tumour effects when given as<br />

monotherapy, IL-<strong>21</strong> also shows significant additive effects<br />

together with a range of other biologicals modify<strong>in</strong>g both<br />

<strong>in</strong>nate <strong>and</strong> adaptive responses. IL-<strong>21</strong> prote<strong>in</strong> alone enhanced<br />

the anti-tumour effect aga<strong>in</strong>st B16 melanomas treated with<br />

adoptively transferred transgenic CD8 + T cells recogniz<strong>in</strong>g<br />

a melanoma antigen <strong>and</strong> an antigen-specific vacc<strong>in</strong>e (7). But<br />

6 © 2009 John Wiley & Sons A/S<br />

26


H. Søndergaard & K. Skak IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

<strong>in</strong> concert with IL-15, IL-<strong>21</strong> significantly boosted the antitumour<br />

effect by <strong>in</strong>creas<strong>in</strong>g the circulat<strong>in</strong>g level of adoptively<br />

transferred CD8 + T cells <strong>and</strong> augment<strong>in</strong>g their IFN-γ<br />

production. The sequential stimulation of NKT cells with<br />

the agonist α-GC followed by IL-<strong>21</strong> stimulation synergistically<br />

<strong>in</strong>hibited B16 melanoma lung metastasis formation<br />

by boost<strong>in</strong>g the concomitant NK cell activation <strong>in</strong>duced by<br />

NKT cells (47). In comb<strong>in</strong>ation with a potent triple antibody<br />

cocktail (Trimab), IL-<strong>21</strong> helped to completely eradicate<br />

established tumours (48). Trimab consists of anti-DR5,<br />

anti-CD40 <strong>and</strong> anti-CD137 (4-1BB), which together <strong>in</strong>duce<br />

a powerful T cell-dependent anti-tumour response through<br />

DR5-mediated tumour cell apoptosis <strong>and</strong> generation of antigen,<br />

co-stimulation of DCs via CD40, <strong>and</strong> T cell activation<br />

through CD137 stimulation.<br />

Several other <strong>in</strong>terest<strong>in</strong>g comb<strong>in</strong>ation partners for IL-<strong>21</strong><br />

have recently been reviewed (49), exp<strong>and</strong><strong>in</strong>g the potential of<br />

IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> therapy even further. Still, many of the comb<strong>in</strong>ation<br />

partners so far tested with IL-<strong>21</strong> are only <strong>in</strong> early<br />

cl<strong>in</strong>ical test<strong>in</strong>g or otherwise difficult to cl<strong>in</strong>ically translate.<br />

However, we have recently published that IL-<strong>21</strong> has additive<br />

anti-tumour effects <strong>in</strong> comb<strong>in</strong>ation with certa<strong>in</strong> chemotherapies,<br />

provided that IL-<strong>21</strong> treatment is delayed compared to<br />

chemotherapy (50). These data <strong>in</strong>dicate that IL-<strong>21</strong> is feasible<br />

<strong>in</strong> comb<strong>in</strong>ation with conventional therapies.<br />

Another <strong>in</strong>terest<strong>in</strong>g aspect of IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> therapy is its<br />

use <strong>in</strong> the ex vivo generation of antigen-specific CD8 + T cells<br />

for adoptive cell therapy. IL-<strong>21</strong> condition<strong>in</strong>g <strong>in</strong> vitro <strong>in</strong>duces<br />

a unique differentiation program <strong>in</strong> CD8 + T cells yield<strong>in</strong>g a<br />

highly effective anti-tumour response upon adoptive transfer,<br />

which cannot be mimicked with IL-2 or IL-15 (51).<br />

In conclusion, IL-<strong>21</strong> alone or <strong>in</strong> comb<strong>in</strong>ation with other<br />

biological response modifiers stimulates both the <strong>in</strong>nate <strong>and</strong><br />

adaptive arm of the immune system which shows significant<br />

anti-tumour activity <strong>in</strong> several different precl<strong>in</strong>ical tumour<br />

models. These f<strong>in</strong>d<strong>in</strong>gs have paved the way for IL-<strong>21</strong> cl<strong>in</strong>ical<br />

trials, which are currently ongo<strong>in</strong>g.<br />

Cl<strong>in</strong>ical data<br />

IL-2, which is closely related to IL-<strong>21</strong>, is approved for the<br />

treatment of metastatic melanoma (MM) <strong>and</strong> RCC. Although<br />

IL-2 shows encourag<strong>in</strong>g responses <strong>in</strong> groups of patients with<br />

these generally unmanageable diseases, its use is limited<br />

because of severe toxicities, e.g. vascular leak syndrome,<br />

requir<strong>in</strong>g <strong>in</strong>tensive care (52).<br />

In phase I cl<strong>in</strong>ical trials IL-<strong>21</strong> safety was tested <strong>in</strong> patients<br />

with MM <strong>and</strong> RCC (53, 54). IL-<strong>21</strong> was well tolerated;<br />

the most common dose-related adverse effects were flu-like<br />

symptoms such as fever, fatigue, chills <strong>and</strong> myalgia, <strong>and</strong><br />

dose-limit<strong>in</strong>g toxicities <strong>in</strong>cluded lymphopenia, neutropenia,<br />

thrombocytopenia <strong>and</strong> hepatotoxicity with <strong>in</strong>creases <strong>in</strong> liver<br />

enzymes. Forty-seven MM <strong>and</strong> 19 RCC patients were treated<br />

with IL-<strong>21</strong>. Of these, two complete responses (MM) <strong>and</strong> four<br />

partial responses (RCC) were observed accord<strong>in</strong>g to response<br />

evaluation criteria <strong>in</strong> solid tumours (RECIST). IL-<strong>21</strong> also<br />

showed evidence of immune activation, with <strong>in</strong>creases <strong>in</strong><br />

granzyme B, perfor<strong>in</strong>, IFN-γ <strong>and</strong> chemok<strong>in</strong>e C-X-C motif<br />

receptor (CXCR)3 mRNA expression <strong>in</strong> peripheral blood<br />

NK cells <strong>and</strong> CD8 + T cells (5, 53), suggestive of <strong>in</strong>creased<br />

effector cell function. Overall, phase I results endorsed<br />

progress to phase II trials.<br />

To date, two phase II trials have been completed, where IL-<br />

<strong>21</strong> efficacy was evaluated <strong>in</strong> patients with stage IV MM (55)<br />

<strong>and</strong> <strong>in</strong> comb<strong>in</strong>ation with a novel tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitor<br />

(soraf<strong>in</strong>ib) <strong>in</strong> RCC [Bhatia et al., J Cl<strong>in</strong> Oncol 27:15s, 2009<br />

(suppl; abstr 3023), ASCO Annual Meet<strong>in</strong>g]. Out of 24 MM<br />

patients treated by i.v. adm<strong>in</strong>istration of IL-<strong>21</strong>, one partial<br />

<strong>and</strong> one complete response were observed per RECIST, <strong>and</strong><br />

adverse effects were similar to those observed <strong>in</strong> the phase<br />

I trails. In the comb<strong>in</strong>ation of IL-<strong>21</strong> <strong>and</strong> soraf<strong>in</strong>ib, 14 out<br />

of 29 previously treated RCC patients completed <strong>21</strong> weeks<br />

treatment with stable disease or better <strong>and</strong> with an acceptable<br />

safety profile.<br />

Mild lymphocytopenia is a frequently observed adverse<br />

effect of IL-<strong>21</strong>, but <strong>in</strong>terest<strong>in</strong>gly IL-<strong>21</strong> <strong>in</strong>creased the frequency<br />

of lymphocytes express<strong>in</strong>g CD62L <strong>and</strong> CCR7 (55), <strong>in</strong>dicat<strong>in</strong>g<br />

that IL-<strong>21</strong>-<strong>in</strong>duced lymphocytopenia might be caused by a<br />

redistribution of lymphocytes to secondary lymphoid compartments.<br />

Consistent with the phase I trials, NK cells <strong>and</strong> CD8 +<br />

T cells <strong>in</strong> phase II trials showed significant <strong>in</strong>creases <strong>in</strong> perfor<strong>in</strong>,<br />

granzyme B <strong>and</strong> IFN-γ expression follow<strong>in</strong>g IL-<strong>21</strong> (55).<br />

Also, CD8 + T cells <strong>and</strong> NK cells <strong>in</strong>creased their expression of<br />

the activation markers CD25 <strong>and</strong> CD69 <strong>in</strong> response to IL-<strong>21</strong>,<br />

whereas CD4 + T cells did not, <strong>in</strong>dicat<strong>in</strong>g biologically different<br />

effects of IL-<strong>21</strong> on these lymphocytes. These results<br />

confirm that IL-<strong>21</strong> is a well-tolerated drug that has objective<br />

anti-tumour activity <strong>in</strong> human <strong>cancer</strong> patients associated with<br />

signs of relevant immune activation.<br />

Further trials are currently ongo<strong>in</strong>g, evaluat<strong>in</strong>g IL-<strong>21</strong> alone<br />

<strong>and</strong> <strong>in</strong> comb<strong>in</strong>ation with other compounds. Prelim<strong>in</strong>ary reports<br />

from a trial of IL-<strong>21</strong> <strong>in</strong> comb<strong>in</strong>ation with rituximab (anti-<br />

CD20 antibody) for the treatment of non-hodgk<strong>in</strong>’s lymphoma<br />

(Cl<strong>in</strong>icalTrials.gov identifier: NCT00347971) is encourag<strong>in</strong>g<br />

(55). The f<strong>in</strong>al results of these <strong>and</strong> future cl<strong>in</strong>ical trials<br />

will be very <strong>in</strong>terest<strong>in</strong>g to follow.<br />

IL-<strong>21</strong> <strong>in</strong> immunopathology<br />

Potent stimulation of immune responses <strong>in</strong>herently risks the<br />

development of autoimmunity. Given that IL-<strong>21</strong> stimulates<br />

NK <strong>and</strong> T cell-mediated tumour immunity, plays a central<br />

role <strong>in</strong> B cell differentiation <strong>and</strong> antibody production, <strong>and</strong><br />

amplifies the expansion of pro<strong>in</strong>flammatory T h 17 cells, it is<br />

not difficult to appreciate that host-derived IL-<strong>21</strong> could also<br />

be a key player <strong>in</strong> immunopathologies (see Table 2).<br />

© 2009 John Wiley & Sons A/S 7<br />

27


IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

H. Søndergaard & K. Skak<br />

Table 2 The role of IL-<strong>21</strong> <strong>in</strong> autoimmune diseases<br />

Disease Precl<strong>in</strong>ical data References Human data References<br />

Systemic lupus erythematosus Lupus-prone BXSB-Yaa, Sanroque <strong>and</strong><br />

MRL-Fas lpr mice overexpress IL-<strong>21</strong><br />

(56–58) Polymorphisms <strong>in</strong> IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R genes<br />

associate with SLE<br />

IL-<strong>21</strong>R.Fc ameliorates lupus <strong>and</strong> IL-<strong>21</strong>R (58, 59) Low IL-<strong>21</strong>R expression on B cells <strong>in</strong> SLE<br />

deficiency protects from lupus<br />

patients correlates with disease activity<br />

Type 1 diabetes<br />

NOD mice overexpress IL-<strong>21</strong>, IL-<strong>21</strong>R (63, 66, 67) Polymorphisms <strong>in</strong> the IL-2/IL-<strong>21</strong> locus <strong>and</strong><br />

deficiency protects from diabetes, <strong>and</strong><br />

<strong>in</strong> the IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R genes associate<br />

transgenic expression of IL-<strong>21</strong> <strong>in</strong>duces<br />

with T1D<br />

diabetes C57BL/6 mice<br />

Ag-specific CD4 + T cells <strong>in</strong> RIP-OVA mice (65)<br />

overexpress IL-<strong>21</strong> counteract<strong>in</strong>g T reg<br />

suppression of diabetes<br />

Rheumatoid arthritis IL-<strong>21</strong>R.Fc ameliorates CIA <strong>in</strong> DBA/1 mice (70) Inflamed synovial tissue, synovial<br />

lymphocytes <strong>and</strong> PBL from RA patients<br />

overexpress IL-<strong>21</strong>R<br />

Inflammatory bowel disease<br />

Multiple sclerosis<br />

IBF-deficient mice overexpress IL-<strong>21</strong> <strong>and</strong><br />

develop spontaneous arthritis<br />

IL-<strong>21</strong>R-deficient K/BxN mice are protected<br />

from arthritis<br />

IL-<strong>21</strong> co-stimulation of TGFβ-treated<br />

CD4 + CD25 − T cells <strong>in</strong>hibits colitis<br />

suppression <strong>in</strong> SCID mice receiv<strong>in</strong>g<br />

untreated CD4 + CD25 − T cells<br />

IL-<strong>21</strong> is overexpressed <strong>in</strong> gut mucosa from<br />

DSS- <strong>and</strong> TNBS-<strong>in</strong>duced colitis <strong>and</strong> IL-<strong>21</strong><br />

deficiency protects from colitis<br />

IL-<strong>21</strong> adm<strong>in</strong>istration prior to, but not post<br />

MOG immunization <strong>in</strong>creases EAE<br />

severity<br />

IL-<strong>21</strong>R-deficient mice are protected from<br />

MOG-EAE<br />

IL-<strong>21</strong>/IL-<strong>21</strong>R-deficient mice are not<br />

protected from MOG-EAE <strong>and</strong> IL-<strong>21</strong>R.Fc<br />

<strong>in</strong>creases severity of PLP-EAE<br />

(71) IL-<strong>21</strong>R.Fc blocks <strong>in</strong>flammatory<br />

cytok<strong>in</strong>e-release <strong>in</strong> RA synovial cell<br />

cultures<br />

(72) Polymorphisms <strong>in</strong> IL-2/IL-<strong>21</strong> locus<br />

associate with RA<br />

(77) Polymorphisms <strong>in</strong> IL-2/IL-<strong>21</strong> locus<br />

associate with UC <strong>and</strong> CD, <strong>and</strong> <strong>in</strong>flamed<br />

gut mucosa from UC <strong>and</strong> CD patients<br />

overexpress IL-<strong>21</strong><br />

(78) IL-<strong>21</strong> from LPM cells <strong>in</strong>creases MMP<br />

release from <strong>in</strong>test<strong>in</strong>al fibroblasts <strong>in</strong> CD<br />

patients<br />

IL-<strong>21</strong>R.Fc <strong>in</strong>hibits CCL20 secretion <strong>and</strong> T<br />

cell chemotaxis by IBD mucosa<br />

(82) IL-<strong>21</strong> drives secondary autoimmunity <strong>in</strong> MS<br />

patients treated with<br />

lymphocyte-deplet<strong>in</strong>g Ab (alemtuzumab)<br />

(24)<br />

(83)<br />

(60, 61)<br />

(62)<br />

(68, 69)<br />

(73, 74)<br />

(75)<br />

(76)<br />

(78, 79, 81)<br />

(10)<br />

(80)<br />

(85)<br />

Ag, antigen; SLE, systemic lupus erythematosus; NOD, non-obese diabetic; RIP, rat <strong>in</strong>sul<strong>in</strong> promoter; T1D, type 1 diabetes; OVA, ovalbum<strong>in</strong>; RA,<br />

rheumatoid arthritis; CIA, collagen <strong>in</strong>duced arthritis; PBL, peripheral blood lymphocytes; IBF, IRF-4-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>; TGF, transform<strong>in</strong>g growth factor;<br />

UC, ulcerative colitis; CD, Crohn’s disease; LPM, lam<strong>in</strong>a propria monocytes; TNBS, tr<strong>in</strong>itrobenzene sulfonic acid; MMP, matrix metalloprote<strong>in</strong>ase; DSS,<br />

dextran sulfate sodium; MOG, myel<strong>in</strong> oligodendrocyte glycoprote<strong>in</strong>; PLP, myel<strong>in</strong> proteolipid prote<strong>in</strong>; EAE, experimental autoimmune encephalomyelitis<br />

Systemic lupus erythematosus<br />

Systemic lupus erythematosus (SLE) is a chronic autoimmune<br />

disease that can affect connective tissues throughout the body.<br />

Hallmarks of SLE are high levels of circulat<strong>in</strong>g autoantibodies<br />

thought to arise from aberrant apoptosis, characteristic rashes,<br />

<strong>and</strong> glomerulonephritis with associated renal dysfunction.<br />

BXSB-Yaa mutant mice, which spontaneously develop a<br />

condition similar to SLE, with lymphadenopathy, hypergammaglobul<strong>in</strong>emia,<br />

<strong>and</strong> severe immune-complex-mediated<br />

glomerulonephritis, have elevated serum levels of IL-<strong>21</strong> (56).<br />

In another mutant mouse stra<strong>in</strong>, the sanroque mouse, a mutation<br />

<strong>in</strong> the roqu<strong>in</strong> prote<strong>in</strong> negatively regulates T fh cell development.<br />

This mouse developed a similar lupus-like syndrome<br />

associated with <strong>in</strong>creased T fh cell levels <strong>and</strong> overproduction<br />

of IL-<strong>21</strong> (57). The lupus-prone MRL-Fas lpr mouse showed<br />

<strong>in</strong>creased IL-<strong>21</strong> production from CD4 + T cells <strong>and</strong> IL-<strong>21</strong>R.Fc<br />

adm<strong>in</strong>istration ameliorated disease severity (58). And, underl<strong>in</strong><strong>in</strong>g<br />

the role of IL-<strong>21</strong> <strong>in</strong> experimental SLE, homozygous<br />

IL-<strong>21</strong>R −/− BXSB-Yaa mice failed to develop renal disease<br />

<strong>and</strong> mortality (59). These studies outl<strong>in</strong>e a potential benefit<br />

of IL-<strong>21</strong> neutralization <strong>in</strong> SLE patients, particularly given the<br />

critical role for IL-<strong>21</strong> <strong>in</strong> T fh cell <strong>and</strong> GC development, plasma<br />

cell differentiation <strong>and</strong> antibody production.<br />

In humans, polymorphisms <strong>in</strong> the human IL-<strong>21</strong> <strong>and</strong> IL-<br />

<strong>21</strong>R gene show association with SLE (60, 61) <strong>and</strong> peripheral<br />

B cells from SLE patients have decreased IL-<strong>21</strong>R expression<br />

correlat<strong>in</strong>g with <strong>in</strong>creased disease activity (62). Taken<br />

together, these data <strong>in</strong>dicate a putative role for IL-<strong>21</strong> <strong>in</strong> the<br />

8 © 2009 John Wiley & Sons A/S<br />

28


H. Søndergaard & K. Skak IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

pathogenesis of SLE, but future studies are required to better<br />

clarify its role <strong>in</strong> human disease.<br />

Type 1 diabetes<br />

Type 1 diabetes (T1D) is a condition caused by specific<br />

autoimmune destruction of <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g β-cells <strong>in</strong> the<br />

pancreas, result<strong>in</strong>g <strong>in</strong> loss of blood glucose control <strong>and</strong> is<br />

fatal without <strong>in</strong>sul<strong>in</strong>-replacement therapy.<br />

In non-obese diabetic (NOD) mice, a commonly used model<br />

of T1D, the <strong>in</strong>sul<strong>in</strong>-dependent diabetes susceptibility locus<br />

Idd3 on chromosome 3 has major impact on the spontaneous<br />

disease development <strong>and</strong> spans the region for the IL-2 <strong>and</strong><br />

IL-<strong>21</strong> genes. It was <strong>in</strong>itially shown that NOD mice overexpress<br />

IL-<strong>21</strong> <strong>and</strong> it was postulated that IL-<strong>21</strong> could drive<br />

homeostatic expansion <strong>in</strong> NOD mice lead<strong>in</strong>g to the generation<br />

of autoreactive T cells (63). This theory was questioned<br />

by f<strong>in</strong>d<strong>in</strong>gs of genetic variations <strong>in</strong> the IL-2 gene, lead<strong>in</strong>g<br />

to impaired T reg suppressive functions that associated with<br />

diabetes development, <strong>and</strong> this was <strong>in</strong>stead proposed as the<br />

causal l<strong>in</strong>k of Idd3 (64). T regs can protect aga<strong>in</strong>st diabetes<br />

development as shown <strong>in</strong> another diabetes model; however,<br />

here, diabetic mice had normal T reg suppressive capacity, but<br />

<strong>in</strong>stead showed overexpression of IL-<strong>21</strong> which counteracted<br />

T reg -mediated suppression (65). In support, two recent studies<br />

<strong>in</strong>dependently show that IL-<strong>21</strong>R-deficient NOD mice completely<br />

fails to develop diabetes, correlat<strong>in</strong>g with reduced<br />

<strong>in</strong>sulitis, decreased <strong>in</strong>filtration of CD4 + <strong>and</strong> CD8 + T cells<br />

<strong>in</strong> the pancreas, <strong>and</strong> no <strong>in</strong>creases <strong>in</strong> T reg levels (66, 67). Furthermore,<br />

<strong>in</strong> contrast to IL-<strong>21</strong>R +/+ NOD splenocytes, adoptive<br />

transfer of IL-<strong>21</strong>R −/− NOD splenocytes does not <strong>in</strong>duce diabetes<br />

<strong>in</strong> NOD/scid mice <strong>and</strong> transgenic expression of IL-<strong>21</strong><br />

<strong>in</strong>duces spontaneous diabetes <strong>in</strong> diabetes-resistant C57BL/6<br />

mice (67). These data strongly advocate for a central role of<br />

IL-<strong>21</strong> <strong>in</strong> diabetes development <strong>in</strong> NOD mice <strong>and</strong> suggest that<br />

IL-<strong>21</strong> is a relevant susceptibility gene <strong>in</strong> the Idd3 locus. Much<br />

effort has been put <strong>in</strong>to identify<strong>in</strong>g the one gene that confers<br />

the diabetes association of the NOD Idd3 locus, but it appears<br />

that IL-2 <strong>and</strong> IL-<strong>21</strong> are not mutually exclusive diabetes susceptibility<br />

genes.<br />

In a recent large genome-wide association study of human<br />

T1D, the chromosome region 4q27 was identified as one<br />

of six new robust disease-associated loci (68). This locus is<br />

the human orthologue of the Idd3 conta<strong>in</strong><strong>in</strong>g both the IL-2<br />

<strong>and</strong> IL-<strong>21</strong> gene. In another analysis of IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R<br />

gene-sequence variants, polymorphisms <strong>in</strong> both genes were<br />

association with diabetes (69). These data <strong>in</strong>dicate that IL-<strong>21</strong><br />

could have a role <strong>in</strong> human T1D development, but the strong<br />

set of experimental data still lack supportive human data to<br />

confirm this hypothesis.<br />

Rheumatoid arthritis<br />

Rheumatoid arthritis (RA) is a chronic, <strong>in</strong>flammatory disorder<br />

of idiopathic etiology that affects many tissues <strong>and</strong> organs. It<br />

pr<strong>in</strong>cipally <strong>in</strong>volves autoimmune attacks of the jo<strong>in</strong>ts produc<strong>in</strong>g<br />

<strong>in</strong>flammatory synovitis that often progresses to destruction<br />

of the articular cartilage <strong>and</strong> jo<strong>in</strong>t deformities.<br />

In animal models of RA, IL-<strong>21</strong>R.Fc reduced the histological<br />

<strong>and</strong> cl<strong>in</strong>ical signs of collagen-<strong>in</strong>duced arthritis (CIA)<br />

<strong>in</strong> DBA/1 mice immunized with bov<strong>in</strong>e collagen (70). In<br />

another study, <strong>in</strong>terferon regulatory factor 4 (IRF-4)-b<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong> (IBF)-deficient mice showed <strong>in</strong>creased IL-<strong>21</strong> <strong>and</strong><br />

IL-17 production lead<strong>in</strong>g to spontaneous development of a<br />

RA-like condition (71). K/BxN mice spontaneously develop<br />

autoantibody-dependent arthritis, but IL-<strong>21</strong>R-deficient K/BxN<br />

mice were completely refractory to disease (72). Here, IL-<strong>21</strong><br />

ma<strong>in</strong>ly had a pathogenic role <strong>in</strong> T fh development <strong>and</strong> autoantibody<br />

production, whereas T h 17 cells <strong>and</strong> T regs seemed to be<br />

un<strong>in</strong>volved (72).<br />

In RA patients, IL-<strong>21</strong>R expression was <strong>in</strong>creased <strong>in</strong><br />

<strong>in</strong>flamed synovial tissue <strong>and</strong> lymphocytes, <strong>and</strong> <strong>in</strong> peripheral<br />

blood lymphocytes compared with osteoarthritis (OA)<br />

patients (73, 74). Also, IL-<strong>21</strong> production was detected <strong>in</strong> RA<br />

synovial tissue cultures, <strong>and</strong> IL-<strong>21</strong>R.Fc <strong>in</strong>hibited secretion of<br />

pro<strong>in</strong>flammatory cytok<strong>in</strong>es from the synovial tissue (75). In<br />

a recent study, it was proposed that genetic polymorphisms<br />

<strong>in</strong> the IL-2/IL-<strong>21</strong> locus were associated with the development<br />

of RA (76). Overall, <strong>in</strong>creas<strong>in</strong>g evidence suggests that IL-<strong>21</strong><br />

could be <strong>in</strong>volved <strong>in</strong> the pathogenesis of RA.<br />

Inflammatory bowel disease<br />

Inflammatory bowel disease (IBD) ma<strong>in</strong>ly comprises ulcerative<br />

colitis (UC) <strong>and</strong> Crohn’s disease (CD), where both<br />

<strong>in</strong>volve idiopathic autoimmune destruction of the gut mucosa,<br />

but differ <strong>in</strong> the areas of the gut they affect.<br />

In experimental colitis, CD4 + CD25 − T cell transfer to<br />

SCID mice results <strong>in</strong> colitis development, co-transfer of<br />

TGFβ-treated CD4 + CD25 − T cells ameliorates disease,<br />

whereas co-transfer of TGFβ <strong>and</strong> IL-<strong>21</strong>-treated CD4 + CD25 −<br />

T cells fails to suppress colitis development (77). This is<br />

thought to occur because IL-<strong>21</strong> <strong>in</strong>hibits TGFβ-<strong>in</strong>duced FoxP3<br />

expression <strong>and</strong> T reg differentiation of CD4 + CD25 − T cells<br />

<strong>and</strong> <strong>in</strong>stead promotes differentiation of T h 17 cells produc<strong>in</strong>g<br />

high levels of IL-17 as well as IL-<strong>21</strong> (77). In experimental<br />

colitis <strong>in</strong>duced by dextran sulfate sodium (DSS) or<br />

tr<strong>in</strong>itrobenzene sulfonic acid (TNBS), IL-<strong>21</strong> expression was<br />

<strong>in</strong>creased <strong>in</strong> the gut mucosa, <strong>and</strong> IL-<strong>21</strong>-deficient mice were<br />

highly protected from disease correlat<strong>in</strong>g with reduced T h 17<br />

cell activity (78).<br />

In humans, IL-<strong>21</strong> expression is <strong>in</strong>creased <strong>in</strong> <strong>in</strong>flamed, but<br />

not unaffected gut mucosa from both UC <strong>and</strong> CD patients (78,<br />

79). Isolated lam<strong>in</strong>a propria T cells from CD patients showed<br />

reduced IL-17 production when stimulated <strong>in</strong> the presence of<br />

anti-IL-<strong>21</strong> antibody (78), <strong>in</strong>dicat<strong>in</strong>g that IL-<strong>21</strong> is present <strong>in</strong><br />

IBD <strong>and</strong> has potential impact on IL-17 responses, which are<br />

believed to be pathogenic <strong>in</strong> CD. Intest<strong>in</strong>al fibroblasts isolated<br />

from colitis patients <strong>and</strong> healthy controls express IL-<strong>21</strong>R, <strong>and</strong><br />

© 2009 John Wiley & Sons A/S 9<br />

29


IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

H. Søndergaard & K. Skak<br />

IL-<strong>21</strong> alone or <strong>in</strong> concert with TNF-α significantly <strong>in</strong>duced their<br />

secretion of matrix metalloprote<strong>in</strong>ases (MMP), thought to play<br />

a key role <strong>in</strong> tissue degradation (10). Also, IL-<strong>21</strong>R.Fc treatment<br />

reduced the MMP production from <strong>in</strong>test<strong>in</strong>al fibroblasts<br />

<strong>in</strong>duced by supernatants from CD lam<strong>in</strong>a propria mononuclear<br />

cells (10). Moreover, IL-<strong>21</strong> stimulation <strong>in</strong>duced secretion of<br />

the T cell attractant, CCL20/MIP-3α from colon epithelial<br />

cells, <strong>and</strong> anti-IL-<strong>21</strong> blocked T cell chemotaxis <strong>in</strong>duced by<br />

supernatants from IBD mucosal explants (80). In genome-wide<br />

association studies s<strong>in</strong>gle nucleotide polymorphisms (SNPs)<br />

with<strong>in</strong> the IL-2/IL-<strong>21</strong> locus 4q27 associated with both UC<br />

<strong>and</strong> CD (81). Overall, evidence is accumulat<strong>in</strong>g that IL-<strong>21</strong> is<br />

a very relevant cytok<strong>in</strong>e <strong>in</strong> the pathogenesis of IBD with a<br />

role <strong>in</strong> both tissue remodell<strong>in</strong>g <strong>and</strong> T cell traffick<strong>in</strong>g.<br />

Multiple sclerosis<br />

Multiple sclerosis (MS) is an autoimmune disease of unknown<br />

etiology, which attacks the central nervous system (CNS),<br />

lead<strong>in</strong>g to demyel<strong>in</strong>ation <strong>and</strong> loss of physical <strong>and</strong> cognitive<br />

function.<br />

Experimental autoimmune encephalomyelitis (EAE) is the<br />

classical animal model of MS, where immunization with<br />

myel<strong>in</strong>-derived peptides or prote<strong>in</strong>s <strong>in</strong>duces CNS <strong>in</strong>flammation<br />

mimick<strong>in</strong>g human disease. In EAE, IL-<strong>21</strong> prote<strong>in</strong><br />

adm<strong>in</strong>istration prior to myel<strong>in</strong> oligodendrocyte glycoprote<strong>in</strong><br />

(MOG)-peptide immunization <strong>in</strong>creased the severity of disease,<br />

whereas IL-<strong>21</strong> adm<strong>in</strong>istration dur<strong>in</strong>g disease progression<br />

did not <strong>in</strong>crease severity (82). Initially, MOG immunization<br />

of IL-<strong>21</strong>-deficient mice showed reduced EAE disease activity<br />

ascribed to a lack of T h 17 cell differentiation (24). However,<br />

more recent f<strong>in</strong>d<strong>in</strong>gs have challenged this, show<strong>in</strong>g no reduction<br />

or even exacerbated EAE <strong>in</strong> IL-<strong>21</strong>- <strong>and</strong> IL-<strong>21</strong>R-deficient<br />

mice <strong>and</strong> competent T h 17 cell differentiation (83). This discrepancy<br />

may arise from genetic variations <strong>in</strong> the mice used<br />

<strong>in</strong> the different experiments (83). Also, <strong>in</strong> EAE <strong>in</strong>duced by<br />

myel<strong>in</strong> proteolipid prote<strong>in</strong> (PLP), adm<strong>in</strong>istration of IL-<strong>21</strong>R.Fc<br />

before <strong>and</strong> after peptide immunisation <strong>in</strong>creased the severity<br />

of disease associated with decreased T reg numbers <strong>and</strong> Foxp3<br />

expression (84).<br />

Altogether, the role of IL-<strong>21</strong> <strong>in</strong> EAE is controversial, <strong>and</strong><br />

a direct l<strong>in</strong>k between IL-<strong>21</strong> <strong>and</strong> human MS rema<strong>in</strong>s to be<br />

shown. However, a recent publication shows that MS patients<br />

who developed secondary autoimmunity result<strong>in</strong>g from treatment<br />

with a lymphocyte-deplet<strong>in</strong>g monoclonal antibody,<br />

alemtuzumab, had greatly elevated serum IL-<strong>21</strong>, which was<br />

genetically predeterm<strong>in</strong>ed. It is possible that IL-<strong>21</strong> drives<br />

excess homeostatic T cell expansion <strong>and</strong> apoptosis lead<strong>in</strong>g<br />

to secondary autoimmunity (85). Clearly, these data warrant<br />

future studies of IL-<strong>21</strong> <strong>in</strong> the pathogenesis of MS.<br />

Chronic viral <strong>in</strong>fections<br />

Very recently, a trio of papers showed that host IL-<strong>21</strong> was critical<br />

for the control of chronic viral <strong>in</strong>fections by subject<strong>in</strong>g<br />

IL-<strong>21</strong>- <strong>and</strong> IL-<strong>21</strong>R-deficient mice to chronic lymphocytic<br />

choriomen<strong>in</strong>gitis virus (LCMV) (86–88). In these studies, IL-<br />

<strong>21</strong> was needed neither dur<strong>in</strong>g the acute phase of viral <strong>in</strong>fections,<br />

nor for the ma<strong>in</strong>tenance of memory CD8 + T cells after<br />

resolved <strong>in</strong>fections, but without IL-<strong>21</strong> chronic presence of<br />

virus antigen resulted <strong>in</strong> exhaustion of CD8 + T cell responses<br />

<strong>and</strong> poor viral control. These studies highlight yet another<br />

important aspect of IL-<strong>21</strong> with potential ramifications for<br />

novel therapies. Here it is also worth notic<strong>in</strong>g that the role<br />

of endogenous IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> control, which also <strong>in</strong>cludes<br />

chronic persistence of antigen, rema<strong>in</strong>s to be determ<strong>in</strong>ed.<br />

Conclud<strong>in</strong>g remarks<br />

In less than a decade, IL-<strong>21</strong> has advanced from be<strong>in</strong>g a<br />

novel member of the γ c receptor family to a cytok<strong>in</strong>e <strong>in</strong><br />

cl<strong>in</strong>ical trials for the treatment of <strong>cancer</strong>, with implications<br />

<strong>in</strong> several autoimmune pathogeneses. As <strong>cancer</strong> therapy,<br />

IL-<strong>21</strong> monotherapy shows moderate cl<strong>in</strong>ical responses, but so<br />

far cl<strong>in</strong>ical trials have been limited to pretreated, end-stage<br />

patients <strong>and</strong> it would be very <strong>in</strong>terest<strong>in</strong>g to evaluate IL-<strong>21</strong> <strong>in</strong><br />

patients with less advanced disease. The manageable toxicity<br />

of IL-<strong>21</strong> encourages comb<strong>in</strong>ation with other drugs, <strong>and</strong> such<br />

options ought to be pursued <strong>in</strong> future trials. Cont<strong>in</strong>ued research<br />

<strong>in</strong>to IL-<strong>21</strong> anti-<strong>cancer</strong> biology will be essential to further clarify<br />

its immunotherapeutic effects, support future cl<strong>in</strong>ical trials<br />

<strong>and</strong> perhaps identify novel <strong>in</strong>terest<strong>in</strong>g comb<strong>in</strong>ation partners.<br />

The data reviewed here clearly suggest that neutralization<br />

of IL-<strong>21</strong> could hold therapeutic value <strong>in</strong> several major<br />

immunopathologies, where particularly IBD, RA <strong>and</strong> SLE<br />

seem to be relevant c<strong>and</strong>idates. However, disclos<strong>in</strong>g the role<br />

of IL-<strong>21</strong> <strong>in</strong> human immunopathologies will be essential to<br />

warrant the development of new IL-<strong>21</strong>-block<strong>in</strong>g compounds.<br />

Hopefully, the next few years of IL-<strong>21</strong> research will clarify<br />

its full potential <strong>in</strong> <strong>cancer</strong> therapy <strong>and</strong> its <strong>in</strong>trigu<strong>in</strong>g role <strong>in</strong><br />

immunopathologies.<br />

References<br />

1. Ozaki K, Kikly K, Michalovich D et al. Clon<strong>in</strong>g of a type I<br />

cytok<strong>in</strong>e receptor most related to the IL-2 receptor beta cha<strong>in</strong>.<br />

Proc Natl Acad Sci U S A 2000: 97: 11439–44.<br />

2. Parrish-Novak J, Dillon SR, Nelson A et al. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> <strong>and</strong><br />

its receptor are <strong>in</strong>volved <strong>in</strong> NK cell expansion <strong>and</strong> regulation<br />

of lymphocyte function. Nature 2000: 408: 57–63.<br />

3. Asao H, Okuyama C, Kumaki S et al. Cutt<strong>in</strong>g edge: the<br />

common gamma-cha<strong>in</strong> is an <strong>in</strong>dispensable subunit of the IL-<strong>21</strong><br />

receptor complex. J Immunol 2001: 167: 1–5.<br />

4. Zeng R, Spolski R, Casas E et al. The molecular basis of<br />

IL-<strong>21</strong>-mediated proliferation. Blood 2007: 109: 4135–42.<br />

5. Frederiksen KS, Lundsgaard D, Freeman JA et al. IL-<strong>21</strong><br />

<strong>in</strong>duces <strong>in</strong> vivo immune activation of NK cells <strong>and</strong> CD8(+)<br />

T cells <strong>in</strong> patients with metastatic melanoma <strong>and</strong> renal cell<br />

carc<strong>in</strong>oma. Cancer Immunol Immunother 2008: 57: 1439–49.<br />

10 © 2009 John Wiley & Sons A/S<br />

30


H. Søndergaard & K. Skak IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

6. Caprioli F, Sarra M, Caruso R et al. Autocr<strong>in</strong>e regulation of<br />

IL-<strong>21</strong> production <strong>in</strong> human T lymphocytes. J Immunol 2008:<br />

180: 1800–7.<br />

7. Zeng R, Spolski R, F<strong>in</strong>kelste<strong>in</strong> SE et al. Synergy of IL-<strong>21</strong> <strong>and</strong><br />

IL-15 <strong>in</strong> regulat<strong>in</strong>g CD8+ T cell expansion <strong>and</strong> function. J Exp<br />

Med 2005: 201: 139–48.<br />

8. Coquet JM, Kyparissoudis K, Pellicci DG et al. IL-<strong>21</strong> is<br />

produced by NKT cells <strong>and</strong> modulates NKT cell activation <strong>and</strong><br />

cytok<strong>in</strong>e production. J Immunol 2007: 178: 2827–34.<br />

9. Spolski R, Leonard WJ. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: basic biology <strong>and</strong><br />

implications for <strong>cancer</strong> <strong>and</strong> autoimmunity. Annu Rev Immunol<br />

2008: 26: 57–79.<br />

10. Monteleone G, Caruso R, F<strong>in</strong>a D et al. Control of matrix<br />

metalloprote<strong>in</strong>ase production <strong>in</strong> human <strong>in</strong>test<strong>in</strong>al fibroblasts by<br />

<strong>in</strong>terleuk<strong>in</strong> <strong>21</strong>. Gut 2006: 55: 1774–80.<br />

11. Kasaian MT, Whitters MJ, Carter LL et al. IL-<strong>21</strong> limits NK<br />

cell responses <strong>and</strong> promotes antigen-specific T cell activation:<br />

a mediator of the transition from <strong>in</strong>nate to adaptive immunity.<br />

Immunity 2002: 16: 559–69.<br />

12. Ozaki K, Spolski R, Feng CG et al. A critical role for IL-<strong>21</strong> <strong>in</strong><br />

regulat<strong>in</strong>g immunoglobul<strong>in</strong> production. Science 2002: 298:<br />

1630–4.<br />

13. J<strong>in</strong> H, Carrio R, Yu A et al. Dist<strong>in</strong>ct activation signals<br />

determ<strong>in</strong>e whether IL-<strong>21</strong> <strong>in</strong>duces B cell costimulation, growth<br />

arrest, or Bim-dependent apoptosis. J Immunol 2004: 173:<br />

657–65.<br />

14. Good KL, Bryant VL, Tangye SG. K<strong>in</strong>etics of human B cell<br />

behavior <strong>and</strong> amplification of proliferative responses follow<strong>in</strong>g<br />

stimulation with IL-<strong>21</strong>. J Immunol 2006: 177: 5236–47.<br />

15. Konforte D, Simard N, Paige CJ. IL-<strong>21</strong>: an executor of B cell<br />

fate. J Immunol 2009: 182: 1781–7.<br />

16. Suto A, Nakajima H, Hirose K et al. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> prevents<br />

antigen-<strong>in</strong>duced IgE production by <strong>in</strong>hibit<strong>in</strong>g germ l<strong>in</strong>e<br />

C(epsilon) transcription of IL-4-stimulated B cells. Blood<br />

2002: 100: 4565–73.<br />

17. Wood N, Bourque K, Donaldson DD et al. IL-<strong>21</strong> effects on<br />

human IgE production <strong>in</strong> response to IL-4 or IL-13. Cell<br />

Immunol 2004: 231: 133–45.<br />

18. Pesce J, Kaviratne M, Ramal<strong>in</strong>gam TR et al. The IL-<strong>21</strong><br />

receptor augments Th2 effector function <strong>and</strong> alternative<br />

macrophage activation. J Cl<strong>in</strong> Invest 2006: 116: 2044–55.<br />

19. Silver JS, Hunter CA. With a little help from their friends:<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>, T cells, <strong>and</strong> B cells. Immunity 2008: 29: 7–9.<br />

20. Wei L, Laurence A, Elias KM et al. IL-<strong>21</strong> is produced by<br />

Th17 cells <strong>and</strong> drives IL-17 production <strong>in</strong> a STAT3-dependent<br />

manner. J Biol Chem 2007: 282: 34605–10.<br />

<strong>21</strong>. Peluso I, Fant<strong>in</strong>i MC, F<strong>in</strong>a D et al. IL-<strong>21</strong> counteracts the<br />

regulatory T cell-mediated suppression of human CD4+ T<br />

lymphocytes. J Immunol 2007: 178: 732–9.<br />

22. Ferrari-Lacraz S, Chicheportiche R, Schneiter G et al. IL-<strong>21</strong><br />

promotes survival <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>s a naive phenotype <strong>in</strong> human<br />

CD4+ T lymphocytes. Int Immunol 2008: 20: 1009–18.<br />

23. Wuest TY, Willette-Brown J, Durum SK et al. The <strong>in</strong>fluence of<br />

IL-2 family cytok<strong>in</strong>es on activation <strong>and</strong> function of naturally<br />

occurr<strong>in</strong>g regulatory T cells. J Leukoc Biol 2008: 84: 973–80.<br />

24. Nurieva R, Yang XO, Mart<strong>in</strong>ez G et al. Essential autocr<strong>in</strong>e<br />

regulation by IL-<strong>21</strong> <strong>in</strong> the generation of <strong>in</strong>flammatory T cells.<br />

Nature 2007: 448: 480–3.<br />

25. Korn T, Bettelli E, Oukka M et al. IL-17 <strong>and</strong> Th17 Cells.<br />

Annu Rev Immunol 2009: 27: 485–517.<br />

26. Alves NL, Arosa FA, van Lier RA. IL-<strong>21</strong> susta<strong>in</strong>s CD28<br />

expression on IL-15-activated human naive CD8+ T cells.<br />

J Immunol 2005: 175: 755–62.<br />

27. Li Y, Bleakley M, Yee C. IL-<strong>21</strong> <strong>in</strong>fluences the frequency,<br />

phenotype, <strong>and</strong> aff<strong>in</strong>ity of the antigen-specific CD8 T cell<br />

response. J Immunol 2005: 175: 2261–9.<br />

28. Perez SA, Mahaira LG, Sotiropoulou PA et al. Effect of IL-<strong>21</strong><br />

on NK cells derived from different umbilical cord blood<br />

populations. Int Immunol 2006: 18: 49–58.<br />

29. Sivori S, Cantoni C, Parol<strong>in</strong>i S et al. IL-<strong>21</strong> <strong>in</strong>duces both rapid<br />

maturation of human CD34+ cell precursors towards NK cells<br />

<strong>and</strong> acquisition of surface killer Ig-like receptors. Eur J<br />

Immunol 2003: 33: 3439–47.<br />

30. Brady J, Hayakawa Y, Smyth MJ et al. IL-<strong>21</strong> <strong>in</strong>duces the<br />

functional maturation of mur<strong>in</strong>e NK cells. J Immunol 2004:<br />

172: 2048–58.<br />

31. Br<strong>and</strong>t K, Bulfone-Paus S, Jenckel A et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong><br />

<strong>in</strong>hibits dendritic cell-mediated T cell activation <strong>and</strong> <strong>in</strong>duction<br />

of contact hypersensitivity <strong>in</strong> vivo. J Invest Dermatol 2003:<br />

1<strong>21</strong>: 1379–82.<br />

32. Br<strong>and</strong>t K, Bulfone-Paus S, Foster DC et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong><br />

<strong>in</strong>hibits dendritic cell activation <strong>and</strong> maturation. Blood 2003:<br />

102: 4090–8.<br />

33. Maeda M, Yanagawa Y, Iwabuchi K et al. IL-<strong>21</strong> enhances<br />

dendritic cell ability to <strong>in</strong>duce <strong>in</strong>terferon-gamma production by<br />

natural killer T cells. Immunobiology 2007: <strong>21</strong>2: 537–47.<br />

34. Pelletier M, Bouchard A, Girard D. In vivo <strong>and</strong> <strong>in</strong> vitro roles<br />

of IL-<strong>21</strong> <strong>in</strong> <strong>in</strong>flammation. J Immunol 2004: 173: 75<strong>21</strong>–30.<br />

35. Ruckert R, Bulfone-Paus S, Br<strong>and</strong>t K. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong><br />

stimulates antigen uptake, protease activity, survival <strong>and</strong><br />

<strong>in</strong>duction of CD4+ T cell proliferation by mur<strong>in</strong>e<br />

macrophages. Cl<strong>in</strong> Exp Immunol 2008: 151: 487–95.<br />

36. Ugai S, Shimozato O, Kawamura K et al. Expression of the<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> gene <strong>in</strong> mur<strong>in</strong>e colon carc<strong>in</strong>oma cells generates<br />

systemic immunity <strong>in</strong> the <strong>in</strong>oculated hosts. Cancer Gene Ther<br />

2003: 10: 187–92.<br />

37. Ma HL, Whitters MJ, Konz RF et al. IL-<strong>21</strong> activates both<br />

<strong>in</strong>nate <strong>and</strong> adaptive immunity to generate potent antitumor<br />

responses that require perfor<strong>in</strong> but are <strong>in</strong>dependent of<br />

IFN-gamma. J Immunol 2003: 171: 608–15.<br />

38. Ugai S, Shimozato O, Yu L et al. Transduction of the IL-<strong>21</strong><br />

<strong>and</strong> IL-23 genes <strong>in</strong> human pancreatic carc<strong>in</strong>oma cells produces<br />

natural killer cell-dependent <strong>and</strong> -<strong>in</strong>dependent antitumor<br />

effects. Cancer Gene Ther 2003: 10: 771–8.<br />

39. Wang G, Tschoi M, Spolski R et al. In vivo antitumor activity<br />

of <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> mediated by natural killer cells. Cancer Res<br />

2003: 63: 9016–22.<br />

40. Moroz A, Eppolito C, Li Q et al. IL-<strong>21</strong> enhances <strong>and</strong> susta<strong>in</strong>s<br />

CD8+ T cell responses to achieve durable tumor immunity:<br />

comparative evaluation of IL-2, IL-15, <strong>and</strong> IL-<strong>21</strong>. J Immunol<br />

2004: 173: 900–9.<br />

41. Takaki R, Hayakawa Y, Nelson A et al. IL-<strong>21</strong> enhances tumor<br />

rejection through a NKG2D-dependent mechanism. J Immunol<br />

2005: 175: <strong>21</strong>67–73.<br />

42. Nakano H, Kishida T, Asada H et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> triggers<br />

both cellular <strong>and</strong> humoral immune responses lead<strong>in</strong>g to<br />

© 2009 John Wiley & Sons A/S 11<br />

31


IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

H. Søndergaard & K. Skak<br />

therapeutic antitumor effects aga<strong>in</strong>st head <strong>and</strong> neck squamous<br />

cell carc<strong>in</strong>oma. J Gene Med 2006: 8: 90–9.<br />

43. Sondergaard H, Frederiksen KS, Thygesen P et al. <strong>Interleuk<strong>in</strong></strong><br />

<strong>21</strong> therapy <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8(+)<br />

T cells <strong>and</strong> <strong>in</strong>hibits the growth of syngeneic tumors. Cancer<br />

Immunol Immunother 2007.<br />

44. Daga A, Orengo AM, Gangemi RM et al. Glioma<br />

<strong>immunotherapy</strong> by IL-<strong>21</strong> gene-modified cells or by<br />

recomb<strong>in</strong>ant IL-<strong>21</strong> <strong>in</strong>volves antibody responses. Int J Cancer<br />

2007: 1<strong>21</strong>: 1756–63.<br />

45. Gelebart P, Zak Z, An<strong>and</strong> M et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> effectively<br />

<strong>in</strong>duces apoptosis <strong>in</strong> mantle cell lymphoma through a<br />

STAT1-dependent mechanism. Leukemia 2009.<br />

46. Castermans K, Tabruyn SP, Zeng R et al. Angiostatic activity<br />

of the antitumor cytok<strong>in</strong>e <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>. Blood 2008: 112:<br />

4940–7.<br />

47. Smyth MJ, Wallace ME, Nutt SL et al. Sequential activation of<br />

NKT cells <strong>and</strong> NK cells provides effective <strong>in</strong>nate<br />

<strong>immunotherapy</strong> of <strong>cancer</strong>. J Exp Med 2005: 201: 1973–85.<br />

48. Smyth MJ, Teng MW, Sharkey J et al. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> enhances<br />

antibody-mediated tumor rejection. Cancer Res 2008: 68:<br />

3019–25.<br />

49. Skak K, Kragh M, Hausman D et al. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong>:<br />

comb<strong>in</strong>ation strategies for <strong>cancer</strong> therapy. Nat Rev Drug<br />

Discov 2008: 7: 231–40.<br />

50. Skak K, Søndergaard H, Frederiksen KS, Ehrnrooth E. In vivo<br />

antitumor efficacy of <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> comb<strong>in</strong>ation with<br />

chemotherapeutics. Cytok<strong>in</strong>e 2009: [Epub ahead of pr<strong>in</strong>t].<br />

51. H<strong>in</strong>richs CS, Spolski R, Paulos CM et al. IL-2 <strong>and</strong> IL-<strong>21</strong><br />

confer oppos<strong>in</strong>g differentiation programs to CD8+ T cells for<br />

adoptive <strong>immunotherapy</strong>. Blood 2008: 111: 5326–33.<br />

52. Atk<strong>in</strong>s MB. <strong>Interleuk<strong>in</strong></strong>-2: cl<strong>in</strong>ical applications. Sem<strong>in</strong> Oncol<br />

2002: 29: 12–7.<br />

53. Davis ID, Skrumsager BK, Cebon J et al. An open-label,<br />

two-arm, phase I trial of recomb<strong>in</strong>ant human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong><br />

patients with metastatic melanoma. Cl<strong>in</strong> Cancer Res 2007: 13:<br />

3630–6.<br />

54. Thompson JA, Curti BD, Redman BG et al. Phase I study of<br />

recomb<strong>in</strong>ant <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with metastatic<br />

melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma. J Cl<strong>in</strong> Oncol 2008: 26:<br />

2034–9.<br />

55. Davis ID, Brady B, Kefford RF et al. Cl<strong>in</strong>ical <strong>and</strong> biological<br />

efficacy of recomb<strong>in</strong>ant human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with<br />

stage IV malignant melanoma without prior treatment: a phase<br />

IIa trial. Cl<strong>in</strong> Cancer Res 2009: 15: <strong>21</strong>23–9.<br />

56. Ozaki K, Spolski R, Ett<strong>in</strong>ger R et al. Regulation of B cell<br />

differentiation <strong>and</strong> plasma cell generation by IL-<strong>21</strong>, a novel<br />

<strong>in</strong>ducer of Blimp-1 <strong>and</strong> Bcl-6. J Immunol 2004: 173: 5361–71.<br />

57. V<strong>in</strong>uesa CG, Cook MC, Angelucci C et al. A RING-type<br />

ubiquit<strong>in</strong> ligase family member required to repress follicular<br />

helper T cells <strong>and</strong> autoimmunity. Nature 2005: 435: 452–8.<br />

58. Herber D, Brown TP, Liang S et al. IL-<strong>21</strong> has a pathogenic<br />

role <strong>in</strong> a lupus-prone mouse model <strong>and</strong> its blockade with<br />

IL-<strong>21</strong>R.Fc reduces disease progression. J Immunol 2007: 178:<br />

3822–30.<br />

59. Bubier JA, Sproule TJ, Foreman O et al. A critical role for<br />

IL-<strong>21</strong> receptor signal<strong>in</strong>g <strong>in</strong> the pathogenesis of systemic lupus<br />

erythematosus <strong>in</strong> BXSB-Yaa mice. Proc Natl Acad Sci U S A<br />

2009: 106: 1518–1523.<br />

60. Sawalha AH, Kaufman KM, Kelly JA et al. Genetic<br />

association of <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> polymorphisms with systemic<br />

lupus erythematosus. Ann Rheum Dis 2008: 67: 458–61.<br />

61. Webb R, Merrill JT, Kelly JA et al. A polymorphism with<strong>in</strong><br />

IL<strong>21</strong>R confers risk for systemic lupus erythematosus. Arthritis<br />

Rheum 2009: 60: 2402–7.<br />

62. Mitoma H, Horiuchi T, Kimoto Y et al. Decreased expression<br />

of <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> receptor on peripheral B lymphocytes <strong>in</strong><br />

systemic lupus erythematosus. Int J Mol Med 2005: 16:<br />

609–15.<br />

63. K<strong>in</strong>g C, Ilic A, Koelsch K et al. Homeostatic expansion of<br />

T cells dur<strong>in</strong>g immune <strong>in</strong>sufficiency generates autoimmunity.<br />

Cell 2004: 117: 265–77.<br />

64. Yamanouchi J, Ra<strong>in</strong>bow D, Serra P et al. <strong>Interleuk<strong>in</strong></strong>-2 gene<br />

variation impairs regulatory T cell function <strong>and</strong> causes<br />

autoimmunity. Nat Genet 2007: 39: 329–37.<br />

65. Clough LE, Wang CJ, Schmidt EM et al. Release from<br />

regulatory T cell-mediated suppression dur<strong>in</strong>g the onset of<br />

tissue-specific autoimmunity is associated with elevated IL-<strong>21</strong>.<br />

J Immunol 2008: 180: 5393–401.<br />

66. Spolski R, Kashyap M, Rob<strong>in</strong>son C et al. IL-<strong>21</strong> signal<strong>in</strong>g is<br />

critical for the development of type I diabetes <strong>in</strong> the NOD<br />

mouse. Proc Natl Acad Sci U S A 2008: 105: 14028–33.<br />

67. Sutherl<strong>and</strong> AP, Van BT, Wurster AL et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> is<br />

required for the development of type 1 diabetes <strong>in</strong> NOD mice.<br />

Diabetes 2009: 58: 1144–55.<br />

68. Todd JA, Walker NM, Cooper JD et al. Robust associations of<br />

four new chromosome regions from genome-wide analyses of<br />

type 1 diabetes. Nat Genet 2007: 39: 857–64.<br />

69. Asano K, Ikegami H, Fujisawa T et al. Molecular scann<strong>in</strong>g of<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> gene <strong>and</strong> genetic susceptibility to type 1<br />

diabetes. Hum Immunol 2007: 68: 384–91.<br />

70. Young DA, Hegen M, Ma HL et al. Blockade of the<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>/<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> receptor pathway ameliorates<br />

disease <strong>in</strong> animal models of rheumatoid arthritis. Arthritis<br />

Rheum 2007: 56: 1152–63.<br />

71. Chen Q, Yang W, Gupta S et al. IRF-4-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong>hibits<br />

<strong>in</strong>terleuk<strong>in</strong>-17 <strong>and</strong> <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> production by controll<strong>in</strong>g the<br />

activity of IRF-4 transcription factor. Immunity 2008: 29:<br />

899–911.<br />

72. Jang E, Cho SH, Park H et al. A positive feedback loop of<br />

IL-<strong>21</strong> signal<strong>in</strong>g provoked by homeostatic CD4+. J Immunol<br />

2009: 182: 4649–56.<br />

73. Jungel A, Distler JH, Kurowska-Stolarska M et al. Expression<br />

of <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> receptor, but not <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>, <strong>in</strong> synovial<br />

fibroblasts <strong>and</strong> synovial macrophages of patients with<br />

rheumatoid arthritis. Arthritis Rheum 2004: 50: 1468–76.<br />

74. Li J, Shen W, Kong K et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> <strong>in</strong>duces T-cell<br />

activation <strong>and</strong> pro<strong>in</strong>flammatory cytok<strong>in</strong>e secretion <strong>in</strong><br />

rheumatoid arthritis. Sc<strong>and</strong> J Immunol 2006: 64: 515–22.<br />

75. Andersson AK, Feldmann M, Brennan FM. Neutraliz<strong>in</strong>g IL-<strong>21</strong><br />

<strong>and</strong> IL-15 <strong>in</strong>hibits pro-<strong>in</strong>flammatory cytok<strong>in</strong>e production <strong>in</strong><br />

rheumatoid arthritis. Sc<strong>and</strong> J Immunol 2008: 68: 103–11.<br />

76. Daha NA, Kurreeman FA, Marques RB et al. Confirmation of<br />

STAT4, IL2/IL<strong>21</strong>, <strong>and</strong> CTLA4 polymorphisms <strong>in</strong> rheumatoid<br />

arthritis. Arthritis Rheum 2009: 60: 1255–60.<br />

77. Fant<strong>in</strong>i MC, Rizzo A, F<strong>in</strong>a D et al. IL-<strong>21</strong> regulates<br />

experimental colitis by modulat<strong>in</strong>g the balance between Treg<br />

<strong>and</strong> Th17 cells. Eur J Immunol 2007: 37: 3155–63.<br />

12 © 2009 John Wiley & Sons A/S<br />

32


H. Søndergaard & K. Skak IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> <strong>and</strong> immunopathology<br />

78. F<strong>in</strong>a D, Sarra M, Fant<strong>in</strong>i MC et al. Regulation of gut<br />

<strong>in</strong>flammation <strong>and</strong> th17 cell response by <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>.<br />

Gastroenterology 2008: 134: 1038–48.<br />

79. Monteleone G, Monteleone I, F<strong>in</strong>a D et al. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong><br />

enhances T-helper cell type I signal<strong>in</strong>g <strong>and</strong> <strong>in</strong>terferon-gamma<br />

production <strong>in</strong> Crohn’s disease. Gastroenterology 2005: 128:<br />

687–94.<br />

80. Caruso R, F<strong>in</strong>a D, Peluso I et al. A functional role for<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> promot<strong>in</strong>g the synthesis of the T-cell<br />

chemoattractant, MIP-3alpha, by gut epithelial cells.<br />

Gastroenterology 2007: 132: 166–75.<br />

81. Festen EA, Goyette P, Scott R et al. Genetic variants <strong>in</strong> the<br />

region harbour<strong>in</strong>g IL2/IL<strong>21</strong> associated with ulcerative colitis.<br />

Gut 2009: 58: 799–804.<br />

82. Vollmer TL, Liu R, Price M et al. Differential effects of IL-<strong>21</strong><br />

dur<strong>in</strong>g <strong>in</strong>itiation <strong>and</strong> progression of autoimmunity aga<strong>in</strong>st<br />

neuroantigen. J Immunol 2005: 174: 2696–701.<br />

83. Coquet JM, Chakravarti S, Smyth MJ et al. Cutt<strong>in</strong>g edge:<br />

IL-<strong>21</strong> is not essential for Th17 differentiation or experimental<br />

autoimmune encephalomyelitis. J Immunol 2008: 180:<br />

7097–101.<br />

84. Piao WH, Jee YH, Liu RL et al. IL-<strong>21</strong> modulates CD4+<br />

CD25+ regulatory T-cell homeostasis <strong>in</strong> experimental<br />

autoimmune encephalomyelitis. Sc<strong>and</strong> J Immunol 2008: 67:<br />

37–46.<br />

85. Jones JL, Phuah CL, Cox AL et al. IL-<strong>21</strong> drives secondary<br />

autoimmunity <strong>in</strong> patients with multiple sclerosis, follow<strong>in</strong>g<br />

therapeutic lymphocyte depletion with alemtuzumab<br />

(Campath-1H). J Cl<strong>in</strong> Invest 2009: 119: 2052–61.<br />

86. Elsaesser H, Sauer K, Brooks DG. IL-<strong>21</strong> is required to control<br />

chronic viral <strong>in</strong>fection. Science 2009: 324: 1569–72.<br />

87. Yi JS, Du M, Zajac AJ. A vital role for <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> the<br />

control of a chronic viral <strong>in</strong>fection. Science 2009: 324:<br />

1572–6.<br />

88. Frohlich A, Kisielow J, Schmitz I et al. IL-<strong>21</strong>R on T cells<br />

is critical for susta<strong>in</strong>ed functionality <strong>and</strong> control of chronic<br />

viral <strong>in</strong>fection. Science 2009: 324: 1576–80.<br />

© 2009 John Wiley & Sons A/S 13<br />

33


Paper II:<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>and</strong> <strong>in</strong>hibits<br />

syngeneic tumor growth<br />

Søndergaard H., Frederiksen K.S., Thygesen P.,Galsgaard E.D., Skak K. Kristjansen P.E.G.<br />

<strong>and</strong> Kragh M., Cancer Immunol Immunother. 2007, Sep;56(9):1417-28. Epub. 2007 Feb.<br />

35


Cancer Immunol Immunother (2007) 56:1417–1428<br />

DOI 10.1007/s00262-007-0285-4<br />

ORIGINAL ARTICLE<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells <strong>and</strong> <strong>in</strong>hibits the growth of syngeneic tumors<br />

Henrik Søndergaard Æ Klaus S. Frederiksen Æ Peter Thygesen Æ<br />

Elisabeth D. Galsgaard Æ Kresten Skak Æ Paul E. G. Kristjansen Æ<br />

Niels Ødum Æ Michael Kragh<br />

Received: 13 October 2006 / Accepted: 24 December 2006 / Published onl<strong>in</strong>e: 7 February 2007<br />

Ó Spr<strong>in</strong>ger-Verlag 2007<br />

Abstract <strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> is a recently discovered<br />

cytok<strong>in</strong>e <strong>in</strong> early cl<strong>in</strong>ical development, which has<br />

shown anti-tumor activity <strong>in</strong> various animal models. In<br />

the present study, we exam<strong>in</strong>e the anti-tumor activity<br />

of IL-<strong>21</strong> prote<strong>in</strong> therapy <strong>in</strong> two syngeneic tumor<br />

models <strong>and</strong> its effect on the density of tumor <strong>in</strong>filtrat<strong>in</strong>g<br />

T cells. We treated mice bear<strong>in</strong>g established subcutaneous<br />

B16 melanomas or RenCa renal cell<br />

carc<strong>in</strong>omas with <strong>in</strong>traperitoneal (i.p.) or subcutaneous<br />

(s.c.) IL-<strong>21</strong> prote<strong>in</strong> therapy <strong>and</strong> subsequently scored<br />

the densities of tumor <strong>in</strong>filtrat<strong>in</strong>g CD4 + <strong>and</strong> CD8 + T<br />

H. Søndergaard (&) E. D. Galsgaard <br />

K. Skak M. Kragh<br />

Department of Cancer Pharmacology,<br />

Biopharmaceuticals Research Unit, Novo Nordisk A/S,<br />

Novo Nordisk Park F6.2.30, DK 2760 Måløv, Denmark<br />

e-mail: hris@novonordisk.com<br />

K. S. Frederiksen<br />

Department of Molecular Genetics,<br />

Biopharmaceuticals Research Unit, Novo Nordisk A/S,<br />

Novo Alle, DK 2880 Bagsværd, Denmark<br />

P. Thygesen<br />

Department of Exploratory ADME,<br />

Biopharmaceuticals Research Unit, Novo Nordisk A/S,<br />

Novo Nordisk Park, DK 2760 Måløv, Denmark<br />

P. E. G. Kristjansen<br />

Department of Development Projects 05,<br />

Novo Nordisk A/S, Novo Alle,<br />

DK 2880 Bagsværd, Denmark<br />

N. Ødum<br />

Department of Molecular Biology <strong>and</strong> Physiology<br />

<strong>and</strong> Department of Medical Microbiology <strong>and</strong> Immunology,<br />

University of Copenhagen, Copenhagen, Denmark<br />

cells by immunohistochemistry. Whereas both routes<br />

of IL-<strong>21</strong> adm<strong>in</strong>istration significantly <strong>in</strong>hibited growth<br />

of small, established RenCa <strong>and</strong> B16 tumors, only s.c.<br />

therapy significantly <strong>in</strong>hibited the growth of large,<br />

established tumors. We found a greater bioavailability<br />

<strong>and</strong> significant dra<strong>in</strong>age of IL-<strong>21</strong> to regional lymph<br />

nodes follow<strong>in</strong>g s.c. adm<strong>in</strong>istration, which could account<br />

for the apparent <strong>in</strong>crease <strong>in</strong> anti-tumor activity.<br />

Specific depletion of CD8 + T cells with monoclonal<br />

antibodies completely abrogated the anti-tumor activity,<br />

whereas NK1.1 + cell depletion did not affect tumor<br />

growth. In accordance, both routes of IL-<strong>21</strong> adm<strong>in</strong>istration<br />

significantly <strong>in</strong>creased the density of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>in</strong> both B16 <strong>and</strong> RenCa tumors;<br />

<strong>and</strong> <strong>in</strong> the RenCa model s.c. adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> led to a significantly higher density of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells compared to i.p. adm<strong>in</strong>istration.<br />

The densities of CD4 + T cells were unchanged<br />

follow<strong>in</strong>g IL-<strong>21</strong> treatments. Taken together, these data<br />

demonstrate that IL-<strong>21</strong> prote<strong>in</strong> has anti-tumor activity<br />

<strong>in</strong> established syngeneic tumors, <strong>and</strong> we show that<br />

IL-<strong>21</strong> therapy markedly <strong>in</strong>creases the density of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells.<br />

Keywords <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> <br />

Tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes Cancer <br />

Melanoma Renal cell carc<strong>in</strong>oma<br />

Abbreviations<br />

IL-<strong>21</strong> <strong>Interleuk<strong>in</strong></strong> <strong>21</strong><br />

i.v. Intravenous<br />

i.p. Intraperitoneal<br />

s.c. Subcutaneous<br />

TILs Tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes<br />

123<br />

37


1418 Cancer Immunol Immunother (2007) 56:1417–1428<br />

NK cells Natural killer cells<br />

CTLs Cytotoxic T lymphocytes<br />

AOI Area of <strong>in</strong>terest<br />

AUC Area under the curve<br />

WT Wild type<br />

LN Lymph node<br />

IP-10 Interferon-<strong>in</strong>ducible prote<strong>in</strong> 10<br />

MIG Monok<strong>in</strong>e <strong>in</strong>duced by <strong>in</strong>terferon gamma<br />

I-TAC Interferon-<strong>in</strong>ducible T cell alpha<br />

chemoattractant<br />

Introduction<br />

Successful immune-based <strong>cancer</strong> therapy needs to enhance<br />

the <strong>in</strong>teraction <strong>and</strong>/or reactivity between the<br />

immune system <strong>and</strong> the <strong>cancer</strong> cells. In tumor immunity,<br />

tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes (TILs) are regarded<br />

as the primary effector cells, <strong>and</strong> the number of<br />

TILs has previously been correlated with prolonged<br />

survival <strong>in</strong> <strong>cancer</strong> patients [6,18]. The number of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>and</strong> the CD8 + /CD4 + T cell<br />

ratio have been shown to be <strong>in</strong>dependent prognostic<br />

factors for improved survival <strong>in</strong> several different human<br />

<strong>cancer</strong>s [<strong>21</strong>,22,28,30]. Thus, novel treatments able<br />

to <strong>in</strong>crease the number of tumor-specific, tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

immune effector cells could hold a promis<strong>in</strong>g<br />

cl<strong>in</strong>ical future.<br />

IL-<strong>21</strong> is the latest member of the common c-cha<strong>in</strong>dependent<br />

cytok<strong>in</strong>e family <strong>and</strong> is currently <strong>in</strong> early<br />

cl<strong>in</strong>ical development for the treatment of <strong>cancer</strong>. IL-<strong>21</strong><br />

was discovered as a product of activated CD4 + T<br />

helper cells, <strong>and</strong> its unique receptor IL-<strong>21</strong>R has been<br />

identified on a broad range of immune cells <strong>in</strong>clud<strong>in</strong>g<br />

B, T, NK, <strong>and</strong> dendritic cells [3,23]. IL-<strong>21</strong> has pleiotropic<br />

immune modulatory activity, which has shown<br />

encourag<strong>in</strong>g anti-tumor effects <strong>in</strong> several different<br />

animal models [16]. CD8 + cytotoxic T lymphocytes<br />

(CTLs), NK cells, or both have been identified as the<br />

ma<strong>in</strong> mediators of IL-<strong>21</strong> anti-tumor activity [16], <strong>and</strong> <strong>in</strong><br />

this respect IL-<strong>21</strong> has been suggested to play a role <strong>in</strong><br />

the transition from <strong>in</strong>nate to adaptive immunity [14].<br />

However, it rema<strong>in</strong>s to be shown whether its anti-tumor<br />

activity <strong>in</strong> vivo is mediated by modulation of the<br />

tumor <strong>in</strong>filtrat<strong>in</strong>g effector cell populations. In vitro, IL-<br />

<strong>21</strong> stimulation <strong>in</strong>duced the differentiation <strong>and</strong> maturation<br />

of human NK cells from progenitor cells [23,31]<br />

<strong>and</strong> also <strong>in</strong>creased the cytolytic activity of mature<br />

activated human NK cells [23]. Mur<strong>in</strong>e NK cells have<br />

shown more biphasic responses to IL-<strong>21</strong> stimulation<br />

<strong>in</strong> vitro, depend<strong>in</strong>g on IL-<strong>21</strong> concentration, co-stimuli,<br />

<strong>and</strong> cell maturation stage [14,24,36]. In mice <strong>and</strong><br />

humans, IL-<strong>21</strong> has been shown to <strong>in</strong>crease the expansion<br />

of antigen stimulated CD8 + cytotoxic T cells as<br />

well as enhance their cytolytic activity <strong>in</strong> vitro<br />

[14,17,39]. In vivo, IL-<strong>21</strong> has been shown to enhance<br />

the expansion, activity, <strong>and</strong> long-term survival of<br />

ovalbum<strong>in</strong>-specific CD8 + T cells detected <strong>in</strong> lymph<br />

nodes (LNs) <strong>in</strong> mice bear<strong>in</strong>g ovalbum<strong>in</strong>-express<strong>in</strong>g<br />

E.G7 lymphomas [20]. Based on these results we<br />

anticipate that IL-<strong>21</strong> <strong>in</strong> vivo is able to <strong>in</strong>crease the<br />

number <strong>and</strong>/or reactivity of TILs.<br />

In previous studies of IL-<strong>21</strong>-mediated anti-tumor<br />

activity, the cytok<strong>in</strong>e was primarily adm<strong>in</strong>istered via<br />

plasmid gene delivery [38], tumor cell secretion<br />

[7,8,19,37], or used <strong>in</strong> systems where the immune response<br />

was enhanced by <strong>in</strong>troduction of foreign antigens<br />

or adoptive transfer of tumor specific lymphocytes<br />

[13,20,26,39]. Clearly the effects of IL-<strong>21</strong> prote<strong>in</strong><br />

therapy also need to be <strong>in</strong>vestigated <strong>in</strong> simple<br />

syngeneic models us<strong>in</strong>g more conventional routes of<br />

adm<strong>in</strong>istration, which are more cl<strong>in</strong>ically relevant. The<br />

use of IL-<strong>21</strong> prote<strong>in</strong> therapy <strong>in</strong> a native syngeneic<br />

model could help to determ<strong>in</strong>e whether IL-<strong>21</strong> is able to<br />

modulate TILs <strong>in</strong> vivo. The evaluation of s.c. adm<strong>in</strong>istration<br />

of IL-<strong>21</strong> is of major <strong>in</strong>terest for the cl<strong>in</strong>ical<br />

application of IL-<strong>21</strong> because of patient convenience<br />

<strong>and</strong> s<strong>in</strong>ce <strong>in</strong>creased tolerability <strong>and</strong> susta<strong>in</strong>ed efficacy<br />

has been shown <strong>in</strong> cl<strong>in</strong>ical trials with IL-2 by this route<br />

of adm<strong>in</strong>istration [11].<br />

In this study, we demonstrate the anti-tumor effects<br />

of s.c. <strong>and</strong> i.p. IL-<strong>21</strong> prote<strong>in</strong> therapy <strong>in</strong> two syngeneic<br />

tumor models. Our data <strong>in</strong>dicate that IL-<strong>21</strong> prote<strong>in</strong> via<br />

both routes of adm<strong>in</strong>istration can <strong>in</strong>hibit established<br />

tumor growth <strong>and</strong> that s.c. adm<strong>in</strong>istration could be<br />

applicable <strong>in</strong> the cl<strong>in</strong>ic. Furthermore, we show that IL-<br />

<strong>21</strong> therapy strongly <strong>in</strong>creases the density of CD8 + TILs<br />

without chang<strong>in</strong>g the CD4 + TILs, <strong>and</strong> that the CD8 + T<br />

cells are essential for the IL-<strong>21</strong>-<strong>in</strong>duced anti-tumor<br />

activity.<br />

Materials <strong>and</strong> methods<br />

Mice<br />

Wild type (WT) female C57BL/6 <strong>and</strong> BALB/c mice<br />

were purchased from Taconic Europe A/S, Lille<br />

Skensved, Denmark, whereas female C57BL/6 nude<br />

mice (B6.Cg/Ntac-Foxn1 nu N9) were acquired from<br />

Taconic, Hudson, NY, USA. The animals were 6 weeks<br />

old on arrival <strong>and</strong> were allowed to acclimatize for at<br />

least one week before start of experiments. WT mice<br />

were housed <strong>in</strong> a st<strong>and</strong>ard animal facility whereas nude<br />

mice were isolated <strong>in</strong> an immunodeficient facility separated<br />

by a barrier. Light was controlled on a 12-h<br />

123<br />

38


Cancer Immunol Immunother (2007) 56:1417–1428 1419<br />

light–dark cycle, <strong>and</strong> the animals were given free access<br />

to food <strong>and</strong> dr<strong>in</strong>k<strong>in</strong>g water. The animals were observed<br />

daily for cl<strong>in</strong>ical signs <strong>and</strong> their body weights were recorded<br />

regularly. All experiments were conducted <strong>in</strong><br />

accordance with corporate <strong>and</strong> governmental policies.<br />

Cell l<strong>in</strong>es<br />

C57BL/6 derived B16 (F0) melanoma cells (American<br />

Type Culture Collection (ATCC), CRL-6322) <strong>and</strong><br />

BALB/c derived RenCa renal cell carc<strong>in</strong>oma cells<br />

(k<strong>in</strong>dly provided by Dr. Robert H. Wiltrout, NCI at<br />

Frederick, MD, USA) were cultured <strong>in</strong> RPMI 1640 with<br />

GlutaMAX TM supplemented with 10% heat-<strong>in</strong>activated<br />

FCS, sodium pyruvate (RenCa only), non-essential am<strong>in</strong>o<br />

acids (RenCa only), <strong>and</strong> 5% penicill<strong>in</strong>-streptomyc<strong>in</strong><br />

(all from GIBCO Cell Culture, Invitrogen, Denmark).<br />

Reagents <strong>and</strong> antibodies<br />

Recomb<strong>in</strong>ant mur<strong>in</strong>e IL-<strong>21</strong> (IL-<strong>21</strong>) prote<strong>in</strong> was provided<br />

by Novo Nordisk A/S, Denmark <strong>and</strong> Zymogenetics,<br />

Inc., WA, USA <strong>and</strong> used <strong>in</strong> all experiments. The<br />

stock solutions conta<strong>in</strong>ed IL-<strong>21</strong> <strong>in</strong> a concentration of<br />

5.5–10 mg/ml <strong>and</strong> work<strong>in</strong>g preparations were diluted <strong>in</strong><br />

PBS. Radioactive 125 I conjugated IL-<strong>21</strong> was produced<br />

at Novo Nordisk A/S, Denmark. The deplet<strong>in</strong>g antimouse<br />

CD8 (clone 2.43, TIB-<strong>21</strong>0 from ATCC) <strong>and</strong><br />

anti-mouse NK1.1 (clone PK136, HB191 from ATCC)<br />

monoclonal antibodies were obta<strong>in</strong>ed from supernatants<br />

of hybridomas cultured at Novo Nordisk A/S,<br />

Denmark. The antibodies were purified <strong>in</strong>-house by<br />

aff<strong>in</strong>ity chromatography. For the histological exam<strong>in</strong>ation<br />

we used rat anti-mouse CD4 (L3T4, clone<br />

RM4–5) (BD Pharm<strong>in</strong>gen, CA, USA), rat anti-mouse<br />

CD8 (Ly-2, clone 53–6.7) (BD Pharm<strong>in</strong>gen, CA,<br />

USA), rat serum IgG2a (Serotec, UK), <strong>and</strong> biot<strong>in</strong>conjugated<br />

donkey anti-rat IgG (Jackson ImmunoResearch<br />

Laboratories, Inc., PA, USA).<br />

In vivo tumor models<br />

On day 0, C57BL/6 or BALB/c mice were <strong>in</strong>oculated<br />

s.c. <strong>in</strong> the right flank with 10 5 B16 melanoma or RenCa<br />

renal cell carc<strong>in</strong>oma cells, respectively. All mice were<br />

r<strong>and</strong>omized <strong>and</strong> ear-tagged prior to treatment. The<br />

tumor volume was measured as two perpendicular<br />

diameters approximately three times per week, <strong>and</strong><br />

calculated by the follow<strong>in</strong>g formula:<br />

Volume ¼ p 6 d2 1 d 2 if d 1 \d 2 ;<br />

where d represents the two diameters:<br />

Treatment with IL-<strong>21</strong> was either <strong>in</strong>itiated early with<br />

~5 mm 3 mean tumor volume or late with ~50 mm 3<br />

mean tumor volume. Fifty lg of IL-<strong>21</strong> or PBS <strong>in</strong> a<br />

dos<strong>in</strong>g volume of 200 lL was adm<strong>in</strong>istered either<br />

<strong>in</strong>traperitoneally (i.p.) or subcutaneously (s.c.) <strong>in</strong> the<br />

contralateral flank 1x/daily <strong>in</strong> the C57BL/6-B16 model<br />

<strong>and</strong> 3x/week <strong>in</strong> the BALB/c-RenCa model. The 50 lg<br />

dose was chosen on the basis of dose-titration experiments<br />

prior to this work (data not shown). Term<strong>in</strong>ation<br />

criteria were a tumor volume of 1,000 mm 3 or more<br />

than 20% weight loss from time of cell <strong>in</strong>oculation.<br />

In vivo immune cell depletion<br />

In vivo CD8 + <strong>and</strong> NK1.1 + cell depletion was performed<br />

by us<strong>in</strong>g anti-mouse CD8 (clone 2.43) <strong>and</strong> anti-mouse<br />

NK1.1 (clone PK136) monoclonal antibodies, respectively,<br />

as previously reported [33]. C57BL/6 mice<br />

<strong>in</strong>oculated s.c. <strong>in</strong> the right flank with 10 5 B16 melanoma<br />

cells were <strong>in</strong>jected with antibodies (100 lg/<br />

mouse) i.p. on day –1, 0, 6, <strong>and</strong> 12 <strong>in</strong> relation to the<br />

onset of treatment. Treatment with 50 lg IL-<strong>21</strong><br />

adm<strong>in</strong>istered s.c. was <strong>in</strong>itiated when mean tumor<br />

volume had reached ~5 mm 3 correspond<strong>in</strong>g to early<br />

treatment. Prior to the experiment, the dose <strong>and</strong><br />

schedule of the deplet<strong>in</strong>g antibodies were verified by<br />

flow cytometry analysis show<strong>in</strong>g complete depletion of<br />

CD8 + <strong>and</strong> NK1.1 + cells throughout the course of the<br />

experiment (data not shown).<br />

In vitro tumor cell proliferation assay<br />

Potential effects of IL-<strong>21</strong> on the growth of B16 melanoma<br />

cells <strong>and</strong> RenCa carc<strong>in</strong>oma cells <strong>in</strong> vitro were<br />

exam<strong>in</strong>ed <strong>in</strong> a colorimetric assay us<strong>in</strong>g the proliferation<br />

reagent 4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-<br />

5-tetrazolio]-1,3 benzene disulfonate (WST-1) (Roche<br />

diagnostics GmbH, Germany). Briefly, 3000 B16 or<br />

RenCa cells/well were <strong>in</strong>cubated <strong>in</strong> 96-well plates <strong>in</strong><br />

their appropriate media <strong>and</strong> stimulated with <strong>in</strong>creas<strong>in</strong>g<br />

concentrations of IL-<strong>21</strong> prote<strong>in</strong>. After 48 h cell growth,<br />

cells were <strong>in</strong>cubated with WST-1 for 2 h at 37C.<br />

Absorbance at 450 nm was used to determ<strong>in</strong>e the relative<br />

proliferation of cells.<br />

IL-<strong>21</strong> pharmacok<strong>in</strong>etics<br />

IL-<strong>21</strong> was adm<strong>in</strong>istered <strong>in</strong>travenous (i.v.), i.p. <strong>and</strong> s.c.<br />

(50 lg/animal) to BALB/c mice. Mice were anesthetized<br />

with FORENE Isoflurane (Abbot Sc<strong>and</strong><strong>in</strong>avia<br />

AB, Sweden) after 5 m<strong>in</strong>, 15 m<strong>in</strong>, 30 m<strong>in</strong>, 1 h, 2 h, 4 h,<br />

<strong>and</strong> 8 h post <strong>in</strong>jections, blood was collected from the<br />

retro-orbital s<strong>in</strong>us, <strong>and</strong> a DuoSet s<strong>and</strong>wich ELISA kit<br />

123<br />

39


1420 Cancer Immunol Immunother (2007) 56:1417–1428<br />

was used to detect IL-<strong>21</strong> prote<strong>in</strong> <strong>in</strong> the serum (R&D<br />

systems, Inc., MN, USA). Briefly, goat anti-mouse IL-<br />

<strong>21</strong> antibodies were coated overnight onto a 96-well<br />

plate at RT. Serum samples were diluted 1:10 or 1:100<br />

<strong>in</strong> PBS with 1% BSA <strong>and</strong> IL-<strong>21</strong> st<strong>and</strong>ards were likewise<br />

supplemented with normal mouse serum. A biot<strong>in</strong>-labeled<br />

goat anti-mouse IL-<strong>21</strong> antibody was used as<br />

detection antibody, <strong>and</strong> for the color reaction streptavid<strong>in</strong>-HRP<br />

with tetramethylbenzid<strong>in</strong>e (TMB) was used<br />

as substrate (Sigma–Aldrich Chemie GmbH, Germany).<br />

The result was measured as absorbance at<br />

450 nm. The lower limit of detection was ~0.06 ng/ml<br />

with a dynamic range of 0.06–100 ng/ml. The serum<br />

concentration-time data were analyzed by a non-compartmental<br />

pharmacok<strong>in</strong>etic analysis us<strong>in</strong>g W<strong>in</strong>Nonl<strong>in</strong><br />

Professional (Pharsight, Inc., CA, USA) based on a<br />

sparse blood sampl<strong>in</strong>g schedule, where the mean serum<br />

concentration-time profiles of blood samples from<br />

three animals per time po<strong>in</strong>t were performed. The area<br />

under the curve (AUC), a measure of drug exposure<br />

<strong>and</strong> the bioavailability are reported.<br />

IL-<strong>21</strong> biodistribution<br />

Mice were <strong>in</strong>jected i.p. with 0.05 ml of 125 I-IL-<strong>21</strong><br />

(~2 lCi/animal) or Na 125 I as control <strong>in</strong> the lower right<br />

abdom<strong>in</strong>al quadrant or subcutaneously <strong>in</strong> the right foot<br />

pad <strong>in</strong> order to use the popliteal LN as an exclusive<br />

lymph dra<strong>in</strong>age site. After 15 m<strong>in</strong>, 30 m<strong>in</strong>, 1 h, 2 h,<br />

4 h, 6 h, <strong>and</strong> 8 h animals were sacrificed <strong>and</strong> the follow<strong>in</strong>g<br />

tissues/organs were collected <strong>and</strong> analyzed:<br />

heart, lungs, liver, spleen, kidneys, thyroidal gl<strong>and</strong>,<br />

small <strong>and</strong> large <strong>in</strong>test<strong>in</strong>es, mesenteric LNs, right <strong>and</strong><br />

left popliteal LNs, <strong>and</strong> sk<strong>in</strong> at <strong>in</strong>jection site after s.c.<br />

adm<strong>in</strong>istration, i.e. the foot. Na 125 I solution was used<br />

to monitor how free 125 I would behave contra prote<strong>in</strong><br />

bound 125 I <strong>in</strong> order to detect if the 125 I from the prote<strong>in</strong><br />

was detached <strong>in</strong> vivo (data not shown). The c-radiation<br />

was measured <strong>in</strong> all samples by a Cobra Auto-Gamma<br />

gamma-counter (Perk<strong>in</strong>Elmer, Inc., MA, USA) <strong>and</strong><br />

related to the total c-radiation of the <strong>in</strong>itial <strong>in</strong>jected<br />

dose of 125 I-IL-<strong>21</strong> <strong>in</strong> %.<br />

Immunohistochemistry of tumor <strong>in</strong>filtrat<strong>in</strong>g T cells<br />

Six lm cryo-sections were made from tumor biopsies<br />

taken out at term<strong>in</strong>ation of the therapeutic studies.<br />

Sections were immunohistochemically sta<strong>in</strong>ed with rat<br />

anti-mouse CD4 (clone RM4-5) or rat anti-mouse CD8<br />

(clone 53-6.7) antibodies (5 lg/ml), whereas rat serum<br />

IgG2a was used as match<strong>in</strong>g isotype control. Biot<strong>in</strong>conjugated<br />

donkey anti-rat IgG (diluted 1:3,000) was<br />

used as secondary antibody. Sections were fixed <strong>in</strong> 4%<br />

paraformaldehyde at 4C <strong>and</strong> endogenous biot<strong>in</strong><br />

activity was blocked us<strong>in</strong>g Biot<strong>in</strong> block<strong>in</strong>g system from<br />

Dako A/S, Denmark. Prior to the antibody sta<strong>in</strong><strong>in</strong>gs<br />

non-specific b<strong>in</strong>d<strong>in</strong>g was blocked by <strong>in</strong>cubation <strong>in</strong> TBS<br />

with 3% skim milk, 3% BSA, <strong>and</strong> 7% donkey serum.<br />

Incubation with the primary antibodies was made at<br />

4C over night followed by 1 h <strong>in</strong>cubation at RT with<br />

the secondary antibody both diluted <strong>in</strong> TBS with 0.5%<br />

skim milk, 3% BSA, <strong>and</strong> 7% donkey serum. Streptavid<strong>in</strong><br />

conjugated alkal<strong>in</strong>e phosphatase <strong>and</strong> Liquid<br />

Permanent Red Chromogen (Dako A/S, Denmark)<br />

was used to visualize positive cells <strong>and</strong> sections were<br />

countersta<strong>in</strong>ed with Mayer’s hematoxyl<strong>in</strong> to reveal<br />

nuclei morphology.<br />

Quantification of tumor <strong>in</strong>filtrat<strong>in</strong>g T cells<br />

A stereological method was established to quantify<br />

the density of tumor <strong>in</strong>filtrat<strong>in</strong>g T cells. Images from<br />

immunohistochemically sta<strong>in</strong>ed tumor sections were<br />

analyzed via onl<strong>in</strong>e light microscopy at 20· magnification<br />

us<strong>in</strong>g C.A.S.T. grid software ver. 2.3.1.3 from<br />

Olympus Denmark A/S, Denmark. In all tumor sections<br />

(one from each tumor) the density of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g lymphocytes was bl<strong>in</strong>dly scored count<strong>in</strong>g all<br />

positive cells <strong>in</strong>tratumorally <strong>and</strong> relat<strong>in</strong>g them to an<br />

area of <strong>in</strong>terest (AOI), represent<strong>in</strong>g the total tumor<br />

area measured stereologically, exclud<strong>in</strong>g necrotic tumor<br />

tissue <strong>and</strong> non-tumor tissue such as peritumoral<br />

connective tissue. The C.A.S.T. grid software <strong>and</strong> a<br />

motorized stage system enabled side by side imag<strong>in</strong>g to<br />

ensure that no area was evaluated twice or omitted.<br />

Statistics<br />

Student’s t-test (two-tailed, assum<strong>in</strong>g equal variance)<br />

was used for statistical evaluations of differences between<br />

treated <strong>and</strong> control groups. Data are shown as<br />

mean ± SEM <strong>and</strong> a P value less than 0.05 was considered<br />

statistically significant.<br />

Results<br />

IL-<strong>21</strong> does not <strong>in</strong>hibit B16 or RenCa tumor cell<br />

growth <strong>in</strong> vitro<br />

To determ<strong>in</strong>e whether IL-<strong>21</strong> prote<strong>in</strong> had any direct<br />

<strong>in</strong>hibitory effects on B16 or RenCa tumor cells we<br />

performed a tumor cell proliferation assay with <strong>in</strong>creas<strong>in</strong>g<br />

concentrations of IL-<strong>21</strong> (0–5,000 ng/ml). We found<br />

123<br />

40


Cancer Immunol Immunother (2007) 56:1417–1428 14<strong>21</strong><br />

no effects on B16 or RenCa cell growth after 48 h<br />

<strong>in</strong>cubation (Fig. 1). Consistent with these results, no IL-<br />

<strong>21</strong> receptor mRNA expression <strong>in</strong> either tumor cell l<strong>in</strong>e<br />

exam<strong>in</strong>ed by quantitative RT-PCR analysis was found<br />

(data not shown).<br />

Absorbance 450 nm<br />

+/- SEM<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

B16<br />

RenCa<br />

0 1 10 100 1000 5000<br />

IL-<strong>21</strong> concentration (ng/mL)<br />

Fig. 1 IL-<strong>21</strong> does not <strong>in</strong>hibit proliferation of B16 <strong>and</strong> RenCa<br />

cells <strong>in</strong> vitro. B16 cells (filled square) or RenCa cells (square)<br />

(3,000/well) were grown <strong>in</strong> appropriate media <strong>and</strong> stimulated<br />

with the <strong>in</strong>dicated concentrations of IL-<strong>21</strong> for 48 h. Absorbance<br />

at 450 nm was measured after 2 h <strong>in</strong>cubation with WST-1<br />

proliferation reagent. Mean ± SEM of duplicates<br />

Subcutaneous IL-<strong>21</strong> prote<strong>in</strong> therapy significantly<br />

<strong>in</strong>hibits B16 <strong>and</strong> RenCa tumor growth<br />

Subcutaneous syngeneic B16 <strong>and</strong> RenCa tumors were<br />

established <strong>in</strong> their respective hosts, C57BL/6 <strong>and</strong><br />

BALB/c mice, by <strong>in</strong>jection of 10 5 cells/animal. In both<br />

models IL-<strong>21</strong> treatment was <strong>in</strong>itiated either early, when<br />

tumors were just palpable (~5 mm 3 mean tumor volume),<br />

or late, when tumors were more established<br />

(~50 mm 3 mean tumor volume).<br />

Early treatment with IL-<strong>21</strong> us<strong>in</strong>g either route of<br />

adm<strong>in</strong>istration showed significant (P < 0.001) growth<br />

<strong>in</strong>hibition of B16 melanoma tumors (Fig. 2a). In the<br />

early treatment of RenCa carc<strong>in</strong>omas only s.c. adm<strong>in</strong>istration<br />

of IL-<strong>21</strong> showed significant growth <strong>in</strong>hibition<br />

(P < 0.001), whereas i.p. adm<strong>in</strong>istration showed a<br />

borderl<strong>in</strong>e significant growth <strong>in</strong>hibition (P = 0.06)<br />

(Fig. 2b). The difference between s.c. <strong>and</strong> i.p. adm<strong>in</strong>istration<br />

<strong>in</strong> the early treatment of RenCa carc<strong>in</strong>omas<br />

was likewise close to statistical significance (P = 0.09).<br />

In the late treatment regimens s.c. adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> showed significant (P < 0.05) growth <strong>in</strong>hibition<br />

<strong>in</strong> both models, whereas i.p. adm<strong>in</strong>istration was<br />

unable to significantly <strong>in</strong>hibit tumor growth (Fig 2c, d).<br />

Generally, the late treatment regimen showed less<br />

growth <strong>in</strong>hibition than the early treatment, <strong>and</strong> s.c.<br />

a<br />

3<br />

Mean tumor volume (mm )<br />

+/- SEM<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

b<br />

600<br />

PBS i.p.<br />

IL-<strong>21</strong> i.p.<br />

IL-<strong>21</strong> s.c.<br />

500<br />

PBS i.p.<br />

IL-<strong>21</strong> i.p.<br />

IL-<strong>21</strong> s.c.<br />

400<br />

300<br />

200<br />

Treatment start<br />

100<br />

Treatment start<br />

0<br />

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <strong>21</strong><br />

3 )<br />

(mm<br />

Mean tumor volume<br />

+/-SEM<br />

Days post B16 tumor <strong>in</strong>oculation<br />

Days post RenCa tumor <strong>in</strong>oculation<br />

c<br />

Mean tumor volume (mm 3<br />

)<br />

+-/ SEM<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

PBSi.p.<br />

IL-<strong>21</strong> i.p.<br />

IL-<strong>21</strong> s.c.<br />

Treatment start<br />

7 8 9 10 11 12 13 14 15 16<br />

Days post B16 tumor <strong>in</strong>oculation<br />

d<br />

Mean tumor volume (mm 3<br />

)<br />

+-/ SEM<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

PBS i.p.<br />

IL-<strong>21</strong> i.p.<br />

IL-<strong>21</strong> s.c.<br />

Treatment start<br />

8 9 10 11 12 13 14 15 16 17 18 19 20 <strong>21</strong> 22<br />

Days post RenCa tumor <strong>in</strong>oculation<br />

Fig. 2 IL-<strong>21</strong> therapy <strong>in</strong>hibits growth of syngeneic B16 melanomas<br />

<strong>and</strong> RenCa carc<strong>in</strong>omas. All animals were <strong>in</strong>jected with<br />

10 5 cells s.c. <strong>in</strong> the right flank <strong>and</strong> r<strong>and</strong>omized prior to treatment<br />

start as <strong>in</strong>dicated. Treatment was started either early (a <strong>and</strong> b)<br />

with ~5 mm 3 mean tumor volume or late (c <strong>and</strong> d) with ~50 mm 3<br />

mean tumor volume. Fifty lg IL-<strong>21</strong> or PBS was <strong>in</strong>jected i.p. or s.c.<br />

(contralateral to the tumor site) daily <strong>in</strong> the B16 model (a <strong>and</strong> c)<br />

<strong>and</strong> 3·/week <strong>in</strong> the RenCa model (b <strong>and</strong> d). Mean ± SEM, a<br />

n = 12, b n = 15, c <strong>and</strong> d n = 10, P = 0.06, *P < 0.05, **P < 0.01,<br />

***P < 0.001, compared to PBS controls by Student’s t-test<br />

123<br />

41


1422 Cancer Immunol Immunother (2007) 56:1417–1428<br />

adm<strong>in</strong>istration appeared to be more efficient than i.p.<br />

adm<strong>in</strong>istration, although this difference did not reach<br />

statistical significance (Fig. 2).<br />

Alongside these results, we monitored animal<br />

weight <strong>and</strong> general health <strong>in</strong> response to IL-<strong>21</strong><br />

adm<strong>in</strong>istration <strong>and</strong> found no treatment associated effects<br />

on animal health (data not shown), suggest<strong>in</strong>g<br />

that the treatment was well tolerated.<br />

CD8 + T cells are essential for the anti-tumor<br />

activity of IL-<strong>21</strong><br />

In order to determ<strong>in</strong>e which immune effector cells<br />

were important for the anti-tumor activity of IL-<strong>21</strong><br />

prote<strong>in</strong> <strong>in</strong> our models, C57BL/6 nude mice <strong>and</strong> wild<br />

type (WT) mice specifically depleted of CD8 + T cells<br />

or NK1.1 + cells were used. As shown <strong>in</strong> Fig. 3a, early<br />

s.c. IL-<strong>21</strong> prote<strong>in</strong> therapy was unable to <strong>in</strong>hibit B16<br />

tumor growth <strong>in</strong> C57BL/6 nude mice. C57BL/6 nude<br />

3 )<br />

a<br />

Mean tumor volume (mm<br />

+/-SEM<br />

3 )<br />

b<br />

Mean tumor volume (mm<br />

+/-SEM<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Vehicle s.c.<br />

IL-<strong>21</strong> s.c.<br />

Treatment start<br />

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Days post B16 tumor <strong>in</strong>oculation<br />

Vehicle s.c.<br />

IL-<strong>21</strong> s.c. + ∆NK1.1 + ∆CD8<br />

IL-<strong>21</strong> s.c. + ∆CD8<br />

IL-<strong>21</strong> s.c. + ∆NK1.1<br />

IL-<strong>21</strong> s.c.<br />

Treatment start<br />

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Days post B16 tumor <strong>in</strong>oculation<br />

Fig. 3 The anti-tumor effect of IL-<strong>21</strong> is CD8 + T cell dependent.<br />

C57BL/6 nude (a) or C57BL/6 WT mice (b) were <strong>in</strong>jected with<br />

10 5 B16 melanoma cells s.c. <strong>in</strong> the right flank <strong>and</strong> r<strong>and</strong>omized<br />

prior to treatment start as <strong>in</strong>dicated. WT animals were depleted<br />

of NK1.1 + cells, CD8 + cells or both us<strong>in</strong>g monoclonal Ab<br />

adm<strong>in</strong>istrated i.p. on day –1, 0, 6 <strong>and</strong> 12 compared to treatment<br />

start. Fifty lg IL-<strong>21</strong> or vehicle was <strong>in</strong>jected s.c. (contralateral to<br />

the tumor site) daily from day 3 after tumor <strong>in</strong>oculation.<br />

Mean ± SEM, n = 10, *P < 0.05, **P < 0.01, compared to vehicle<br />

control, CD8-depleted <strong>and</strong> NK1.1 + CD8-depleted groups by<br />

Student’s t-test<br />

mice are fully NK cell competent <strong>and</strong> T cell deficient,<br />

verified by flow cytometry (data not shown). This result<br />

suggests that T cells <strong>and</strong> not NK cells are essential for<br />

the anti-tumor activity of IL-<strong>21</strong> <strong>in</strong> this model. To further<br />

exam<strong>in</strong>e the specific cell types <strong>in</strong>volved <strong>in</strong> the antitumor<br />

activity, we depleted B16 tumor-bear<strong>in</strong>g C57BL/<br />

6 WT mice with anti-CD8 <strong>and</strong>/or anti-NK1.1 antibodies<br />

prior to treatment start with s.c. IL-<strong>21</strong> aga<strong>in</strong> <strong>in</strong>itiated<br />

early. As shown <strong>in</strong> Fig. 3b, significant anti-tumor<br />

activity was still exhibited <strong>in</strong> NK.1.1 + cell-depleted<br />

animals (P < 0.01) compared to vehicle controls,<br />

whereas CD8 + T cell depletion completely abrogated<br />

the tumor growth <strong>in</strong>hibition of IL-<strong>21</strong>. Together, these<br />

results show that CD8 + T cells are the essential cells for<br />

the anti-tumor activity of IL-<strong>21</strong> <strong>in</strong> our model.<br />

IL-<strong>21</strong> significantly <strong>in</strong>creases the density of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells<br />

Based on the f<strong>in</strong>d<strong>in</strong>g that CD8 + T cells were responsible<br />

for the anti-tumor activity <strong>in</strong> our models we<br />

exam<strong>in</strong>ed whether IL-<strong>21</strong> <strong>in</strong>creased the number of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells as a possible mechanism<br />

of action. Immunohistochemistry was used to sta<strong>in</strong><br />

CD4 + <strong>and</strong> CD8 + T cells <strong>in</strong> tumor biopsies from our<br />

<strong>in</strong> vivo therapeutic studies. One section from each tumor<br />

biopsy obta<strong>in</strong>ed at the end of the late treatment<br />

experiments was sta<strong>in</strong>ed (Fig. 2c, d). The density of<br />

TILs was scored by count<strong>in</strong>g all positive cells <strong>in</strong> a<br />

stereologically def<strong>in</strong>ed area of <strong>in</strong>terest (AOI) <strong>in</strong> which<br />

necrotic areas <strong>and</strong> peritumoral connective tissue were<br />

excluded. Thus, our results reflect the density of <strong>in</strong>tratumoral<br />

<strong>in</strong>filtrat<strong>in</strong>g lymphocytes, which are <strong>in</strong> direct<br />

contact with tumor cells <strong>and</strong> have the potential of<br />

perform<strong>in</strong>g cytotoxic effects. Representative pictures<br />

of anti-CD8 sta<strong>in</strong>ed B16 melanomas <strong>and</strong> RenCa carc<strong>in</strong>omas<br />

with <strong>and</strong> without IL-<strong>21</strong> treatments are shown<br />

<strong>in</strong> Fig. 4. In B16 melanomas the density of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD4 + T cells was unchanged follow<strong>in</strong>g IL-<br />

<strong>21</strong> treatments (Fig. 5a), whereas the density of CD8 + T<br />

cells showed a significant 7–10-fold <strong>in</strong>crease (P < 0.05)<br />

follow<strong>in</strong>g i.p. <strong>and</strong> s.c. adm<strong>in</strong>istration of IL-<strong>21</strong> (Fig. 5b).<br />

In RenCa carc<strong>in</strong>omas the density of CD4 + T cells was<br />

likewise unchange after IL-<strong>21</strong> treatments (Fig. 5c) <strong>and</strong><br />

the density of CD8 + T cells was <strong>in</strong>creased 3-fold after<br />

i.p. adm<strong>in</strong>istration (P < 0.05) <strong>and</strong> 8-fold after s.c.<br />

adm<strong>in</strong>istration (P < 0.01) of IL-<strong>21</strong> (Fig 5d). Moreover,<br />

the difference between i.p. <strong>and</strong> s.c. IL-<strong>21</strong> adm<strong>in</strong>istration<br />

was significant (P < 0.05) reflect<strong>in</strong>g the improved<br />

efficacy obta<strong>in</strong>ed <strong>in</strong> the RenCa carc<strong>in</strong>omas with s.c.<br />

adm<strong>in</strong>istration (Fig. 2d). Together these data show that<br />

IL-<strong>21</strong> strongly <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells without affect<strong>in</strong>g the CD4 + T cell<br />

123<br />

42


Cancer Immunol Immunother (2007) 56:1417–1428 1423<br />

Fig. 4 Pictures of tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>in</strong><br />

B16 melanomas <strong>and</strong> RenCa<br />

carc<strong>in</strong>omas. Representative<br />

pictures of cryo-sections at<br />

·20 magnification show<strong>in</strong>g<br />

tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells <strong>in</strong> B16 melanomas: PBS<br />

(a), i.p. IL-<strong>21</strong> (b), s.c. IL-<strong>21</strong><br />

(c) <strong>and</strong> RenCa carc<strong>in</strong>omas:<br />

PBS (d), i.p. IL-<strong>21</strong> (e), s.c. IL-<br />

<strong>21</strong> (f). Tumor biopsies were<br />

obta<strong>in</strong>ed at the end of the<br />

experiments shown <strong>in</strong> Fig. 2c,<br />

d. CD8 + T cells were sta<strong>in</strong>ed<br />

with liquid permanent red by<br />

immunohistochemistry<br />

accord<strong>in</strong>g to ‘‘Materials <strong>and</strong><br />

methods’’ <strong>and</strong> they are<br />

<strong>in</strong>dicated by arrows. Sections<br />

have been countersta<strong>in</strong>ed<br />

with Mayer’s hematoxyl<strong>in</strong><br />

yield<strong>in</strong>g a blue nucleus sta<strong>in</strong><br />

Mean no. of cells/10 6 µm 2 (AOI)<br />

+/- SEM<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

a<br />

CD4 + T cells<br />

Mean no. of cells/10 6 µm 2 (AOI)<br />

+/- SEM<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

b<br />

CD8 + T cells<br />

Mean no. of cells/10 6 µm 2 (AOI)<br />

+/- SEM<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

c<br />

PBS i.p. IL-<strong>21</strong> i.p. IL-<strong>21</strong> s.c<br />

Mean no. of cells/10 6 µm 2 (AOI)<br />

+/- SEM<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

d<br />

PBS i.p. IL-<strong>21</strong> i.p. IL-<strong>21</strong>s.c.<br />

Fig. 5 IL-<strong>21</strong> <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells. The bar plots show the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD4 + T<br />

cells (a <strong>and</strong> c) <strong>and</strong> CD8 + T cells (b <strong>and</strong> d) <strong>in</strong> B16 melanomas (a<br />

<strong>and</strong> b) <strong>and</strong> the RenCa carc<strong>in</strong>omas (c <strong>and</strong> d). Tumor biopsies<br />

were obta<strong>in</strong>ed at the end of the experiments shown <strong>in</strong> Fig. 2c, d<br />

<strong>and</strong> sta<strong>in</strong>ed for CD8 + <strong>and</strong> CD4 + T cells by immunohistochemistry.<br />

All positive cells located <strong>in</strong>tratumorally were counted <strong>in</strong><br />

one section from each biopsy <strong>and</strong> related to a stereologically<br />

measured area of <strong>in</strong>terest (AOI) excl. necrotic areas <strong>and</strong> nontumor<br />

tissue, such as connective tissue. Bars represent mean ±<br />

SEM, n = 7–10, *P < 0.05, **P < 0.01, Student’s t-test. AOI area<br />

of <strong>in</strong>terest<br />

123<br />

43


1424 Cancer Immunol Immunother (2007) 56:1417–1428<br />

density, consequently <strong>in</strong>creas<strong>in</strong>g the CD8 + /CD4 + T cell<br />

ratio <strong>in</strong> both tumor models.<br />

Subcutaneous adm<strong>in</strong>istration of IL-<strong>21</strong> results<br />

<strong>in</strong> a slow release from the <strong>in</strong>jection site<br />

<strong>and</strong> significant dra<strong>in</strong><strong>in</strong>g to regional lymph nodes<br />

In order to exam<strong>in</strong>e whether differences <strong>in</strong> the<br />

biodistribution of IL-<strong>21</strong> could account for the observed<br />

efficacy after s.c. versus i.p adm<strong>in</strong>istration, the k<strong>in</strong>etics<br />

of the two different routes of adm<strong>in</strong>istration was<br />

compared. Particularly, we wanted to <strong>in</strong>vestigate the<br />

degree of regional LN dra<strong>in</strong>age of IL-<strong>21</strong> after s.c.<br />

adm<strong>in</strong>istration, s<strong>in</strong>ce IL-<strong>21</strong> <strong>in</strong> this compartment<br />

could be relevant dur<strong>in</strong>g the generation of immune<br />

responses. 125 I labeled IL-<strong>21</strong> was used to measure the<br />

k<strong>in</strong>etics of IL-<strong>21</strong> distribution <strong>in</strong> several major organs<br />

<strong>and</strong> tissues as listed <strong>in</strong> Materials <strong>and</strong> methods. Figure 6<br />

shows the distribution over time at the s.c. <strong>in</strong>jection<br />

site, i.e the right foot (Fig. 6a), <strong>and</strong> <strong>in</strong> the popliteal LNs<br />

(Fig. 6b). The results show that upon s.c. <strong>in</strong>jection<br />

125 I-IL-<strong>21</strong> is released slowly from the <strong>in</strong>jection site <strong>and</strong><br />

a considerable amount is dra<strong>in</strong>ed through the regional<br />

LN (C max ~ 4.7% of <strong>in</strong>jected dose). In contrast, very<br />

low levels was detected <strong>in</strong> the popliteal LN node after<br />

i.p. <strong>in</strong>jection <strong>and</strong> <strong>in</strong> the contralateral LN after s.c.<br />

<strong>in</strong>jection (C max < 0.1% of <strong>in</strong>jected dose). We found no<br />

specific retention or major differences <strong>in</strong> the biodistribution<br />

between i.p. <strong>and</strong> s.c. over time <strong>in</strong> the major<br />

organs: heart, lungs, liver, spleen, kidneys, <strong>and</strong> small<br />

<strong>and</strong> large <strong>in</strong>test<strong>in</strong>es (data not shown). The thyroid<br />

gl<strong>and</strong> generally showed an <strong>in</strong>creased radioactivity over<br />

time after both routes of adm<strong>in</strong>istration due to its<br />

retention of free 125 I.<br />

IL-<strong>21</strong> has a greater bioavailability <strong>and</strong> higher peak<br />

serum concentration after subcutaneous<br />

adm<strong>in</strong>istration<br />

Next, we exam<strong>in</strong>ed the serum concentration-time<br />

profiles of IL-<strong>21</strong> after i.v., i.p. <strong>and</strong> s.c. adm<strong>in</strong>istration to<br />

exam<strong>in</strong>e whether the pharmacok<strong>in</strong>etics of IL-<strong>21</strong> contributes<br />

to the observed efficacy differences. IL-<strong>21</strong> was<br />

detectable <strong>in</strong> serum after 5 m<strong>in</strong> with all adm<strong>in</strong>istration<br />

routes. A peak serum concentration of 113 ng/ml of<br />

IL-<strong>21</strong> was reached 1 h post i.p adm<strong>in</strong>istration, whereas<br />

s.c. adm<strong>in</strong>istration provided a higher peak IL-<strong>21</strong> concentration<br />

of 230 ng/ml 2 h post <strong>in</strong>jection (Fig. 7). S.c.<br />

adm<strong>in</strong>istration resulted <strong>in</strong> a more susta<strong>in</strong>ed concentration<br />

of IL-<strong>21</strong> <strong>in</strong> serum <strong>and</strong> 2.5-fold higher AUC<br />

compared to i.p adm<strong>in</strong>istration (665 h·ng/ml vs.<br />

242 h·ng/ml after s.c. <strong>and</strong> i.p. adm<strong>in</strong>istration, respectively).<br />

The AUC after i.v. adm<strong>in</strong>istration was even<br />

a 90<br />

125 I-IL-<strong>21</strong> s.c.<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Hours post <strong>in</strong>jection<br />

Radioactivity/Dose %<br />

b<br />

Radioactivity/Dose %<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

125 I-IL-<strong>21</strong> s.c., right node (<strong>in</strong>jection side)<br />

125 I-IL-<strong>21</strong> s.c., left node<br />

125 I-IL-<strong>21</strong> i.p., right node<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Hours post <strong>in</strong>jection<br />

Fig. 6 125 I-IL-<strong>21</strong> shows slow release <strong>and</strong> significant lymph<br />

dra<strong>in</strong>age follow<strong>in</strong>g s.c. adm<strong>in</strong>istration.<br />

125 I-IL-<strong>21</strong> was <strong>in</strong>jected<br />

either i.p. or s.c. <strong>in</strong> the right footpad <strong>in</strong> BALB/c mice, <strong>and</strong><br />

animals were sacrificed at <strong>in</strong>dicated time po<strong>in</strong>ts <strong>and</strong> c-radiation<br />

at the subcutaneous <strong>in</strong>jection site (a) <strong>and</strong> <strong>in</strong> popliteal LNs (b)<br />

was measured. Each data po<strong>in</strong>t represents the mean ± SEM of<br />

triplicate mice<br />

Serum IL- <strong>21</strong> conc. (ng/mL)<br />

+/-SEM<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

IL-<strong>21</strong> i.p.<br />

IL-<strong>21</strong> s.c.<br />

IL-<strong>21</strong> i.v.<br />

0 1 2 3 4 5 6 7 8<br />

Hours post <strong>in</strong>jection<br />

Fig. 7 Greater bioavailability <strong>and</strong> peak serum conc. of IL-<strong>21</strong><br />

after s.c. adm<strong>in</strong>istration. Fifty lg IL-<strong>21</strong> was <strong>in</strong>jected i.p. <strong>in</strong> the<br />

lower right abdom<strong>in</strong>al quadrant, s.c. <strong>in</strong> the right flank or i.v. <strong>in</strong><br />

the tail ve<strong>in</strong> of BALB/c mice. Blood samples were drawn at<br />

<strong>in</strong>dicated time po<strong>in</strong>ts <strong>and</strong> the serum concentration of IL-<strong>21</strong> was<br />

measured by ELISA. Each data po<strong>in</strong>t represents mean ± SEM<br />

of triplicate mice<br />

123<br />

44


Cancer Immunol Immunother (2007) 56:1417–1428 1425<br />

higher (1,010 h·ng/ml) due to the very high <strong>in</strong>itial<br />

IL-<strong>21</strong> concentration that with<strong>in</strong> 1 h decreased to a level<br />

approximately 10-fold lower than both i.p. <strong>and</strong> s.c<br />

adm<strong>in</strong>istrations (Fig. 7). The bioavailability was 24%<br />

<strong>and</strong> 66% for i.p. <strong>and</strong> s.c. adm<strong>in</strong>istration, respectively.<br />

These results <strong>in</strong>dicate that IL-<strong>21</strong> has a prolonged<br />

pharmacok<strong>in</strong>etic profile follow<strong>in</strong>g s.c. adm<strong>in</strong>istration<br />

with a higher peak serum concentration <strong>and</strong> greater<br />

bioavailability compared to i.p. adm<strong>in</strong>istration.<br />

Discussion<br />

Previous studies of IL-<strong>21</strong> anti-tumor activity have been<br />

conducted with IL-<strong>21</strong> secret<strong>in</strong>g tumors [7,8,19,37], IL-<br />

<strong>21</strong> expression plasmids [38], <strong>in</strong> model systems immunogenically<br />

enhanced with foreign antigens, or by the<br />

use of adoptive transfer of antigen specific lymphocytes<br />

[13,20,26,39]. Although these studies support the concept<br />

that IL-<strong>21</strong> aids <strong>in</strong> the destruction of <strong>cancer</strong>, these<br />

methods of IL-<strong>21</strong> adm<strong>in</strong>istration are not cl<strong>in</strong>ically<br />

applicable. More recently, a number of studies have<br />

shown anti-tumor effects of <strong>in</strong>traperitoneal adm<strong>in</strong>istration<br />

of recomb<strong>in</strong>ant IL-<strong>21</strong> prote<strong>in</strong> [13,32,35]. In<br />

these studies IL-<strong>21</strong> therapy was given either <strong>in</strong> comb<strong>in</strong>ation<br />

with other therapies, as prophylactic therapy<br />

at or before tumor <strong>in</strong>oculation, <strong>and</strong> only for very few<br />

days duration. Here, we have used <strong>in</strong>traperitoneal <strong>and</strong><br />

subcutaneous adm<strong>in</strong>istration of IL-<strong>21</strong> prote<strong>in</strong> to mice<br />

bear<strong>in</strong>g established syngeneic tumors <strong>in</strong> order to study<br />

the effects of IL-<strong>21</strong> alone under more therapeutically<br />

relevant conditions, <strong>and</strong> IL-<strong>21</strong> was adm<strong>in</strong>istered<br />

throughout the experiments to maximize the treatment<br />

effect. The use of s.c. adm<strong>in</strong>istration of cytok<strong>in</strong>es for<br />

<strong>cancer</strong> therapy has previously been applied successfully,<br />

as s.c. adm<strong>in</strong>istration of IL-2 resulted <strong>in</strong> less adverse<br />

events yet ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g efficacy <strong>and</strong> enabl<strong>in</strong>g<br />

outpatient treatments [11]. In addition, s.c. adm<strong>in</strong>istration<br />

is believed to be more convenient for the<br />

patients. We report that IL-<strong>21</strong> prote<strong>in</strong> therapy significantly<br />

<strong>in</strong>hibits tumor growth <strong>in</strong> two syngeneic tumor<br />

models. The effect was not due to a direct <strong>in</strong>hibition of<br />

tumor cell proliferation, as also shown previously with<br />

B16 tumor cells [38]. Our data <strong>in</strong>dicate that s.c.<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong> the RenCa model is at least<br />

as effective as or perhaps more effective than i.p.<br />

adm<strong>in</strong>istration with early as well as late therapy <strong>in</strong>itiation.<br />

This might be due to prolonged availability of<br />

IL-<strong>21</strong>, s<strong>in</strong>ce s.c. adm<strong>in</strong>istration of IL-<strong>21</strong> resulted <strong>in</strong> a<br />

more prolonged presence of the prote<strong>in</strong> <strong>in</strong> serum <strong>and</strong><br />

higher bioavailability compared to i.p. adm<strong>in</strong>istration.<br />

Furthermore s.c. adm<strong>in</strong>istration also resulted <strong>in</strong> a significant<br />

passage of IL-<strong>21</strong> through regional lymphatics,<br />

which may also have contributed to an improved antitumor<br />

immune response. IL-<strong>21</strong> has been shown to exp<strong>and</strong><br />

antigen stimulated CD8 + T cells [17,39] <strong>and</strong> this<br />

effect might be further improved by the direct stimulation<br />

of CD8 + T cells <strong>in</strong> LNs dur<strong>in</strong>g an immune response.<br />

This notion is supported by our f<strong>in</strong>d<strong>in</strong>g that<br />

CD8 + T cells were <strong>in</strong>dispensable for the reduced tumor<br />

growth observed after IL-<strong>21</strong> treatment. Interest<strong>in</strong>gly, it<br />

has also been shown that the site of immunization<br />

produces a subsequent site-specific hom<strong>in</strong>g of T cells<br />

<strong>and</strong> accompany<strong>in</strong>g anti-tumor activity [5]. Thus, s.c.<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> might also mount an immune<br />

response targeted more specifically aga<strong>in</strong>st the s.c.<br />

compartment, where the tumors <strong>in</strong> this study were<br />

located. In the B16 model the efficacy difference<br />

between s.c. <strong>and</strong> i.p. was less pronounced compared to<br />

the more immunogenic RenCa model. It is not clear at<br />

this po<strong>in</strong>t whether this difference is caused by differences<br />

between the two tumor cell l<strong>in</strong>es or differences<br />

between their hosts (BALB/c <strong>and</strong> C57BL/6 mice for<br />

RenCa <strong>and</strong> B16 tumors, respectively). It is possible<br />

that different drug delivery methods may affect tumors<br />

with different immunogenicity differently, as recently<br />

described [4]. Altogether, our results suggest that s.c.<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> could be advantageous <strong>and</strong><br />

deserves cl<strong>in</strong>ical evaluation.<br />

In our experiments we found that depletion of<br />

NK1.1 + cells did not reduce the anti-tumor effect of<br />

IL-<strong>21</strong>, whereas depletion of CD8 + cells or growth<br />

of tumors <strong>in</strong> athymic mice completely abrogated the<br />

effect of IL-<strong>21</strong>. Taken together, these data show that<br />

CD8 + T cells are required for the anti-tumor activity <strong>in</strong><br />

our model, whereas NK cells played an <strong>in</strong>significant<br />

role under these sett<strong>in</strong>gs. In the literature either CD8 +<br />

T cells, NK cells, or both cell types have been described<br />

as required for the IL-<strong>21</strong> anti-tumor activity depend<strong>in</strong>g<br />

on the models used [16]. Most of the studies demonstrat<strong>in</strong>g<br />

NK cell-mediated anti-tumor activity of IL-<strong>21</strong><br />

have been performed <strong>in</strong> i.v. metastasis models where<br />

IL-<strong>21</strong> was adm<strong>in</strong>istered at the time of tumor establishment<br />

or <strong>in</strong> models us<strong>in</strong>g IL-<strong>21</strong>-express<strong>in</strong>g tumors<br />

[2,19,34,35,37]. Two major differences might expla<strong>in</strong><br />

these different effector mechanisms. First, we have<br />

treated subcutaneous tumors, which are less accessible<br />

to NK cells compared to <strong>in</strong>travenous tumors. Second, <strong>in</strong><br />

our experiments treatment was <strong>in</strong>itiated only after the<br />

tumors became established. The larger tumor burden <strong>in</strong><br />

this sett<strong>in</strong>g might overwhelm the effect of NK cells as<br />

they are unable to clonally exp<strong>and</strong>. In the i.v. metastasis<br />

model where IL-<strong>21</strong> therapy is given at the time of tumor<br />

<strong>in</strong>oculation, NK-mediated kill<strong>in</strong>g of the tumor cells<br />

may eradicate the tumor cells almost completely before<br />

an adaptive immune response can evolve, consistent<br />

123<br />

45


1426 Cancer Immunol Immunother (2007) 56:1417–1428<br />

with the notion that the efficacy <strong>in</strong> this model was<br />

susta<strong>in</strong>ed <strong>in</strong> Rag-1 -/- mice [2]. In a study by Ma et al.<br />

[19] rejection of IL-<strong>21</strong> secret<strong>in</strong>g B16F1 tumor cells<br />

<strong>in</strong>oculated subcutaneously required both NK cells <strong>and</strong><br />

CD8 + T cells. In this model, NK cell-depletion resulted<br />

<strong>in</strong> rapid growth of the tumors, suggest<strong>in</strong>g an early role<br />

of NK cells, whereas CD8 + T cell-depletion resulted<br />

<strong>in</strong> delayed tumor growth, suggest<strong>in</strong>g that adaptive<br />

immunity might have played a role later on to kill<br />

rema<strong>in</strong><strong>in</strong>g tumor cells, as suggested by the authors [19].<br />

By contrast Wang et al. showed that depletion of NK<br />

cells completely abrogated the anti-tumor effect of<br />

IL-<strong>21</strong> express<strong>in</strong>g plasmids adm<strong>in</strong>istered day 5 <strong>and</strong> 12<br />

post tumor <strong>in</strong>oculation with MCA205 fibrosarcomas<br />

[38]. Although these results apparently contradict the<br />

hypothesis suggested by us <strong>and</strong> others [4,19] that NK<br />

cells primarily play a role early <strong>in</strong> the anti-tumor<br />

response, it is possible that the much slower growth rate<br />

of MCA205 cells compared to B16 cells allows NK cells<br />

to kill MCA205 cells before the tumor burden becomes<br />

too large, even though treatment is <strong>in</strong>itiated day 5.<br />

Also, differences <strong>in</strong> immunogenicity <strong>and</strong> expression of<br />

lig<strong>and</strong>s for activat<strong>in</strong>g <strong>and</strong> <strong>in</strong>hibitory NK cell receptors<br />

between the two tumor l<strong>in</strong>es might contribute to these<br />

different results.<br />

Several studies have shown that IL-<strong>21</strong> can stimulate<br />

CD8 + T cells to proliferate, <strong>in</strong>crease their cytotoxicity,<br />

<strong>and</strong> susta<strong>in</strong> survival [1,14,17,20,39]. In order to elicit<br />

tumor cytotoxicity, CD8 + T cells must <strong>in</strong>filtrate the tumor<br />

to come <strong>in</strong> close contact with the tumor cells. The<br />

benefit of TILs <strong>and</strong> specifically CD8 + TILs <strong>and</strong> the<br />

CD8 + /CD4 + TIL ratio have also been shown <strong>in</strong> several<br />

different human <strong>cancer</strong>s where they were predictive of<br />

improved survival [9,12,<strong>21</strong>,22,28,30]. In this study, we<br />

demonstrate that IL-<strong>21</strong> prote<strong>in</strong> given therapeutically<br />

significantly <strong>in</strong>creased the density of tumor <strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells without chang<strong>in</strong>g the CD4 + T cell density,<br />

consequently <strong>in</strong>creas<strong>in</strong>g the CD8 + /CD4 + T cell ratio <strong>in</strong><br />

both models. Interest<strong>in</strong>gly, the density of CD8 + TILs<br />

was significantly higher after s.c. adm<strong>in</strong>istration of IL-<strong>21</strong><br />

compared to i.p. adm<strong>in</strong>istration <strong>in</strong> the RenCa carc<strong>in</strong>omas,<br />

support<strong>in</strong>g our notion that s.c. adm<strong>in</strong>istration<br />

might be favorable. Generally, the RenCa carc<strong>in</strong>omas<br />

also showed approximately 10-fold higher density of<br />

<strong>in</strong>filtrat<strong>in</strong>g T cells compared to B16 tumors reflect<strong>in</strong>g<br />

the higher <strong>in</strong>herent immunogenicity of RenCa as previously<br />

reported [15,29]. In a recently published article<br />

a similar <strong>in</strong>crease <strong>in</strong> CD8 + T cell <strong>in</strong>filtration was observed<br />

<strong>in</strong> a small number of tumors follow<strong>in</strong>g challenge<br />

with an IL-<strong>21</strong> express<strong>in</strong>g mouse bladder <strong>cancer</strong> [10].<br />

There are several possible explanations for the<br />

<strong>in</strong>creased density of CD8 + TILs after IL-<strong>21</strong> stimulation.<br />

First, IL-<strong>21</strong> has been shown to <strong>in</strong>crease the proliferation<br />

of antigen-stimulated CD8 + T cells [17,20,39], which <strong>in</strong><br />

turn could yield a greater pool of tumor specific T cells<br />

<strong>in</strong>filtrat<strong>in</strong>g the tumor. Another possibility is that IL-<strong>21</strong><br />

susta<strong>in</strong>s the survival of CD8 + T cells <strong>in</strong>filtrat<strong>in</strong>g the<br />

tumor, which has been supported by both <strong>in</strong> vitro <strong>and</strong><br />

<strong>in</strong> vivo data [1,20]. Particularly, it has been shown that<br />

IL-<strong>21</strong> is able to susta<strong>in</strong> CD28 expression on CD8 + T<br />

cells <strong>and</strong> <strong>in</strong>crease their IL-2 production [1], both of<br />

which could enhance their survival <strong>in</strong> a challeng<strong>in</strong>g<br />

tumor environment [25]. In this context, it should be<br />

noted that our results represent the conditions about<br />

8–10 days after the first IL-<strong>21</strong> dose, <strong>and</strong> one day after<br />

the last dose, thus the effects of IL-<strong>21</strong> have been susta<strong>in</strong>ed<br />

for more than a week from the <strong>in</strong>itial stimulation.<br />

F<strong>in</strong>ally, it is possible that IL-<strong>21</strong> <strong>in</strong>creases the<br />

specific hom<strong>in</strong>g of CD8 + T cells <strong>in</strong>to tumors. IL-<strong>21</strong> has<br />

been shown to <strong>in</strong>crease CXC chemok<strong>in</strong>es such as IP-10,<br />

MIG <strong>and</strong> I-TAC <strong>in</strong> IL-<strong>21</strong>-secret<strong>in</strong>g tumors [8], which<br />

could work as T cell attractants [27], but to date there<br />

are no data demonstrat<strong>in</strong>g that systemic IL-<strong>21</strong> delivery<br />

improves chemok<strong>in</strong>e-mediated hom<strong>in</strong>g of CD8 + T cells<br />

to tumors. Presently, the mechanism of IL-<strong>21</strong> antitumor<br />

activity rema<strong>in</strong>s to be fully elucidated, but the<br />

f<strong>in</strong>d<strong>in</strong>g that IL-<strong>21</strong> <strong>in</strong>creased tumor <strong>in</strong>filtration of CD8 +<br />

T cells is a step forward that encourages the use of IL-<strong>21</strong><br />

<strong>in</strong> oncology.<br />

In conclusion, we have shown that IL-<strong>21</strong> prote<strong>in</strong><br />

mono-therapy <strong>in</strong>hibited established syngeneic tumor<br />

growth <strong>in</strong> two precl<strong>in</strong>ical models of melanoma <strong>and</strong><br />

renal cell carc<strong>in</strong>oma. Furthermore, we have shown that<br />

IL-<strong>21</strong> markedly <strong>in</strong>creased the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells, which are essential for the antitumor<br />

effect. These f<strong>in</strong>d<strong>in</strong>gs support the use of IL-<strong>21</strong> as<br />

a promis<strong>in</strong>g new anti-<strong>cancer</strong> drug.<br />

Acknowledgement We would like to thank Heidi W<strong>in</strong>ther,<br />

Bodil Andreasen, Birte Jørgensen <strong>and</strong> Kirsten Meeske for<br />

technical assistance with the experiments, <strong>and</strong> Mark Smyth for<br />

valuable discussion of the manuscript.<br />

References<br />

1. Alves NL, Arosa FA, van Lier RA (2005) IL-<strong>21</strong> susta<strong>in</strong>s<br />

CD28 expression on IL-15-activated human naive CD8+ T<br />

cells. J Immunol 175:755–762<br />

2. Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004) IL-<strong>21</strong><br />

<strong>in</strong>duces the functional maturation of mur<strong>in</strong>e NK cells.<br />

J Immunol 172:2048–2058<br />

3. Br<strong>and</strong>t K, Bulfone-Paus S, Jenckel A, Foster DC, Paus R,<br />

Ruckert R (2003) <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> <strong>in</strong>hibits dendritic cellmediated<br />

T cell activation <strong>and</strong> <strong>in</strong>duction of contact hypersensitivity<br />

<strong>in</strong> vivo. J Invest Dermatol 1<strong>21</strong>:1379–1382<br />

4. Cappuccio A, Elishmereni M, Agur Z (2006) Cancer<br />

<strong>immunotherapy</strong> by <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>: potential treatment<br />

strategies evaluated <strong>in</strong> a mathematical model. Cancer Res<br />

66:7293–7300<br />

123<br />

46


Cancer Immunol Immunother (2007) 56:1417–1428 1427<br />

5. Chang CJ, Tai KF, Roffler S, Hwang LH (2004) The<br />

immunization site of cytok<strong>in</strong>e-secret<strong>in</strong>g tumor cell vacc<strong>in</strong>es<br />

<strong>in</strong>fluences the traffick<strong>in</strong>g of tumor-specific T lymphocytes<br />

<strong>and</strong> antitumor efficacy aga<strong>in</strong>st regional tumors. J Immunol<br />

173:6025–6032<br />

6. Clemente CG, Mihm MC Jr, Bufal<strong>in</strong>o R, Zurrida S, Coll<strong>in</strong>i<br />

P, Casc<strong>in</strong>elli N (1996) Prognostic value of tumor <strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes <strong>in</strong> the vertical growth phase of primary cutaneous<br />

melanoma. Cancer 77:1303–1310<br />

7. Comes A, Rosso O, Orengo AM, Di Carlo E, Sorrent<strong>in</strong>o C,<br />

Meazza R, Piazza T, Valzas<strong>in</strong>a B, Nanni P, Colombo MP,<br />

Ferr<strong>in</strong>i S (2006) CD25+ regulatory T cell depletion augments<br />

<strong>immunotherapy</strong> of micrometastases by an IL-<strong>21</strong>-secret<strong>in</strong>g<br />

cellular vacc<strong>in</strong>e. J Immunol 176:1750–1758<br />

8. Di Carlo E, Comes A, Orengo AM, Rosso O, Meazza R,<br />

Musiani P, Colombo MP, Ferr<strong>in</strong>i S (2004) IL-<strong>21</strong> <strong>in</strong>duces<br />

tumor rejection by specific CTL <strong>and</strong> IFN-gamma-dependent<br />

CXC chemok<strong>in</strong>es <strong>in</strong> syngeneic mice. J Immunol 172:1540–<br />

1547<br />

9. Diederichsen AC, Hjelmborg JB, Christensen PB, Zeuthen<br />

J, Fenger C (2003) Prognostic value of the CD4+/CD8+ ratio<br />

of tumour <strong>in</strong>filtrat<strong>in</strong>g lymphocytes <strong>in</strong> colorectal <strong>cancer</strong> <strong>and</strong><br />

HLA-DR expression on tumour cells. Cancer Immunol Immunother<br />

52:423–428<br />

10. Furukawa J, Hara I, Nagai H, Yao A, Oniki S, Fujisawa M<br />

(2006) <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> gene transfection <strong>in</strong>to mouse bladder<br />

<strong>cancer</strong> cells results <strong>in</strong> tumor rejection through the cytotoxic<br />

T lymphocyte response. J Urol 176:1198–1203<br />

11. Geertsen PF, Gore ME, Negrier S, Tourani JM, von der MH<br />

(2004) Safety <strong>and</strong> efficacy of subcutaneous <strong>and</strong> cont<strong>in</strong>uous<br />

<strong>in</strong>travenous <strong>in</strong>fusion rIL-2 <strong>in</strong> patients with metastatic renal<br />

cell carc<strong>in</strong>oma. Br J Cancer 90:1156–1162<br />

12. Haanen JB, Baars A, Gomez R, Weder P, Smits M, de Gruijl<br />

TD, von Blomberg BM, Bloemena E, Scheper RJ, van Ham<br />

SM, P<strong>in</strong>edo HM, van den Eertwegh AJ (2006) Melanomaspecific<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes but not circulat<strong>in</strong>g<br />

melanoma-specific T cells may predict survival <strong>in</strong> resected<br />

advanced-stage melanoma patients. Cancer Immunol Immunother<br />

55:451–458<br />

13. He H, Wisner P, Yang G, Hu HM, Haley D, Miller W, O’hara<br />

A, Alvord WG, Clegg CH, Fox BA, Urba WJ, Walker EB<br />

(2006) Comb<strong>in</strong>ed IL-<strong>21</strong> <strong>and</strong> Low-Dose IL-2 therapy <strong>in</strong>duces<br />

anti-tumor immunity <strong>and</strong> long-term curative effects <strong>in</strong> a<br />

mur<strong>in</strong>e melanoma tumor model. J Transl Med 4:24<br />

14. Kasaian MT, Whitters MJ, Carter LL, Lowe LD, Jussif JM,<br />

Deng B, Johnson KA, Witek JS, Senices M, Konz RF,<br />

Wurster AL, Donaldson DD, Coll<strong>in</strong>s M, Young DA, Grusby<br />

MJ (2002) IL-<strong>21</strong> limits NK cell responses <strong>and</strong> promotes<br />

antigen-specific T cell activation: a mediator of the transition<br />

from <strong>in</strong>nate to adaptive immunity. Immunity 16:559–569<br />

15. Krup OC, Kroll I, Bose G, Falkenberg FW (1999) Cytok<strong>in</strong>e<br />

depot formulations as adjuvants for tumor vacc<strong>in</strong>es. I.<br />

Liposome-encapsulated IL-2 as a depot formulation. J Immunother<br />

22:525–538<br />

16. Leonard WJ, Spolski R (2005) <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: a modulator of<br />

lymphoid proliferation, apoptosis <strong>and</strong> differentiation. Nat<br />

Rev Immunol 5:688–698<br />

17. Li Y, Bleakley M, Yee C (2005) IL-<strong>21</strong> <strong>in</strong>fluences the frequency,<br />

phenotype, <strong>and</strong> aff<strong>in</strong>ity of the antigen-specific CD8<br />

T cell response. J Immunol 175:2261–2269<br />

18. Lipponen PK, Eskel<strong>in</strong>en MJ, Jauhia<strong>in</strong>en K, Harju E, Terho<br />

R (1992) Tumour <strong>in</strong>filtrat<strong>in</strong>g lymphocytes as an <strong>in</strong>dependent<br />

prognostic factor <strong>in</strong> transitional cell bladder <strong>cancer</strong>. Eur J<br />

Cancer 29A:69–75<br />

19. Ma HL, Whitters MJ, Konz RF, Senices M, Young DA,<br />

Grusby MJ, Coll<strong>in</strong>s M, Dunussi-Joannopoulos K (2003)<br />

IL-<strong>21</strong> activates both <strong>in</strong>nate <strong>and</strong> adaptive immunity to generate<br />

potent antitumor responses that require perfor<strong>in</strong> but<br />

are <strong>in</strong>dependent of IFN-gamma. J Immunol 171:608–615<br />

20. Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA<br />

(2004) IL-<strong>21</strong> enhances <strong>and</strong> susta<strong>in</strong>s CD8+ T cell responses to<br />

achieve durable tumor immunity: comparative evaluation of<br />

IL-2, IL-15, <strong>and</strong> IL-<strong>21</strong>. J Immunol 173:900–999<br />

<strong>21</strong>. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H,<br />

Ohtani H (1998) CD8+ T cells <strong>in</strong>filtrated with<strong>in</strong> <strong>cancer</strong> cell<br />

nests as a prognostic factor <strong>in</strong> human colorectal <strong>cancer</strong>.<br />

Cancer Res 58:3491–3494<br />

22. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A,<br />

Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D,<br />

Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman<br />

WH, Galon J (2005) Effector memory T cells, early metastasis,<br />

<strong>and</strong> survival <strong>in</strong> colorectal <strong>cancer</strong>. N Engl J Med<br />

353:2654–2666<br />

23. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher<br />

C, Gross JA, Johnston J, Madden K, Xu W, West J,<br />

Schrader S, Burkhead S, Heipel M, Br<strong>and</strong>t C, Kuijper JL,<br />

Kramer J, Conkl<strong>in</strong> D, Presnell SR, Berry J, Shiota F, Bort S,<br />

Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-<br />

Day C, Gilbert T, Rayond F, Ch<strong>in</strong>g A, Yao L, Smith D,<br />

Webster P, Whitmore T, Maurer M, Kaushansky K, Holly<br />

RD, Foster D (2000) <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> <strong>and</strong> its receptor are <strong>in</strong>volved<br />

<strong>in</strong> NK cell expansion <strong>and</strong> regulation of lymphocyte<br />

function. Nature 408:57–63<br />

24. Parrish-Novak J, Foster DC, Holly RD, Clegg CH (2002)<br />

<strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> <strong>and</strong> the IL-<strong>21</strong> receptor: novel effectors of NK<br />

<strong>and</strong> T cell responses. J Leukoc Biol 72:856–863<br />

25. Petrulio CA, Kim-Schulze S, Kaufman HL (2006) The tumour<br />

microenvironment <strong>and</strong> implications for <strong>cancer</strong> <strong>immunotherapy</strong>.<br />

Expert Op<strong>in</strong> Biol Ther 6:671–684<br />

26. Roda JM, Parihar R, Lehman A, Mani A, Trid<strong>and</strong>apani S,<br />

Carson WE III (2006) <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> enhances NK cell<br />

activation <strong>in</strong> response to antibody-coated targets. J Immunol<br />

177:120–129<br />

27. Romagnani P, Annunziato F, Lazzeri E, Cosmi L, Beltrame<br />

C, Lasagni L, Galli G, Francalanci M, Manetti R, Marra F,<br />

Van<strong>in</strong>i V, Maggi E, Romagnani S (2001) Interferon-<strong>in</strong>ducible<br />

prote<strong>in</strong> 10, monok<strong>in</strong>e <strong>in</strong>duced by <strong>in</strong>terferon gamma, <strong>and</strong><br />

<strong>in</strong>terferon-<strong>in</strong>ducible T-cell alpha chemoattractant are produced<br />

by thymic epithelial cells <strong>and</strong> attract T-cell receptor<br />

(TCR) alphabeta+ CD8+ s<strong>in</strong>gle-positive T cells, TCRgammadelta+<br />

T cells, <strong>and</strong> natural killer-type cells <strong>in</strong> human<br />

thymus. Blood 97:601–607<br />

28. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F,<br />

Jungbluth AA, Fros<strong>in</strong>a D, Gnjatic S, Ambrosone C, Kepner<br />

J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ,<br />

Odunsi K (2005) Intraepithelial CD8+ tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes <strong>and</strong> a high CD8+/regulatory T cell ratio are<br />

associated with favorable prognosis <strong>in</strong> ovarian <strong>cancer</strong>. Proc<br />

Natl Acad Sci USA 102:18538–18543<br />

29. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee<br />

EM, Manns MP, Greten TF (2003) Apoptotic, but not necrotic,<br />

tumor cell vacc<strong>in</strong>es <strong>in</strong>duce a potent immune response<br />

<strong>in</strong> vivo. Int J Cancer 103:205–<strong>21</strong>1<br />

30. Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001)<br />

Prognostic significance of activated CD8(+) T cell <strong>in</strong>filtrations<br />

with<strong>in</strong> esophageal carc<strong>in</strong>omas. Cancer Res 61:3932–<br />

3936<br />

31. Sivori S, Cantoni C, Parol<strong>in</strong>i S, Marcenaro E, Conte R,<br />

Moretta L, Moretta A (2003) IL-<strong>21</strong> <strong>in</strong>duces both rapid<br />

maturation of human CD34+ cell precursors towards NK<br />

cells <strong>and</strong> acquisition of surface killer Ig-like receptors. Eur J<br />

Immunol 33:3439–3447<br />

123<br />

47


1428 Cancer Immunol Immunother (2007) 56:1417–1428<br />

32. Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells <strong>and</strong> NKT<br />

cells collaborate <strong>in</strong> host protection from methylcholanthrene-<strong>in</strong>duced<br />

fibrosarcoma. Int Immunol 13:459–463<br />

33. Smyth MJ, Kelly JM, Baxter AG, Korner H, Sedgwick JD<br />

(1998) An essential role for tumor necrosis factor <strong>in</strong> natural<br />

killer cell-mediated tumor rejection <strong>in</strong> the peritoneum. J Exp<br />

Med 188:1611–1619<br />

34. Smyth MJ, Wallace ME, Nutt SL, Yagita H, Godfrey DI,<br />

Hayakawa Y (2005) Sequential activation of NKT cells <strong>and</strong><br />

NK cells provides effective <strong>in</strong>nate <strong>immunotherapy</strong> of <strong>cancer</strong>.<br />

J Exp Med 201:1973–1985<br />

35. Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S,<br />

Smyth MJ, Lanier LL (2005) IL-<strong>21</strong> enhances tumor rejection<br />

through a NKG2D-dependent mechanism. J Immunol<br />

175:<strong>21</strong>67–<strong>21</strong>73<br />

36. Toomey JA, Gays F, Foster D, Brooks CG (2003) Cytok<strong>in</strong>e<br />

requirements for the growth <strong>and</strong> development of mouse NK<br />

cells <strong>in</strong> vitro. J Leukoc Biol 74:233–242<br />

37. Ugai S, Shimozato O, Kawamura K, Wang YQ, Yamaguchi<br />

T, Saisho H, Sakiyama S, Tagawa M (2003) Expression of the<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> gene <strong>in</strong> mur<strong>in</strong>e colon carc<strong>in</strong>oma cells generates<br />

systemic immunity <strong>in</strong> the <strong>in</strong>oculated hosts. Cancer Gene<br />

Ther 10:187–192<br />

38. Wang G, Tschoi M, Spolski R, Lou Y, Ozaki K, Feng C, Kim<br />

G, Leonard WJ, Hwu P (2003) In vivo antitumor activity of<br />

<strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> mediated by natural killer cells. Cancer Res<br />

63:9016–9022<br />

39. Zeng R, Spolski R, F<strong>in</strong>kelste<strong>in</strong> SE, Oh S, Kovanen PE,<br />

H<strong>in</strong>richs CS, Pise-Masison CA, Radonovich MF, Brady JN,<br />

Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of<br />

IL-<strong>21</strong> <strong>and</strong> IL-15 <strong>in</strong> regulat<strong>in</strong>g CD8+ T cell expansion <strong>and</strong><br />

function. J Exp Med 201:139–148<br />

123<br />

48


Paper III:<br />

Intratumoral <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> <strong>in</strong>creases anti-tumor immunity, tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cell<br />

density <strong>and</strong> activity, <strong>and</strong> enlarges dra<strong>in</strong><strong>in</strong>g lymph nodes<br />

Søndergaard H., Galsgaard E.D., Bartholomæussen M., Ødum N. <strong>and</strong> Skak K.,<br />

J Immunother <strong>in</strong> press<br />

49


Intratumoral <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> <strong>in</strong>creases anti-tumor immunity, tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cell density <strong>and</strong> activity, <strong>and</strong> enlarges dra<strong>in</strong><strong>in</strong>g lymph nodes *<br />

Henrik Søndergaard 1 , Elisabeth D. Galsgaard 1 , Monica Bartholomæussen 1 , Per Thor<br />

Straten 2 , Niels Ødum 3 , Kresten Skak 1<br />

1 Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv Denmark, 2 Center for Cancer<br />

Immunotherapy, Department of Hematology, Herlev University Hospital, Denmark, 3 Institute of<br />

Biology, University of Copenhagen, Denmark<br />

Correspond<strong>in</strong>g author:<br />

Henrik Søndergaard, M.Sc.<br />

Novo Nordisk A/S<br />

Department of Immunopharmacology<br />

Novo Nordisk Park F6.2.30<br />

DK-2760, Måløv, Denmark<br />

Phone (direct): +45 44431376<br />

Fax: +45 44434537<br />

E-mail: hris@novonordisk.com<br />

* This work was funded by Novo Nordisk A/S.<br />

Short runn<strong>in</strong>g title: Intratumoral IL-<strong>21</strong> <strong>in</strong>creases anti-tumor immunity, TIL activity <strong>and</strong> density,<br />

<strong>and</strong> enlarges LNs<br />

Key words: <strong>in</strong>tratumoral, <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>, tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes, T cells, dra<strong>in</strong><strong>in</strong>g lymph<br />

nodes, <strong>cancer</strong>, melanoma, renal cell carc<strong>in</strong>oma<br />

Abbreviations: IL-<strong>21</strong>, <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong>; SC, subcutaneous; IT, <strong>in</strong>tratumoral; TILs, tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes; NK cells, natural killer cells; Tregs, regulatory T cells; AOI, area of <strong>in</strong>terest; WT,<br />

wild type; LN, lymph node; CXCL, chemok<strong>in</strong>e CXC motif lig<strong>and</strong>; CCL, C-C motif lig<strong>and</strong><br />

51


Abstract<br />

<strong>Interleuk<strong>in</strong></strong> (IL)-<strong>21</strong> is a novel cytok<strong>in</strong>e <strong>in</strong> cl<strong>in</strong>ical development for the treatment of <strong>cancer</strong>. In this<br />

study, we have compared the efficacy of subcutaneous (SC) <strong>and</strong> <strong>in</strong>tratumoral (IT) adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> prote<strong>in</strong> <strong>in</strong> two syngeneic mouse tumor models, RenCa renal cell carc<strong>in</strong>oma <strong>and</strong> B16<br />

melanoma, <strong>and</strong> <strong>in</strong>vestigated the mechanisms by which IL-<strong>21</strong> enhances CD8 + T cell-mediated antitumor<br />

immunity.<br />

We found that <strong>in</strong> comparison to SC adm<strong>in</strong>istration, IT adm<strong>in</strong>istration of IL-<strong>21</strong> more potently<br />

<strong>in</strong>hibited tumor growth <strong>and</strong> <strong>in</strong>creased survival. This correlated with <strong>in</strong>creased densities of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + <strong>and</strong> CD4 + CD25 - T cells, but not CD4 + CD25 + FoxP3 + T cells. Furthermore, IT<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong>creased degranulation, <strong>and</strong> expression of IFNγ <strong>and</strong> granzyme B <strong>in</strong> tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells. Tumors <strong>in</strong>jected with IL-<strong>21</strong> grew slower than contralateral tumors,<br />

suggest<strong>in</strong>g that the <strong>in</strong>creased efficacy of IT adm<strong>in</strong>istration of IL-<strong>21</strong> was due to a local rather than<br />

systemic effect. IT adm<strong>in</strong>istration of IL-<strong>21</strong> led to enlarged tumor-dra<strong>in</strong><strong>in</strong>g lymph nodes (LNs), with<br />

<strong>in</strong>creased naïve lymphocyte numbers <strong>and</strong> proliferation of activated lymphocytes, suggest<strong>in</strong>g that<br />

local adm<strong>in</strong>istration of IL-<strong>21</strong> generally benefits the tumor microenvironment <strong>and</strong> activates tumordra<strong>in</strong><strong>in</strong>g<br />

LNs.<br />

Overall, our data suggest that IL-<strong>21</strong> augments CD8 + T cell-mediated anti-tumor immunity through<br />

<strong>in</strong>creased proliferation <strong>and</strong> effector function <strong>and</strong> acts both on tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells as<br />

well as on the dra<strong>in</strong><strong>in</strong>g lymph nodes. IT adm<strong>in</strong>istration led to superior CD8 + T cell proliferation,<br />

effector function <strong>and</strong> anti-tumor efficacy, suggest<strong>in</strong>g that IT adm<strong>in</strong>istration of IL-<strong>21</strong> may be<br />

cl<strong>in</strong>ically useful <strong>in</strong> patients with unresectable tumors.<br />

Introduction<br />

The f<strong>in</strong>d<strong>in</strong>g of tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes<br />

(TILs) <strong>in</strong> human <strong>cancer</strong>s shows that the<br />

immune system to some degree recognizes<br />

<strong>cancer</strong>s. Several reports have shown the<br />

benefit of TILs <strong>in</strong> human <strong>cancer</strong>s, particularly<br />

the number of CD8 + T cells <strong>and</strong> an <strong>in</strong>creased<br />

ratio of CD8 + /regulatory T cells (Tregs) are<br />

associated with improved patient prognosis<br />

(1-10). Adoptive cell therapy (ACT) with ex<br />

vivo exp<strong>and</strong>ed autologous TILs has shown<br />

encourag<strong>in</strong>g response rates, <strong>in</strong>dicat<strong>in</strong>g the<br />

potential of try<strong>in</strong>g to enhance TIL numbers<br />

(11). However, far from all <strong>cancer</strong>s conta<strong>in</strong><br />

adequate amounts of TILs, <strong>and</strong> the anti-tumor<br />

activity of TILs are rarely sufficient to control<br />

the disease. This is ma<strong>in</strong>ly due to a variety of<br />

<strong>in</strong>herent mechanisms that facilitate tumor<br />

immune escape (12): Insufficient T cell<br />

chemotaxis, lack of co-stimulation <strong>and</strong><br />

<strong>in</strong>creased <strong>in</strong>hibitory lig<strong>and</strong> expression, co<strong>in</strong>filtration<br />

of suppressive immune cells such<br />

as Tregs, the release of immune suppressive<br />

soluble mediators e.g. IL-10 <strong>and</strong> TGFβ, <strong>and</strong><br />

generation of antigen-loss variants. Clearly,<br />

TILs are faced with many hurdles <strong>in</strong> the<br />

tumor microenvironment that h<strong>in</strong>der<br />

successful <strong>immunotherapy</strong>. Therefore, novel<br />

measures are needed that can boost both the<br />

number <strong>and</strong> reactivity of TILs <strong>and</strong> at the same<br />

time avoid <strong>in</strong>filtration of suppressive immune<br />

cells.<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> (IL-<strong>21</strong>) is the latest member of<br />

the common γ-cha<strong>in</strong> cytok<strong>in</strong>e family <strong>and</strong> is<br />

currently <strong>in</strong> cl<strong>in</strong>ical development for the<br />

treatment of <strong>cancer</strong>. IL-<strong>21</strong> is produced by<br />

activated CD4 + T cells <strong>and</strong> is particularly<br />

found <strong>in</strong> follicular helper T cells <strong>and</strong> Th17<br />

cells, <strong>and</strong> activated NKT cells (13-19). The<br />

IL-<strong>21</strong> receptor (IL-<strong>21</strong>R) is widely expressed<br />

throughout the immune system <strong>in</strong>clud<strong>in</strong>g<br />

macrophages, B, T, NK, NKT <strong>and</strong> dendritic<br />

cells (20). Hence, IL-<strong>21</strong> has pleiotropic<br />

actions on the immune system which <strong>in</strong>clude<br />

co-stimulation of B cell maturation <strong>and</strong> Ig<br />

52


production, <strong>in</strong>creased NK cell cytotoxicity<br />

<strong>and</strong> bone marrow recruitment, co-stimulation<br />

of T cell proliferation as well as CD8 + T cell<br />

expansion <strong>and</strong> cytotoxicity (20). In vivo, IL-<br />

<strong>21</strong> has shown encourag<strong>in</strong>g anti-tumor activity<br />

<strong>in</strong> several different animal models, where the<br />

anti-tumor activity was ma<strong>in</strong>ly dependent on<br />

NK cells, CD8 + T cells or both (<strong>21</strong>).<br />

Currently, IL-<strong>21</strong> is <strong>in</strong> phase II cl<strong>in</strong>ical trials<br />

for the treatment of stage IV melanoma <strong>and</strong><br />

renal cell carc<strong>in</strong>oma (22). So far, cl<strong>in</strong>ical<br />

results have shown that the drug is generally<br />

well tolerated (23), <strong>and</strong> immune activation<br />

<strong>and</strong> signs of cl<strong>in</strong>ical activity have also been<br />

observed (22;24). To support the further<br />

development of IL-<strong>21</strong> as an oncology drug it<br />

will be important to fully underst<strong>and</strong> the<br />

pleiotropy of this cytok<strong>in</strong>e to yield the best<br />

cl<strong>in</strong>ical outcome, hereby underst<strong>and</strong> the<br />

therapeutic functions of the cytok<strong>in</strong>e <strong>in</strong> vivo,<br />

establish the most optimal route of<br />

adm<strong>in</strong>istration <strong>and</strong> possibly identify potential<br />

biological markers of efficacy.<br />

Previously, we have shown that subcutaneous<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> prote<strong>in</strong> was more<br />

effective than <strong>in</strong>traperitoneal adm<strong>in</strong>istration<br />

<strong>and</strong> led to <strong>in</strong>creased densities of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells <strong>in</strong> syngeneic mouse<br />

tumor models (25). However, it still rema<strong>in</strong>s<br />

to be shown whether a local adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> can further augment the anti-tumor<br />

activity compared to systemic treatment, <strong>and</strong><br />

whether it would be even more potent <strong>in</strong><br />

modulat<strong>in</strong>g the density <strong>and</strong> activity of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

T cells. IL-2, which is closely<br />

related to IL-<strong>21</strong> <strong>and</strong> approved as therapy for<br />

stage IV melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma,<br />

has previously shown improved patient<br />

outcome <strong>and</strong> less severe adverse effects after<br />

local adm<strong>in</strong>istration compared to systemic<br />

treatment (26).<br />

In this study, we have compared <strong>in</strong>tratumoral<br />

<strong>and</strong> subcutaneous adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong><br />

two syngeneic subcutaneous mouse tumor<br />

models. Our data show potent anti-tumor<br />

efficacy <strong>and</strong> <strong>in</strong>creased survival after<br />

<strong>in</strong>tratumoral adm<strong>in</strong>istration, enlargement of<br />

tumor-dra<strong>in</strong><strong>in</strong>g lymph nodes (LNs) <strong>and</strong><br />

<strong>in</strong>creased density <strong>and</strong> activation of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells, suggest<strong>in</strong>g that local<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> could improve patient<br />

outcome <strong>and</strong> is warranted for cl<strong>in</strong>ical<br />

<strong>in</strong>vestigation.<br />

Materials <strong>and</strong> Methods<br />

Mice<br />

Wild type (WT) C57BL/6 <strong>and</strong> BALB/c<br />

female mice were purchased from Taconic<br />

Europe A/S, Lille Skensved, Denmark,<br />

whereas female C57BL/6 nu/nu (nude) mice<br />

(B6.Cg/Ntac-Foxn1 nu N9) <strong>and</strong> female<br />

C57BL/6 β2m -/- (B6.129-B2m tm1Jae N12) were<br />

acquired from Taconic, Hudson, NY, USA.<br />

The animals were 6-8 weeks old on arrival<br />

<strong>and</strong> were allowed to acclimatize for at least<br />

one week before start of experiments. WT<br />

mice were housed <strong>in</strong> a st<strong>and</strong>ard animal<br />

facility whereas nude <strong>and</strong> β2m -/- mice were<br />

isolated <strong>in</strong> a facility for immunodeficient<br />

animals. Light was controlled on a 12 hr lightdark<br />

cycle, <strong>and</strong> the animals were given free<br />

access to food <strong>and</strong> dr<strong>in</strong>k<strong>in</strong>g water. The<br />

animals were observed daily for cl<strong>in</strong>ical signs<br />

<strong>and</strong> their body weights were recorded<br />

regularly. All experiments were approved by<br />

the relevant ethical committees <strong>and</strong> conducted<br />

<strong>in</strong> accordance with corporate policies on<br />

animal welfare.<br />

Cell l<strong>in</strong>es<br />

C57BL/6-derived B16 (F0) melanoma cells<br />

(American Type Culture Collection (ATCC),<br />

CRL-6322) <strong>and</strong> BALB/c-derived RenCa renal<br />

cell carc<strong>in</strong>oma cells (k<strong>in</strong>dly provided by Dr.<br />

Robert H. Wiltrout, NCI at Frederick, MD,<br />

USA) were cultured <strong>in</strong> RPMI 1640 with<br />

GlutaMAX TM supplemented with 10% heat<strong>in</strong>activated<br />

FCS, sodium pyruvate (RenCa<br />

only), nonessential am<strong>in</strong>o acids (RenCa only),<br />

<strong>and</strong> 5% penicill<strong>in</strong>-streptomyc<strong>in</strong> (all from<br />

GIBCO Cell Culture, Invitrogen, Denmark).<br />

Reagents <strong>and</strong> antibodies<br />

Recomb<strong>in</strong>ant mur<strong>in</strong>e IL-<strong>21</strong> (IL-<strong>21</strong>) prote<strong>in</strong><br />

provided by Novo Nordisk A/S, Denmark was<br />

53


used <strong>in</strong> all experiments. The stock solutions<br />

conta<strong>in</strong>ed IL-<strong>21</strong> <strong>in</strong> a concentration of 10.5<br />

mg/mL <strong>and</strong> work<strong>in</strong>g preparations were<br />

diluted <strong>in</strong> PBS, IL-<strong>21</strong>-vehicle diluted<br />

similarly was used as control. For the<br />

histological exam<strong>in</strong>ation we used rat antimouse<br />

CD4 (clone RM4-5), rat anti-mouse<br />

CD8a (clone 53-6.7) (both from BD<br />

Pharm<strong>in</strong>gen, CA, USA), rat serum IgG2a<br />

(Serotec, UK), <strong>and</strong> biot<strong>in</strong>-conjugated donkey<br />

anti-rat IgG (Jackson ImmunoResearch<br />

Laboratories Inc., PA, USA). For flow<br />

cytometry analysis the follow<strong>in</strong>g antibodies<br />

were used: Rat anti-mouse CD45<br />

Allophycocyan<strong>in</strong> (APC)-Cy7 (clone 30-F11),<br />

rat anti-mouse CD8a APC (clone 53-6.7), rat<br />

anti-mouse CD4 Perid<strong>in</strong><strong>in</strong> Chlorophyll<br />

Prote<strong>in</strong> Complex (PerCP) (clone RM4-5), rat<br />

anti-mouse CD19 PE-Cy7/PerCPCy5.5 (clone<br />

1D3), rat anti-mouse CD25 Fluoresce<strong>in</strong><br />

isothiocyanate (FITC) (clone 7D4), rat antimouse<br />

CD62L PE (clone MEL-14), rat antimouse<br />

IFNγ APC (clone XMG1.2), rat IgG1,<br />

κ (isotype), rat anti-mouse CD107a FITC<br />

(clone 1D4B), rat IgG2a, κ FITC (isotype), 7-<br />

am<strong>in</strong>o-act<strong>in</strong>omyc<strong>in</strong> D (7-AAD) sta<strong>in</strong><strong>in</strong>g<br />

solution (all from BD Pharm<strong>in</strong>gen, CA,<br />

USA), hamster anti-mouse TCRβ FITC (clone<br />

H57-597), hamster anti-mouse TCRβ Alexa<br />

Flour 750 (clone H57-597), rat anti-mouse<br />

CD8 Pacific Blue (clone 53-6.7), rat antimouse<br />

CD44 FITC/APC (clone IM7), rat antimouse<br />

FoxP3 PE (clone FJK-16s), rat antimouse<br />

granzyme B PE (clone 16G6), rat<br />

IgG2b, κ PE (isotype) (all from eBioscience,<br />

CA, USA), rat anti-mouse CD62L APC<br />

(clone MEL-14) (Beckman Coulter, CA,<br />

USA), rat anti-mouse CD4 Pacific Orange<br />

(clone R2a30), rat anti-mouse CD45 Pacific<br />

Orange (clone 30-F11) (both from CALTAG<br />

laboratories, Invitrogen, CA, USA), rabbit<br />

anti-rat/human KI67 FITC (clone SP6) <strong>and</strong><br />

rabbit IgG FITC (isotype) (both from Abcam<br />

plc, UK).<br />

In vivo tumor models<br />

On day 0, C57BL/6 WT, C57BL/6 nu/nu <strong>and</strong><br />

C57BL/6 β2m -/- were <strong>in</strong>oculated<br />

subcutaneously <strong>in</strong> the right flank with 10 5<br />

B16 melanoma cells. BALB/c mice were<br />

<strong>in</strong>oculated <strong>in</strong> the right or <strong>in</strong> both flanks with<br />

2x10 5 RenCa renal cell carc<strong>in</strong>oma cells. All<br />

mice were r<strong>and</strong>omized <strong>and</strong> ear-tagged prior to<br />

treatment. The tumor volume was measured<br />

as two perpendicular diameters with a digital<br />

caliper approximately three times per week,<br />

<strong>and</strong> calculated by the follow<strong>in</strong>g formula:<br />

2<br />

Volume = 0.5 × d<br />

1<br />

× d<br />

2<br />

, if d<br />

1<br />

< d<br />

2<br />

, where d represents<br />

the two diameters.<br />

Treatment with IL-<strong>21</strong> was <strong>in</strong>itiated when<br />

tumors reached a mean volume between 40<br />

mm 3 to above 100 mm 3 . Fifty µg IL-<strong>21</strong> or<br />

vehicle <strong>in</strong> a dos<strong>in</strong>g volume of 30 µL us<strong>in</strong>g a<br />

0.3 ml BD Micro-F<strong>in</strong>e+ <strong>in</strong>sul<strong>in</strong> syr<strong>in</strong>ge with a<br />

8 mm 30G needle (BD Pharm<strong>in</strong>gen, CA,<br />

USA) was adm<strong>in</strong>istered <strong>in</strong>tratumorally (IT) <strong>in</strong><br />

the center of the tumor nodule or <strong>in</strong> a volume<br />

of 200 µL subcutaneously (SC) 3x/week <strong>in</strong><br />

the BALB/c-RenCa model <strong>and</strong> 1x/daily <strong>in</strong> the<br />

C57BL/6-B16 model. This dose was chosen<br />

on the basis of experiments <strong>in</strong> our previous<br />

work (25). Term<strong>in</strong>ation criteria were a tumor<br />

volume of 1000 mm 3 , which was used as a<br />

surrogate survival endpo<strong>in</strong>t <strong>in</strong> Kaplan-Meyer<br />

analysis, or more than 20% weight loss from<br />

time of cell <strong>in</strong>oculation.<br />

Immunohistochemistry of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

T cells<br />

Six µm cryo-sections were made from tumorbiopsies<br />

taken out at term<strong>in</strong>ation of the<br />

therapeutic studies. Sections were<br />

immunohistochemically sta<strong>in</strong>ed with rat antimouse<br />

CD4 or rat anti-mouse CD8 antibodies<br />

(5 µg/ml), whereas rat serum IgG2a was used<br />

as match<strong>in</strong>g isotype control. Biot<strong>in</strong>conjugated<br />

donkey anti-rat IgG (diluted<br />

1:3000) was used as secondary antibody.<br />

Sections were fixed <strong>in</strong> 4% paraformaldehyde<br />

at 4°C <strong>and</strong> endogenous biot<strong>in</strong> activity was<br />

blocked us<strong>in</strong>g Biot<strong>in</strong> block<strong>in</strong>g system from<br />

Dako A/S, Denmark. Prior to the antibody<br />

sta<strong>in</strong><strong>in</strong>g non-specific b<strong>in</strong>d<strong>in</strong>g was blocked by<br />

54


<strong>in</strong>cubation <strong>in</strong> TBS with 3% skim milk, 3%<br />

BSA, <strong>and</strong> 7% donkey serum. Incubation with<br />

the primary antibodies was made at 4°C over<br />

night followed by 1 h <strong>in</strong>cubation at RT with<br />

the secondary antibody, both diluted <strong>in</strong> TBS<br />

with 0.5% skim milk, 3% BSA, <strong>and</strong> 7%<br />

donkey serum. Streptavid<strong>in</strong> conjugated<br />

alkal<strong>in</strong>e phosphatase <strong>and</strong> Liquid Permanent<br />

Red Chromogen (Dako A/S, Denmark) was<br />

used to visualize positive cells <strong>and</strong> sections<br />

were countersta<strong>in</strong>ed with Mayer’s<br />

hematoxyl<strong>in</strong> to reveal nuclei morphology.<br />

Stereological quantification of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

T cells<br />

A stereological method was used to quantify<br />

the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g T cells.<br />

Images from immunohistochemically sta<strong>in</strong>ed<br />

tumor sections were analyzed via onl<strong>in</strong>e light<br />

microscopy at 20× magnification us<strong>in</strong>g<br />

C.A.S.T. grid software ver. 2.3.1.3 from<br />

Olympus Denmark A/S, Denmark. In all<br />

tumor sections (one from each tumor) the<br />

density of tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes was<br />

bl<strong>in</strong>dly scored count<strong>in</strong>g all positive cells<br />

<strong>in</strong>tratumorally <strong>and</strong> relat<strong>in</strong>g them to an area of<br />

<strong>in</strong>terest (AOI), represent<strong>in</strong>g the total tumor<br />

area measured stereologically, exclud<strong>in</strong>g<br />

necrotic tumor tissue <strong>and</strong> non-tumor tissue<br />

such as peritumoral connective tissue. The<br />

C.A.S.T. grid software <strong>and</strong> a motorized stage<br />

system enabled side by side imag<strong>in</strong>g to ensure<br />

that no area was omitted or evaluated twice.<br />

Flow cytometric analysis of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes<br />

Tumor-biopsies were taken out at the<br />

term<strong>in</strong>ation of experiments or on day 1, 5, <strong>and</strong><br />

10 post treatment-start <strong>and</strong> weighed.<br />

Mechanical dissection with scalpel blades<br />

followed by enzymatic digestion for 1 h at<br />

37°C with collagenase type IV (Sigma-aldrich<br />

GmbH, Germany) <strong>and</strong> DNase I (Roche<br />

Diagnostics GmbH, Germany) were used to<br />

dissociate the tumor tissue. S<strong>in</strong>gle cell<br />

suspensions were made by passage through a<br />

40µm BD Falcon cell stra<strong>in</strong>er (BD<br />

Biosciences, CA, USA). Cells were surface<br />

sta<strong>in</strong>ed with appropriate antibodies for 30-40<br />

m<strong>in</strong> <strong>and</strong> washed. A FoxP3 sta<strong>in</strong><strong>in</strong>g kit<br />

(eBioscience, CA, USA) was used for<br />

<strong>in</strong>tracellular sta<strong>in</strong><strong>in</strong>g of cells accord<strong>in</strong>g to the<br />

manufactures <strong>in</strong>structions. Briefly, cells were<br />

fixed for 60 m<strong>in</strong> us<strong>in</strong>g the Fix/Perm buffer,<br />

washed once <strong>and</strong> sta<strong>in</strong>ed for 30 m<strong>in</strong> <strong>in</strong><br />

permeabilization buffer. The sta<strong>in</strong>ed cells<br />

were transferred to BD TruCOUNT tubes<br />

(BD Biosciences, CA, USA) for<br />

quantification of cells. An LSR II flow<br />

cytometer (BD Biosciences, CA, USA) was<br />

used for acquisition <strong>and</strong> data were analyzed<br />

us<strong>in</strong>g BD FACSDiva software (BD<br />

Biosciences, CA, USA). Live lymphocytes<br />

were <strong>in</strong>dentified based on FSC/SSC<br />

properties <strong>and</strong> gated as 7AAD - CD45 + . The<br />

absolute number of TCRβ + CD8 + ,<br />

TCRβ + CD4 + , TCRβ + CD4 + CD25 - ,<br />

TCRβ + CD4 + CD25 + ,<br />

TCRβ + CD4 + CD25 + FoxP3 + <strong>and</strong> TCRβ - CD19 +<br />

cells were calculated based on the number of<br />

acquired TruCOUNT beads related to the<br />

total number of beads per tube as provided by<br />

the manufacturer. The absolute number of the<br />

different cell populations <strong>in</strong> each biopsy was<br />

related to the biopsy weight. CD8 + T cell<br />

activation was analyzed directly ex vivo<br />

detect<strong>in</strong>g the percentage of CD107a + <strong>and</strong><br />

IFNγ + TCRβ + CD8 + T cells as well as the<br />

median fluorescence <strong>in</strong>tensity of granzyme B<br />

<strong>in</strong> TCRβ + CD8 + T cells, all compared to<br />

match<strong>in</strong>g isotype controls.<br />

Quantification of tumor-dra<strong>in</strong><strong>in</strong>g lymph<br />

node lymphocytes<br />

On day 0, BALB/c mice were <strong>in</strong>oculated<br />

subcutaneously <strong>in</strong> the right h<strong>in</strong>d foot pad with<br />

1x10 6 RenCa renal cell carc<strong>in</strong>oma cells. Mice<br />

were r<strong>and</strong>omized <strong>and</strong> ear-tagged prior to<br />

treatment <strong>and</strong> tumor volume was measured<br />

three times per week as the perpendicular<br />

diameters <strong>and</strong> calculated as described above.<br />

Intratumoral treatment with 50 µg IL-<strong>21</strong> was<br />

<strong>in</strong>itiated approximately on day 12 post tumor<br />

<strong>in</strong>oculation when the mean tumor volume ><br />

40 mm 3 <strong>and</strong> given 5x/week for 8 days. One<br />

day after the last IL-<strong>21</strong> <strong>in</strong>jection the popliteal<br />

55


lymph nodes (LNs) <strong>in</strong> the tumor-bear<strong>in</strong>g <strong>and</strong><br />

contralateral legs were removed. LNs were<br />

forced through a 40µm BD Falcon cell<br />

stra<strong>in</strong>er (BD Biosciences, CA, USA) us<strong>in</strong>g a<br />

pestle, <strong>and</strong> total viable cell numbers were<br />

counted on a ViCell automated cell viability<br />

counter (Beckman Coulter, CA, USA). Cells<br />

were sta<strong>in</strong>ed with appropriate antibodies for<br />

30 m<strong>in</strong>. <strong>and</strong> washed. Intracellular sta<strong>in</strong><strong>in</strong>g<br />

was done us<strong>in</strong>g a FoxP3 sta<strong>in</strong><strong>in</strong>g kit<br />

(eBioscience, CA, USA) accord<strong>in</strong>g to<br />

manufactures <strong>in</strong>structions described above.<br />

Acquisition was performed on a LSR II flow<br />

cytometer (BD Biosciences, CA, USA) <strong>and</strong><br />

data were analyzed us<strong>in</strong>g BD FACSDiva<br />

software (BD Biosciences, CA, USA). Cell<br />

frequencies obta<strong>in</strong>ed by flow cytometry were<br />

used to calculate the absolute number of cell<br />

subpopulations based on the total cell count.<br />

The follow<strong>in</strong>g gat<strong>in</strong>g strategy was used: FSC-<br />

H/FSC-A was used to elim<strong>in</strong>ate doublets <strong>and</strong><br />

FSC-A/SSC-A to gate live lymphocytes.<br />

TCRβ, CD4, CD25, CD8, <strong>and</strong> CD19 were<br />

used to discrim<strong>in</strong>ate ma<strong>in</strong> T cell populations<br />

<strong>and</strong> B cells. CD62L <strong>and</strong> CD44 were used to<br />

further discrim<strong>in</strong>ate between activated <strong>and</strong><br />

naive T cells. KI67 expression was used to<br />

identify proliferat<strong>in</strong>g cells compared to a<br />

match<strong>in</strong>g isotype control..<br />

Statistics<br />

Student’s t-test (two-tailed, assum<strong>in</strong>g equal<br />

variance), two-tailed Mann-Witney U-test or<br />

One-way ANOVA with Tukey’s post test was<br />

used for statistical evaluations of differences<br />

between treated <strong>and</strong> control groups as<br />

<strong>in</strong>dicated <strong>in</strong> figure legends. Mantel Cox Log<br />

Rank test was used to evaluate statistical<br />

differences <strong>in</strong> Kaplan-Meyer analyses <strong>and</strong><br />

correlation data were compared by the<br />

Spearman non-parametric correlation<br />

coefficient. Data are generally shown as<br />

mean±SEM unless otherwise noted.<br />

Bonferroni correction was used to correct for<br />

mass significance <strong>and</strong> a P value less than 0.05<br />

was considered statistically significant.<br />

Results<br />

Intratumoral adm<strong>in</strong>istration of IL-<strong>21</strong><br />

augments anti-tumor efficacy<br />

Previously, we have shown superior antitumor<br />

efficacy of subcutaneous (SC)<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> compared to<br />

<strong>in</strong>traperitoneal therapy <strong>in</strong> mice (25). In this<br />

study we wanted to <strong>in</strong>vestigate whether<br />

equivalent doses of IL-<strong>21</strong> given locally could<br />

further augment the anti-tumor effect of this<br />

cytok<strong>in</strong>e. Initially, we <strong>in</strong>oculated RenCa renal<br />

cell carc<strong>in</strong>oma cells subcutaneously <strong>in</strong><br />

syngeneic BALB/c mice. Intratumoral (IT)<br />

IL-<strong>21</strong> treatment was <strong>in</strong>itiated when tumors<br />

were established with a mean tumor volume<br />

above 40 mm 3 . Our results showed that 50 µg<br />

IL-<strong>21</strong> adm<strong>in</strong>istered <strong>in</strong>tratumorally potently<br />

<strong>in</strong>hibited growth of RenCa tumors compared<br />

to vehicle treatment (p


<strong>in</strong> the local tumor environment provides<br />

<strong>in</strong>creased anti-tumor activity.<br />

Intratumoral IL-<strong>21</strong> <strong>in</strong>creases long-term<br />

anti-tumor effect compared to<br />

subcutaneous adm<strong>in</strong>istration<br />

In light of the <strong>in</strong>creased efficacy on tumorgrowth<br />

<strong>in</strong>hibition of <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> compared to<br />

subcutaneous adm<strong>in</strong>istration we next<br />

<strong>in</strong>vestigated whether this effect would<br />

translate <strong>in</strong>to improved long-term survival.<br />

Domestic ethical guidel<strong>in</strong>es on animal<br />

experiments prohibit use of death as an<br />

endpo<strong>in</strong>t, thus Kaplan-Meyer survival<br />

analysis was conducted with the surrogate<br />

survival endpo<strong>in</strong>t ‘time to tumor size >1000<br />

mm 3 ’. BALB/c mice bear<strong>in</strong>g subcutaneous<br />

RenCa tumors were treated with subcutaneous<br />

or <strong>in</strong>tratumoral adm<strong>in</strong>istration of 50 µg IL-<strong>21</strong>.<br />

Here, significantly <strong>in</strong>creased survival time<br />

was observed <strong>in</strong> mice <strong>in</strong>jected <strong>in</strong>tratumorally<br />

with IL-<strong>21</strong> compared to both vehicle<br />

treatment (p


One section from each tumor-biopsy was<br />

sta<strong>in</strong>ed <strong>and</strong> the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g T<br />

cells was scored by count<strong>in</strong>g positively<br />

sta<strong>in</strong>ed cells <strong>in</strong> a stereologically measured<br />

area of <strong>in</strong>terest (AOI), which excluded<br />

peritumoral connective tissue <strong>and</strong> necrotic<br />

tissue. Representative pictures are shown of<br />

CD8 + (Figure 4a <strong>and</strong> b) <strong>and</strong> CD4 + (Figure 4c<br />

<strong>and</strong> d) sta<strong>in</strong>ed cells <strong>in</strong> IL-<strong>21</strong> <strong>and</strong> vehicle<br />

treated tumors. The density of CD8 + T cells<br />

was <strong>in</strong>creased 9.3 fold follow<strong>in</strong>g <strong>in</strong>tratumoral<br />

IL-<strong>21</strong> treatment compared to controls<br />

(p


We also quantified the density of<br />

CD4 + CD25 + FoxP3 + regulatory T cells (Tregs)<br />

on day 1 <strong>and</strong> 10 post treatment-start (Figure<br />

5d). On day 1, there was no difference <strong>in</strong> the<br />

density of Tregs between treatments.<br />

Interest<strong>in</strong>gly, on day 10 the density of Tregs<br />

decreased after <strong>in</strong>tratumoral adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> despite the <strong>in</strong>creased CD4 + CD25 - T cell<br />

density, whereas the density of Tregs after<br />

subcutaneous adm<strong>in</strong>istration correlated more<br />

with the <strong>in</strong>creased CD4 + CD25 - T cell density.<br />

Although these differences did not reach<br />

statistical significance they <strong>in</strong>dicate that<br />

<strong>in</strong>tratumoral adm<strong>in</strong>istration of IL-<strong>21</strong> can<br />

selectively <strong>in</strong>crease the density of certa<strong>in</strong><br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g T cell subsets <strong>in</strong> RenCa<br />

tumors, but not Tregs, considerably <strong>in</strong>creas<strong>in</strong>g<br />

the ratio of CD8 + T cells/Tregs.<br />

Intratumoral IL-<strong>21</strong> <strong>in</strong>creases IFNγ <strong>and</strong><br />

granzyme B expression, as well as<br />

degranulation of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells<br />

The significant effects on the densities of<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g T cells led us to exam<strong>in</strong>e<br />

whether these <strong>in</strong>filtrat<strong>in</strong>g T cells also showed<br />

<strong>in</strong>creased activation follow<strong>in</strong>g <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration of IL-<strong>21</strong>. In a similar<br />

experiment to the one described <strong>in</strong> figure 1b,<br />

we sta<strong>in</strong>ed TILs from RenCa tumors for IFNγ,<br />

granzyme B, <strong>and</strong> the degranulation-associated<br />

molecule CD107a on day 1, 5 <strong>and</strong> 10 post<br />

treatment-start <strong>and</strong> analyzed the expression of<br />

these molecules by flow cytometry. TILs<br />

were gated <strong>in</strong>to CD45 + TCRβ + CD8 + T cells<br />

<strong>and</strong> <strong>in</strong> figure 6a representative FACS plots<br />

from day 5 post treatment-start show the<br />

expression of the three molecules after<br />

vehicle, subcutaneous <strong>and</strong> <strong>in</strong>tratumoral IL-<strong>21</strong><br />

treatment. On day 1, CD107a expression was<br />

similar between treatments <strong>and</strong> m<strong>in</strong>or<br />

<strong>in</strong>creases were observed <strong>in</strong> the expression of<br />

granzyme B <strong>and</strong> IFNγ after <strong>in</strong>tratumoral IL-<br />

<strong>21</strong>, but no significant differences (Figure 6b).<br />

On day 5, subcutaneous adm<strong>in</strong>istration of IL-<br />

<strong>21</strong> showed m<strong>in</strong>or <strong>in</strong>creases <strong>in</strong> CD107a,<br />

granzyme B <strong>and</strong> IFNγ expression, however<br />

compared to both vehicle <strong>and</strong> subcutaneous<br />

adm<strong>in</strong>istration, <strong>in</strong>tratumoral adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> significantly <strong>in</strong>creased the percentage<br />

of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells express<strong>in</strong>g<br />

CD107a <strong>and</strong> IFNγ (p


compared to LNs dra<strong>in</strong><strong>in</strong>g vehicle-treated<br />

tumors (Figure 7a). The average number of<br />

cells <strong>in</strong> the tumor-dra<strong>in</strong><strong>in</strong>g LNs <strong>in</strong>creased<br />

from 2.1x10 6 <strong>in</strong> vehicle to 5.7x10 6 <strong>in</strong> IL-<strong>21</strong><br />

treated mice (p


Previously, we have used IL-<strong>21</strong> prote<strong>in</strong><br />

adm<strong>in</strong>istered by conventional routes <strong>and</strong><br />

shown that subcutaneous adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> had anti-tumor activity <strong>and</strong> was able to<br />

<strong>in</strong>crease the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells (25). Here, we have <strong>in</strong>vestigated<br />

whether local adm<strong>in</strong>istration of IL-<strong>21</strong> further<br />

<strong>in</strong>creases the anti-tumor effects of IL-<strong>21</strong><br />

compared to systemic treatment. The cl<strong>in</strong>ical<br />

applicability of local therapy is more limited<br />

than systemic treatment, but is valid e.g. <strong>in</strong><br />

unresectable metastasis <strong>in</strong> melanoma or as<br />

adjuvant therapy <strong>in</strong> association with surgery,<br />

<strong>and</strong> local therapy lowers the risk of systemic<br />

adverse effects. Results with IL-2, which is<br />

approved for the treatment of renal cell<br />

carc<strong>in</strong>oma <strong>and</strong> metastatic melanoma, have<br />

shown improved responses after <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration <strong>in</strong> metastatic sk<strong>in</strong> disease of<br />

melanoma (28) <strong>and</strong> less severe side effects<br />

than systemic treatment (26). This <strong>in</strong>dicates<br />

that local therapy is valid <strong>in</strong> certa<strong>in</strong> cl<strong>in</strong>ical<br />

sett<strong>in</strong>gs <strong>and</strong> po<strong>in</strong>ts out the rationale for<br />

explor<strong>in</strong>g this route of adm<strong>in</strong>istration also for<br />

IL-<strong>21</strong>.<br />

In this study, we demonstrate the first results<br />

us<strong>in</strong>g local adm<strong>in</strong>istration of IL-<strong>21</strong> prote<strong>in</strong> <strong>in</strong><br />

two different precl<strong>in</strong>ical solid tumor models –<br />

RenCa renal cell carc<strong>in</strong>oma <strong>and</strong> B16<br />

melanoma. Our results show that <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> potently <strong>in</strong>hibits B16<br />

<strong>and</strong> RenCa tumor growth lead<strong>in</strong>g to<br />

prolonged long-term survival, particularly <strong>in</strong><br />

the RenCa model, compared to a similar dose<br />

by subcutaneous adm<strong>in</strong>istration. These results<br />

<strong>in</strong>dicate that IL-<strong>21</strong> has improved anti-tumor<br />

effects when present locally <strong>in</strong> the tumor<br />

environment <strong>and</strong> that local IL-<strong>21</strong> therapy<br />

could improve patient outcome, where it is<br />

applicable.<br />

Generally, our data showed that RenCa<br />

carc<strong>in</strong>omas had <strong>in</strong>creased responses to IL-<strong>21</strong><br />

therapy compared to B16 melanomas, which<br />

is consistent with the literature where RenCa<br />

cells have generally been found to be more<br />

immunogenic compared to B16 cells (29;30).<br />

Specifically, B16 melanomas have been<br />

described to have very poor immunogenic<br />

characteristics with low MHC expression <strong>and</strong><br />

no transporters associated with antigen<br />

process<strong>in</strong>g (TAP)-1 expression (reviewed <strong>in</strong><br />

31). We have previously shown that the<br />

density of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells was<br />

approximately 10-fold higher <strong>in</strong> RenCa<br />

compared to B16 tumors (25), <strong>and</strong> theses<br />

f<strong>in</strong>d<strong>in</strong>gs are supported by the difference <strong>in</strong><br />

MHC class I expression on our B16 <strong>and</strong><br />

RenCa cells (Supplementary figure 1). Thus,<br />

adaptive immune responses are likely to have<br />

a greater role <strong>in</strong> immune responses aga<strong>in</strong>st<br />

RenCa tumors compared to B16 tumors.<br />

So far, the anti-tumor activity of IL-<strong>21</strong> has<br />

ma<strong>in</strong>ly been assigned to either NK cells,<br />

CD8 + T cells or both depend<strong>in</strong>g on the<br />

specific models used (<strong>21</strong>). Previously we have<br />

shown that CD8 + T cells were the ma<strong>in</strong><br />

mediators of IL-<strong>21</strong> anti-tumor activity us<strong>in</strong>g<br />

B16 melanomas, whereas NK cells were of<br />

less importance (25). Here, we have extended<br />

these data to <strong>in</strong>tratumoral <strong>in</strong>jection of IL-<strong>21</strong><br />

where the anti-tumor activity aga<strong>in</strong>st B16<br />

melanomas was lost <strong>in</strong> athymic mice <strong>and</strong> <strong>in</strong><br />

β2m-deficient mice. The mechanism of the<br />

CD8 + T cell-dependent anti-tumor activity of<br />

IL-<strong>21</strong> is not understood <strong>in</strong> detail; IL-<strong>21</strong><br />

<strong>in</strong>creases cytotoxicity <strong>and</strong> IFNγ production<br />

from CD8 + T cells <strong>in</strong> concert with other<br />

stimuli (32-34), <strong>and</strong> co-stimulates CD8 + T<br />

cell proliferation <strong>and</strong> antigen-specific CD8 + T<br />

cell expansion <strong>and</strong> survival (35-38). However,<br />

these data have ma<strong>in</strong>ly been generated <strong>in</strong> vitro<br />

by stimulation of CD8 + T cells from e.g.<br />

spleen or blood, <strong>and</strong> it rema<strong>in</strong>s to be shown<br />

whether IL-<strong>21</strong> similarly can activate CD8 + T<br />

cells <strong>in</strong> vivo <strong>and</strong> more importantly those<br />

<strong>in</strong>filtrat<strong>in</strong>g tumors. Here, we found that IL-<strong>21</strong><br />

<strong>in</strong>creased the surface expression of CD107a,<br />

<strong>and</strong> <strong>in</strong>tracellular expression of granzyme B<br />

<strong>and</strong> IFNγ <strong>in</strong> RenCa tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells analyzed directly ex vivo. Increased<br />

expression of granzyme B <strong>and</strong> IFNγ <strong>in</strong> CD8 +<br />

T cells have both been found <strong>in</strong> IL-<strong>21</strong> cl<strong>in</strong>ical<br />

trials (22;24), suggest<strong>in</strong>g that these molecules<br />

are very relevant markers of IL-<strong>21</strong> activity.<br />

CD107a resid<strong>in</strong>g <strong>in</strong> cytotoxic granules is<br />

exposed on the cell surface upon<br />

61


degranulation <strong>and</strong> is associated with tumor<br />

cytolytic activity (39). Therefore, our f<strong>in</strong>d<strong>in</strong>gs<br />

suggest that IL-<strong>21</strong> stimulates cytolytic activity<br />

directly <strong>in</strong> tumors. See<strong>in</strong>g that IL-<strong>21</strong> activates<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>in</strong> vivo is<br />

encourag<strong>in</strong>g, <strong>and</strong> that it does so even more<br />

when given locally supports the use of<br />

<strong>in</strong>tratumoral adm<strong>in</strong>istration.<br />

Although IL-<strong>21</strong> can augment expansion,<br />

activity <strong>and</strong> survival of CD8 + T cells, these<br />

cells still need to get <strong>in</strong>to contact with tumor<br />

cells <strong>and</strong> be present <strong>in</strong> proper numbers to<br />

mediate effective kill<strong>in</strong>g. Previously, we have<br />

shown that subcutaneous adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> <strong>in</strong>creased the density of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells, which also have<br />

been <strong>in</strong>dicated by others (40;41). In this<br />

study, we found that <strong>in</strong>tratumoral IL-<strong>21</strong><br />

therapy <strong>in</strong>creased the density of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells even further<br />

compared to subcutaneous adm<strong>in</strong>istration <strong>in</strong><br />

both B16 <strong>and</strong> RenCa tumors <strong>and</strong> <strong>in</strong>creased the<br />

density of CD4 + CD25 - T cells, suggest<strong>in</strong>g that<br />

part of the <strong>in</strong>creased anti-tumor activity of<br />

<strong>in</strong>tratumoral IL-<strong>21</strong> may be ascribed to<br />

<strong>in</strong>creased TIL numbers. This notion is further<br />

supported by our f<strong>in</strong>d<strong>in</strong>g that the density of<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells <strong>and</strong> to less<br />

extent CD4 + T cells correlated with tumor<br />

<strong>in</strong>hibition. Furthermore, these data suggest<br />

that the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells might be a relevant biological marker of<br />

IL-<strong>21</strong> anti-tumor activity.<br />

The mechanism by which IL-<strong>21</strong> <strong>in</strong>creases the<br />

density of tumor-<strong>in</strong>filtrat<strong>in</strong>g T cells is still not<br />

clear, <strong>and</strong> could have several explanations.<br />

First, IL-<strong>21</strong> may <strong>in</strong>crease the expansion of<br />

antigen-specific CD8 + T cells (33;35;37;38),<br />

which could produce a greater number of<br />

tumor-reactive cells <strong>in</strong>filtrat<strong>in</strong>g the tumor.<br />

Our f<strong>in</strong>d<strong>in</strong>gs that tumor-dra<strong>in</strong><strong>in</strong>g LNs were<br />

enlarged <strong>in</strong> response to <strong>in</strong>tratumoral IL-<strong>21</strong><br />

treatment with <strong>in</strong>creased proliferation of<br />

activated T cells is supportive of this option,<br />

but the <strong>in</strong>creased LN activation <strong>and</strong> tumor<br />

<strong>in</strong>filtration rema<strong>in</strong>s to be directly l<strong>in</strong>ked.<br />

Second, the ability of IL-<strong>21</strong> to susta<strong>in</strong><br />

survival of both CD4 + <strong>and</strong> CD8 + T cells <strong>in</strong><br />

vitro (36) <strong>and</strong> CD8 + T cells <strong>in</strong> vivo (37) could<br />

mediate an <strong>in</strong>crease <strong>in</strong> the long-term tumor T<br />

cell densities. However, we observed a<br />

strik<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> T cell densities already 5<br />

days post treatment-start, mak<strong>in</strong>g it less likely<br />

that <strong>in</strong>creased survival was the ma<strong>in</strong><br />

mechanism, <strong>and</strong> rather po<strong>in</strong>ts to an active<br />

response. Third, IL-<strong>21</strong> has been shown to<br />

mediate the release of soluble factors <strong>in</strong>volved<br />

<strong>in</strong> lymphocyte traffick<strong>in</strong>g such as chemok<strong>in</strong>e<br />

CXC motif lig<strong>and</strong> (CXCL)9, CXCL10 <strong>and</strong><br />

CXCL11 (40) <strong>and</strong> C-C motif lig<strong>and</strong> (CCL)20<br />

(42), <strong>and</strong> shown up-regulation of relevant<br />

chemok<strong>in</strong>e receptors <strong>in</strong> <strong>cancer</strong> patients (24),<br />

<strong>in</strong>dicat<strong>in</strong>g that IL-<strong>21</strong> could <strong>in</strong>crease T cell<br />

chemotaxis, but direct evidence of this still<br />

rema<strong>in</strong>s. F<strong>in</strong>ally, whether or not IL-<strong>21</strong> <strong>in</strong> it<br />

self could act as a T cell attractant is another<br />

possibility but this rema<strong>in</strong>s speculative.<br />

Interest<strong>in</strong>gly, despite <strong>in</strong>creased densities of<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + <strong>and</strong> CD4 + CD25 - T<br />

cells, the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g Tregs<br />

rather decreased follow<strong>in</strong>g <strong>in</strong>tratumoral IL-<strong>21</strong><br />

treatment <strong>in</strong> RenCa tumors. This <strong>in</strong>dicates<br />

that IL-<strong>21</strong> can selectively <strong>in</strong>crease the density<br />

of certa<strong>in</strong> T cells <strong>in</strong> tumors without <strong>in</strong>creas<strong>in</strong>g<br />

the density of Tregs. These f<strong>in</strong>d<strong>in</strong>gs are<br />

supported by studies show<strong>in</strong>g that IL-<strong>21</strong> has<br />

no direct effects on Tregs (43;44). Also,<br />

recent data suggest that the percentage of<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g Tregs is decreased <strong>in</strong> IL-<strong>21</strong><br />

secret<strong>in</strong>g tumors (45). It is not known what<br />

the mechanism beh<strong>in</strong>d this selectivity is, but<br />

IL-<strong>21</strong> has been suggested to suppress the<br />

expression of FoxP3 (46), <strong>and</strong> the number of<br />

FoxP3 + cells <strong>in</strong> culture (38). Although we did<br />

observe a lower FoxP3 expression <strong>in</strong> the<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g CD4 + CD25 + T cell<br />

population follow<strong>in</strong>g <strong>in</strong>tratumoral IL-<strong>21</strong><br />

treatment, this was not significant (data not<br />

shown).<br />

Nonetheless, our f<strong>in</strong>d<strong>in</strong>g that <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong>creased the density<br />

of CD8 + T cells <strong>in</strong> RenCa tumors, while the<br />

density of Tregs decreased, suggests a highly<br />

<strong>in</strong>creased tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cell/Treg<br />

ratio. In the cl<strong>in</strong>ic, prognostic evaluations of<br />

TILs have shown that not only the level of<br />

62


CD8 + T cell <strong>in</strong>filtration, but especially a high<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cell/Treg ratio was<br />

a significant <strong>in</strong>dependent prognostic factor of<br />

improved overall survival (4;7).<br />

In general, our data suggest that IL-<strong>21</strong> has<br />

improved anti-tumor activity when present <strong>in</strong><br />

the local tumor environment. This is<br />

supported by studies of IL-<strong>21</strong>-express<strong>in</strong>g<br />

tumors where tumors are unable develop<br />

(40;47-49). Also, we found that <strong>in</strong> animals<br />

bear<strong>in</strong>g subcutaneous tumors on both flanks,<br />

the tumors <strong>in</strong>jected <strong>in</strong>tratumorally with IL-<strong>21</strong><br />

grew slower than contralateral tumors. Our<br />

f<strong>in</strong>d<strong>in</strong>g that local adm<strong>in</strong>istration of IL-<strong>21</strong><br />

enlarged tumor-dra<strong>in</strong><strong>in</strong>g LNs, <strong>in</strong>creased the<br />

number of naïve CD4 + <strong>and</strong> CD8 + T cells <strong>and</strong><br />

the proliferation of activated T cells, is<br />

additional evidence that IL-<strong>21</strong> benefits the<br />

local tumor environment.<br />

Although IL-<strong>21</strong> can co-stimulate proliferation<br />

of naïve T cells (33;50), we ma<strong>in</strong>ly found<br />

<strong>in</strong>creased proliferation of activated T cells,<br />

po<strong>in</strong>t<strong>in</strong>g to non-proliferative effects of IL-<strong>21</strong><br />

on LN T cells. IL-<strong>21</strong>-<strong>in</strong>duced chemok<strong>in</strong>e<br />

secretion (40;42) could locally <strong>in</strong>crease the<br />

recruitment of T cells to the dra<strong>in</strong><strong>in</strong>g LN.<br />

Also, IL-<strong>21</strong> has been shown to ma<strong>in</strong>ta<strong>in</strong> T cell<br />

expression of CD62L <strong>and</strong> CCR7 (51;52),<br />

thereby keep<strong>in</strong>g T cells <strong>in</strong> a more precursorlike<br />

state which may favor their retention <strong>in</strong><br />

secondary lymphoid organs or simply skew<br />

the distribution toward more CD62L + cells.<br />

Still, it rema<strong>in</strong>s to be fully clarified what the<br />

causative mechanism is <strong>and</strong> whether this<br />

<strong>in</strong>crease <strong>in</strong> naïve T cells <strong>in</strong> dra<strong>in</strong><strong>in</strong>g LNs has<br />

any impact on the anti-tumor response.<br />

Similarly, B cell numbers also significantly<br />

<strong>in</strong>creased <strong>in</strong> tumor-dra<strong>in</strong><strong>in</strong>g LNs follow<strong>in</strong>g<br />

IL-<strong>21</strong> treatment, <strong>and</strong> particularly naïve B cells<br />

(data not shown). But aga<strong>in</strong>, proliferation was<br />

ma<strong>in</strong>ly seen <strong>in</strong> activated B cells, show<strong>in</strong>g that<br />

IL-<strong>21</strong> also has both proliferative <strong>and</strong> nonproliferative<br />

effects on LN B cells. IL-<strong>21</strong> costimulates<br />

B cell proliferation, but <strong>in</strong>duces B<br />

cell apoptosis without proper co-stimulation<br />

(53), <strong>in</strong>dicat<strong>in</strong>g the presence of B cellactivat<strong>in</strong>g<br />

antigens <strong>in</strong> the RenCa tumor<br />

model. This also po<strong>in</strong>ts to a possible role for<br />

B cells <strong>in</strong> the anti-tumor activity of IL-<strong>21</strong>,<br />

which has previously been suggested (54-56),<br />

but this rema<strong>in</strong>s to be clarified <strong>in</strong> the B16 <strong>and</strong><br />

RenCa models <strong>and</strong> was beyond the scope of<br />

this paper.<br />

In conclusion, we have shown that compared<br />

to subcutaneous adm<strong>in</strong>istration, <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> prote<strong>in</strong> has superior<br />

anti-tumor activity, which may be ascribed to<br />

<strong>in</strong>creased activation of tumor-<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells as well as <strong>in</strong>creased density of<br />

tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells, with the latter<br />

be<strong>in</strong>g strongly associated with tumor growth<br />

<strong>in</strong>hibition. Overall, our data warrant the<br />

cl<strong>in</strong>ical <strong>in</strong>vestigation of local IL-<strong>21</strong> therapy<br />

<strong>and</strong> suggest that the density of tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cell is a relevant<br />

biological marker of IL-<strong>21</strong> anti-tumor effect.<br />

Acknowledgements<br />

This work was funded by Novo Nordisk A/S<br />

<strong>and</strong> we would like to thank Birte Jørgensen,<br />

Heidi W<strong>in</strong>ther <strong>and</strong> Tonja Lyngse Jørgensen<br />

for technical assistance with the experiments.<br />

References<br />

1. Clemente CG, Mihm MC, Jr., Bufal<strong>in</strong>o R, et al.<br />

Prognostic value of tumor <strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes <strong>in</strong> the vertical growth phase of<br />

primary cutaneous melanoma. Cancer.<br />

1996;77:1303-1310.<br />

2. Galon J, Costes A, Sanchez-Cabo F, et al. Type,<br />

density, <strong>and</strong> location of immune cells with<strong>in</strong><br />

human colorectal tumors predict cl<strong>in</strong>ical<br />

outcome. Science. 2006;313:1960-1964.<br />

3. Pages F, Berger A, Camus M, et al. Effector<br />

memory T cells, early metastasis, <strong>and</strong> survival <strong>in</strong><br />

colorectal <strong>cancer</strong>. N Engl J Med.<br />

2005;353:2654-2666.<br />

4. Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance<br />

of regulatory <strong>and</strong> cytotoxic T cells is associated<br />

with prognosis of hepatocellular carc<strong>in</strong>oma after<br />

resection. J Cl<strong>in</strong> Oncol. 2007;25:2586-2593.<br />

5. Naito Y, Saito K, Shiiba K, et al. CD8+ T cells<br />

<strong>in</strong>filtrated with<strong>in</strong> <strong>cancer</strong> cell nests as a<br />

63


prognostic factor <strong>in</strong> human colorectal <strong>cancer</strong>.<br />

Cancer Res. 1998;58:3491-3494.<br />

6. Piersma SJ, Jordanova ES, van Poelgeest MI, et<br />

al. High number of <strong>in</strong>traepithelial CD8+ tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes is associated with the<br />

absence of lymph node metastases <strong>in</strong> patients<br />

with large early-stage cervical <strong>cancer</strong>. Cancer<br />

Res. 2007;67:354-361.<br />

7. Sato E, Olson SH, Ahn J, et al. Intraepithelial<br />

CD8+ tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes <strong>and</strong> a high<br />

CD8+/regulatory T cell ratio are associated with<br />

favorable prognosis <strong>in</strong> ovarian <strong>cancer</strong>. Proc Natl<br />

Acad Sci U S A. 2005;102:18538-18543.<br />

8. Sharma P, Shen Y, Wen S, et al. CD8 tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

lymphocytes are predictive of<br />

survival <strong>in</strong> muscle-<strong>in</strong>vasive urothelial<br />

carc<strong>in</strong>oma. Proc Natl Acad Sci U S A.<br />

2007;104:3967-3972.<br />

9. Schumacher K, Haensch W, Roefzaad C, et al.<br />

Prognostic significance of activated CD8(+) T<br />

cell <strong>in</strong>filtrations with<strong>in</strong> esophageal carc<strong>in</strong>omas.<br />

Cancer Res. 2001;61:3932-3936.<br />

10. Zhang L, Conejo-Garcia JR, Katsaros D, et al.<br />

Intratumoral T cells, recurrence, <strong>and</strong> survival <strong>in</strong><br />

epithelial ovarian <strong>cancer</strong>. N Engl J Med.<br />

2003;348:203-<strong>21</strong>3.<br />

11. Rosenberg SA, Restifo NP, Yang JC, et al.<br />

Adoptive cell transfer: a cl<strong>in</strong>ical path to<br />

effective <strong>cancer</strong> <strong>immunotherapy</strong>. Nat Rev<br />

Cancer. 2008;8:299-308.<br />

12. Gajewski TF, Meng Y, Blank C, et al. Immune<br />

resistance orchestrated by the tumor<br />

microenvironment. Immunol Rev.<br />

2006;<strong>21</strong>3:131-145.<br />

13. Parrish-Novak J, Dillon SR, Nelson A, et al.<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> <strong>and</strong> its receptor are <strong>in</strong>volved <strong>in</strong><br />

NK cell expansion <strong>and</strong> regulation of lymphocyte<br />

function. Nature. 2000;408:57-63.<br />

14. Bryant VL, Ma CS, Avery DT, et al. Cytok<strong>in</strong>emediated<br />

regulation of human B cell<br />

differentiation <strong>in</strong>to Ig-secret<strong>in</strong>g cells:<br />

predom<strong>in</strong>ant role of IL-<strong>21</strong> produced by<br />

CXCR5+ T follicular helper cells. J Immunol.<br />

2007;179:8180-8190.<br />

15. Wei L, Laurence A, Elias KM, et al. IL-<strong>21</strong> is<br />

produced by Th17 cells <strong>and</strong> drives IL-17<br />

production <strong>in</strong> a STAT3-dependent manner. J<br />

Biol Chem. 2007;282:34605-34610.<br />

16. Wurster AL, Rodgers VL, Satoskar AR, et al.<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong> is a T helper (Th) cell 2 cytok<strong>in</strong>e<br />

that specifically <strong>in</strong>hibits the differentiation of<br />

naive Th cells <strong>in</strong>to <strong>in</strong>terferon gamma-produc<strong>in</strong>g<br />

Th1 cells. J Exp Med. 2002;196:969-977.<br />

17. Chtanova T, Tangye SG, Newton R, et al. T<br />

follicular helper cells express a dist<strong>in</strong>ctive<br />

transcriptional profile, reflect<strong>in</strong>g their role as<br />

non-Th1/Th2 effector cells that provide help for<br />

B cells. J Immunol. 2004;173:68-78.<br />

18. Coquet JM, Kyparissoudis K, Pellicci DG, et al.<br />

IL-<strong>21</strong> Is Produced by NKT Cells <strong>and</strong> Modulates<br />

NKT Cell Activation <strong>and</strong> Cytok<strong>in</strong>e Production. J<br />

Immunol. 2007;178:2827-2834.<br />

19. Harada M, Magara-Koyanagi K, Watarai H, et<br />

al. IL-<strong>21</strong>-<strong>in</strong>duced Bepsilon cell apoptosis<br />

mediated by natural killer T cells suppresses IgE<br />

responses. J Exp Med. 2006;203:2929-2937.<br />

20. Spolski R, Leonard WJ. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: basic<br />

biology <strong>and</strong> implications for <strong>cancer</strong> <strong>and</strong><br />

autoimmunity. Annu Rev Immunol. 2008;26:57-<br />

79.<br />

<strong>21</strong>. Leonard WJ, Spolski R. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: a<br />

modulator of lymphoid proliferation, apoptosis<br />

<strong>and</strong> differentiation. Nat Rev Immunol.<br />

2005;5:688-698.<br />

22. Davis ID, Brady B, Kefford RF, et al. Cl<strong>in</strong>ical<br />

<strong>and</strong> biological efficacy of recomb<strong>in</strong>ant human<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with stage IV<br />

malignant melanoma without prior treatment: a<br />

phase IIa trial. Cl<strong>in</strong> Cancer Res. 2009;15:<strong>21</strong>23-<br />

<strong>21</strong>29.<br />

23. Davis ID, Skrumsager BK, Cebon J, et al. An<br />

open-label, two-arm, phase I trial of<br />

recomb<strong>in</strong>ant human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients<br />

with metastatic melanoma. Cl<strong>in</strong> Cancer Res.<br />

2007;13:3630-3636.<br />

24. Frederiksen KS, Lundsgaard D, Freeman JA, et<br />

al. IL-<strong>21</strong> <strong>in</strong>duces <strong>in</strong> vivo immune activation of<br />

NK cells <strong>and</strong> CD8(+) T cells <strong>in</strong> patients with<br />

metastatic melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma.<br />

Cancer Immunol Immunother. 2008;57:1439-<br />

1449.<br />

25. Sondergaard H, Frederiksen KS, Thygesen P, et<br />

al. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases the density<br />

64


of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8+ T cells <strong>and</strong> <strong>in</strong>hibits<br />

the growth of syngeneic tumors. Cancer<br />

Immunol Immunother. 2007;56:1417-1428.<br />

26. Den OW, Jacobs JJ, Battermann JJ, et al. Local<br />

therapy of <strong>cancer</strong> with free IL-2. Cancer<br />

Immunol Immunother. 2008;57:931-950.<br />

27. Skak K, Kragh M, Hausman D, et al. <strong>Interleuk<strong>in</strong></strong><br />

<strong>21</strong>: comb<strong>in</strong>ation strategies for <strong>cancer</strong> therapy.<br />

Nat Rev Drug Discov. 2008;7:231-240.<br />

28. Radny P, Caroli UM, Bauer J, et al. Phase II trial<br />

of <strong>in</strong>tralesional therapy with <strong>in</strong>terleuk<strong>in</strong>-2 <strong>in</strong><br />

soft-tissue melanoma metastases. Br J Cancer.<br />

2003;89:1620-1626.<br />

29. Scheffer SR, Nave H, Korangy F, et al.<br />

Apoptotic, but not necrotic, tumor cell vacc<strong>in</strong>es<br />

<strong>in</strong>duce a potent immune response <strong>in</strong> vivo. Int J<br />

Cancer. 2003;103:205-<strong>21</strong>1.<br />

30. Krup OC, Kroll I, Bose G, et al. Cytok<strong>in</strong>e depot<br />

formulations as adjuvants for tumor vacc<strong>in</strong>es. I.<br />

Liposome-encapsulated IL-2 as a depot<br />

formulation. J Immunother. 1999;22:525-538.<br />

31. Overwijk WW. Break<strong>in</strong>g tolerance <strong>in</strong> <strong>cancer</strong><br />

<strong>immunotherapy</strong>: time to ACT. Curr Op<strong>in</strong><br />

Immunol. 2005;17:187-194.<br />

32. Kasaian MT, Whitters MJ, Carter LL, et al. IL-<br />

<strong>21</strong> limits NK cell responses <strong>and</strong> promotes<br />

antigen-specific T cell activation: a mediator of<br />

the transition from <strong>in</strong>nate to adaptive immunity.<br />

Immunity. 2002;16:559-569.<br />

33. Zeng R, Spolski R, F<strong>in</strong>kelste<strong>in</strong> SE, et al.<br />

Synergy of IL-<strong>21</strong> <strong>and</strong> IL-15 <strong>in</strong> regulat<strong>in</strong>g CD8+<br />

T cell expansion <strong>and</strong> function. J Exp Med.<br />

2005;201:139-148.<br />

34. Liu S, Lizee G, Lou Y, et al. IL-<strong>21</strong> synergizes<br />

with IL-7 to augment expansion <strong>and</strong> anti-tumor<br />

function of cytotoxic T cells. Int Immunol.<br />

2007;19:1<strong>21</strong>3-12<strong>21</strong>.<br />

35. Li Y, Bleakley M, Yee C. IL-<strong>21</strong> <strong>in</strong>fluences the<br />

frequency, phenotype, <strong>and</strong> aff<strong>in</strong>ity of the<br />

antigen-specific CD8 T cell response. J<br />

Immunol. 2005;175:2261-2269.<br />

36. Ostiguy V, Allard EL, Marquis M, et al. IL-<strong>21</strong><br />

promotes T lymphocyte survival by activat<strong>in</strong>g<br />

the phosphatidyl<strong>in</strong>ositol-3 k<strong>in</strong>ase signal<strong>in</strong>g<br />

cascade. J Leukoc Biol. 2007.<br />

37. Moroz A, Eppolito C, Li Q, et al. IL-<strong>21</strong><br />

enhances <strong>and</strong> susta<strong>in</strong>s CD8+ T cell responses to<br />

achieve durable tumor immunity: comparative<br />

evaluation of IL-2, IL-15, <strong>and</strong> IL-<strong>21</strong>. J Immunol.<br />

2004;173:900-909.<br />

38. Li Y, Yee C. IL-<strong>21</strong> mediated Foxp3 suppression<br />

leads to enhanced generation of antigen-specific<br />

CD8+ cytotoxic T lymphocytes. Blood.<br />

2008;111:229-235.<br />

39. Rubio V, Stuge TB, S<strong>in</strong>gh N, et al. Ex vivo<br />

identification, isolation <strong>and</strong> analysis of tumorcytolytic<br />

T cells. Nat Med. 2003;9:1377-1382.<br />

40. Di Carlo E, Comes A, Orengo AM, et al. IL-<strong>21</strong><br />

<strong>in</strong>duces tumor rejection by specific CTL <strong>and</strong><br />

IFN-gamma-dependent CXC chemok<strong>in</strong>es <strong>in</strong><br />

syngeneic mice. J Immunol. 2004;172:1540-<br />

1547.<br />

41. Furukawa J, Hara I, Nagai H, et al. <strong>Interleuk<strong>in</strong></strong>-<br />

<strong>21</strong> gene transfection <strong>in</strong>to mouse bladder <strong>cancer</strong><br />

cells results <strong>in</strong> tumor rejection through the<br />

cytotoxic T lymphocyte response. J Urol.<br />

2006;176:1198-1203.<br />

42. Caruso R, F<strong>in</strong>a D, Peluso I, et al. A functional<br />

role for <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> promot<strong>in</strong>g the<br />

synthesis of the T-cell chemoattractant, MIP-<br />

3alpha, by gut epithelial cells. Gastroenterology.<br />

2007;132:166-175.<br />

43. Wuest TY, Willette-Brown J, Durum SK, et al.<br />

The <strong>in</strong>fluence of IL-2 family cytok<strong>in</strong>es on<br />

activation <strong>and</strong> function of naturally occurr<strong>in</strong>g<br />

regulatory T cells. J Leukoc Biol. 2008;84:973-<br />

980.<br />

44. Peluso I, Fant<strong>in</strong>i MC, F<strong>in</strong>a D, et al. IL-<strong>21</strong><br />

counteracts the regulatory T cell-mediated<br />

suppression of human CD4+ T lymphocytes. J<br />

Immunol. 2007;178:732-739.<br />

45. Kim-Schulze S, Kim HS, Fan Q, et al. Local IL-<br />

<strong>21</strong> Promotes the Therapeutic Activity of<br />

Effector T cells by Decreas<strong>in</strong>g Regulatory T<br />

Cells With<strong>in</strong> the Tumor Microenvironment. Mol<br />

Ther. 2008.<br />

46. Nurieva R, Yang XO, Mart<strong>in</strong>ez G, et al.<br />

Essential autocr<strong>in</strong>e regulation by IL-<strong>21</strong> <strong>in</strong> the<br />

generation of <strong>in</strong>flammatory T cells. Nature.<br />

2007;448:480-483.<br />

47. Ma HL, Whitters MJ, Konz RF, et al. IL-<strong>21</strong><br />

activates both <strong>in</strong>nate <strong>and</strong> adaptive immunity to<br />

65


generate potent antitumor responses that require<br />

perfor<strong>in</strong> but are <strong>in</strong>dependent of IFN-gamma. J<br />

Immunol. 2003;171:608-615.<br />

48. Ugai S, Shimozato O, Kawamura K, et al.<br />

Expression of the <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> gene <strong>in</strong> mur<strong>in</strong>e<br />

colon carc<strong>in</strong>oma cells generates systemic<br />

immunity <strong>in</strong> the <strong>in</strong>oculated hosts. Cancer Gene<br />

Ther. 2003;10:187-192.<br />

49. Ugai S, Shimozato O, Yu L, et al. Transduction<br />

of the IL-<strong>21</strong> <strong>and</strong> IL-23 genes <strong>in</strong> human<br />

pancreatic carc<strong>in</strong>oma cells produces natural<br />

killer cell-dependent <strong>and</strong> -<strong>in</strong>dependent antitumor<br />

effects. Cancer Gene Ther. 2003;10:771-778.<br />

50. Gagnon J, Ramanathan S, Leblanc C, et al. IL-6,<br />

<strong>in</strong> synergy with IL-7 or IL-15, stimulates TCR<strong>in</strong>dependent<br />

proliferation <strong>and</strong> functional<br />

differentiation of CD8+ T lymphocytes. J<br />

Immunol. 2008;180:7958-7968.<br />

51. H<strong>in</strong>richs CS, Spolski R, Paulos CM, et al. IL-2<br />

<strong>and</strong> IL-<strong>21</strong> confer oppos<strong>in</strong>g differentiation<br />

programs to CD8+ T cells for adoptive<br />

<strong>immunotherapy</strong>. Blood. 2008;111:5326-5333.<br />

52. Ferrari-Lacraz S, Chicheportiche R, Schneiter G,<br />

et al. IL-<strong>21</strong> promotes survival <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>s a<br />

naive phenotype <strong>in</strong> human CD4+ T<br />

lymphocytes. Int Immunol. 2008;20:1009-1018.<br />

53. J<strong>in</strong> H, Carrio R, Yu A, et al. Dist<strong>in</strong>ct activation<br />

signals determ<strong>in</strong>e whether IL-<strong>21</strong> <strong>in</strong>duces B cell<br />

costimulation, growth arrest, or Bim-dependent<br />

apoptosis. J Immunol. 2004;173:657-665.<br />

54. Iuchi T, Teitz-Tennenbaum S, Huang J, et al.<br />

<strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> augments the efficacy of T-cell<br />

therapy by elicit<strong>in</strong>g concurrent cellular <strong>and</strong><br />

humoral responses. Cancer Res. 2008;68:4431-<br />

4441.<br />

55. Nakano H, Kishida T, Asada H, et al.<br />

<strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> triggers both cellular <strong>and</strong> humoral<br />

immune responses lead<strong>in</strong>g to therapeutic<br />

antitumor effects aga<strong>in</strong>st head <strong>and</strong> neck<br />

squamous cell carc<strong>in</strong>oma. J Gene Med.<br />

2006;8:90-99.<br />

56. Daga A, Orengo AM, Gangemi RM, et al.<br />

Glioma <strong>immunotherapy</strong> by IL-<strong>21</strong> gene-modified<br />

cells or by recomb<strong>in</strong>ant IL-<strong>21</strong> <strong>in</strong>volves antibody<br />

responses. Int J Cancer. 2007;1<strong>21</strong>:1756-1763.<br />

66


Figures<br />

a<br />

Mean tumor volume (mm 3 )<br />

±SEM<br />

b<br />

Mean tumor volume (mm 3 )<br />

±SEM<br />

1100 Vehicle IT<br />

1000 IL-<strong>21</strong> IT<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

* ** ** ***<br />

8 10 12 14 16 18 20 22<br />

Days post RenCa <strong>in</strong>oculation<br />

***<br />

900 Vehicle IT<br />

800<br />

700<br />

600<br />

500<br />

50μg IL-<strong>21</strong> SC<br />

2μg IL-<strong>21</strong> IT<br />

10μg IL-<strong>21</strong> IT<br />

50μg IL-<strong>21</strong> IT<br />

#<br />

400<br />

300<br />

200<br />

100<br />

* * * *<br />

0<br />

8 10 12 14 16 18 20 22 24 26<br />

Days post RenCa <strong>in</strong>oculation<br />

Figure 1. Intratumoral IL-<strong>21</strong> adm<strong>in</strong>istration<br />

<strong>in</strong>creases anti-tumor efficacy <strong>in</strong> RenCa<br />

carc<strong>in</strong>omas compared to subcutaneous<br />

adm<strong>in</strong>istration. BALB/c mice were <strong>in</strong>jected with<br />

2x10 5 RenCa cells SC <strong>in</strong> the right (a <strong>and</strong> b) or <strong>in</strong><br />

both flanks (c) <strong>and</strong> r<strong>and</strong>omized prior to treatmentstart<br />

as <strong>in</strong>dicated by arrows. Treatment was started<br />

with a mean tumor volume > 40 mm 3 (a) >100 mm 3<br />

(b) >50 mm 3 (c). Fifty μg or <strong>in</strong>dicated doses of IL-<br />

<strong>21</strong> or vehicle was <strong>in</strong>jected IT or SC 3x/week. Mean<br />

± SEM, n = 9 (a), n = 8, representative of two<br />

<strong>in</strong>dependent experiments (b), n = 10 (c), # P=0.09,<br />

*P


Percent < 1000 mm 3<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Treatment (day 13-29, 3x/w eek)<br />

*<br />

**<br />

0<br />

0 10 20 30 40 50<br />

Days post RenCa <strong>in</strong>oculation<br />

Vehicle IT<br />

IL-<strong>21</strong> IT<br />

IL-<strong>21</strong> SC<br />

Figure 2. Intratumoral IL-<strong>21</strong> therapy <strong>in</strong>creases survival compared to subcutaneous adm<strong>in</strong>istration. BALB/c mice<br />

were <strong>in</strong>jected with 2x10 5 RenCa cells SC <strong>in</strong> the right flank <strong>and</strong> r<strong>and</strong>omized prior to treatment-start as <strong>in</strong>dicated.<br />

Treatment was started with a mean tumor volume > 40 mm 3 . Fifty µg IL-<strong>21</strong> or vehicle was <strong>in</strong>jected IT or SC 3x/week<br />

for the <strong>in</strong>dicated period of time. The chart shows Kaplan-Meyer survival analysis of mice with tumors < 1000 mm 3 , n =<br />

10, representative of two <strong>in</strong>dependent experiments *P


a<br />

Mean tumor volume (mm 3 )<br />

±SEM<br />

1000 Vehicle IT<br />

900 IL-<strong>21</strong> IT<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

***<br />

***<br />

** *<br />

0<br />

2 4 6 8 10 12 14 16<br />

Days post B16 tumor <strong>in</strong>oculation<br />

b<br />

Mean tumor volume (mm 3 )<br />

±SEM<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Vehicle IT<br />

50μg IL-<strong>21</strong> SC<br />

2μg IL-<strong>21</strong> IT<br />

10μg IL-<strong>21</strong> IT<br />

50μg IL-<strong>21</strong> IT<br />

8 10 12 14 16 18 20 22<br />

Days post B16 tumor <strong>in</strong>oculation<br />

*<br />

c<br />

Mean tumor volume (mm 3 )<br />

±SEM<br />

1100 Vehicle IT<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

50μg IL-<strong>21</strong> IT<br />

C57BL/6 nu/nu<br />

100<br />

0<br />

6 7 8 9 10 11 12 13 14 15<br />

Days post B16 tumor <strong>in</strong>oculation<br />

d<br />

Mean tumor volume (mm 3 )<br />

±SEM<br />

1000 Vehicle IT<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

50μg IL-<strong>21</strong> IT<br />

C57BL/6 β2m -/-<br />

0<br />

6 7 8 9 10 11 12 13 14 15 16<br />

Days post B16 tumor <strong>in</strong>oculation<br />

Figure 3. Intratumoral IL-<strong>21</strong> <strong>in</strong>creases CD8 + T cell-dependent anti-tumor effect <strong>in</strong> B16 melanomas. C57BL/6 WT<br />

(a <strong>and</strong> b), C57BL/6 nu/nu (c) <strong>and</strong> CD57BL/6 β2m-/- (d) mice were <strong>in</strong>jected with 1x10 5 B16 melanoma cells SC <strong>in</strong> the<br />

right flank <strong>and</strong> r<strong>and</strong>omized prior to treatment-start as <strong>in</strong>dicated. Treatment was started with a mean tumor volume > 50<br />

mm 3 (a) > 75 mm 3 (b), > 60 mm 3 (c <strong>and</strong> d). Fifty μg or <strong>in</strong>dicated doses of IL-<strong>21</strong> or vehicle was <strong>in</strong>jected IT or SC<br />

1x/day. Mean ± SEM, n = 15, representative of two <strong>in</strong>dependent experiements (a), n = 7 (b), n = 10 (c <strong>and</strong> d), *P


a<br />

c<br />

Vehicle IT<br />

Vehicle IT<br />

b<br />

d<br />

e<br />

CD8 + T cells<br />

15 ***<br />

IL-<strong>21</strong> IT<br />

f<br />

CD4 + T cells<br />

15 **<br />

IL-<strong>21</strong> IT<br />

Cells / mm 2 AOI<br />

10<br />

5<br />

Cells / mm 2 AOI<br />

10<br />

5<br />

0<br />

Vehicle IT<br />

IL-<strong>21</strong> IT<br />

0<br />

Vehicle IT<br />

IL-<strong>21</strong> IT<br />

Figure 4. Intratumoral IL-<strong>21</strong> <strong>in</strong>creases the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g T cells. Cryo-sections from tumor-biopsies<br />

obta<strong>in</strong>ed at the end of the experiment shown <strong>in</strong> figure 3a were sta<strong>in</strong>ed for CD4 + <strong>and</strong> CD8 + T cells by<br />

immunohistochemistry accord<strong>in</strong>g to ‘Materials <strong>and</strong> methods’. Positive cells are visualized with liquid permanent red<br />

<strong>and</strong> <strong>in</strong>dicated by arrows. Nuclei are blue by Mayer’s hematoxyl<strong>in</strong> sta<strong>in</strong><strong>in</strong>g. All positive cells located <strong>in</strong>tratumorally<br />

were counted <strong>in</strong> one section from each biopsy <strong>and</strong> related to a stereologically measured area of <strong>in</strong>terest (AOI) excl.<br />

necrotic areas <strong>and</strong> non-tumor tissue, such as connective tissue. Representative pictures of cryo-sections at 20×<br />

magnification show<strong>in</strong>g tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + (a <strong>and</strong> c) <strong>and</strong> CD4 + T cells (b <strong>and</strong> d) <strong>in</strong> B16 melanomas treated as<br />

shown. The bar plots show the density of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells (e) <strong>and</strong> CD4 + T cells (f) scored from the<br />

immunohistochemically sta<strong>in</strong>ed sections. Bars represent mean±SEM, n=15, **P


a<br />

CD8 + T cells<br />

b<br />

Cells/ g tumor tissue<br />

c<br />

150000<br />

100000<br />

50000<br />

0<br />

5000000<br />

*<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

CD8 + T cells<br />

**<br />

IL-<strong>21</strong> IT<br />

800000<br />

CD8 + T cells/ g tumor tissue<br />

1000000<br />

100000<br />

10000<br />

1000<br />

***Spearman correlation p=0.0005<br />

100<br />

10 100 1000<br />

Tumor volume (mm 3 )<br />

CD4 + CD25 - T cells<br />

d<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> IT<br />

Day 10 Day 5 Day 1<br />

Cells / g tumor tissue<br />

Cells / g tumor tissue<br />

Cells / g tumor tissue<br />

4000000<br />

3000000<br />

2000000<br />

1000000<br />

0<br />

5000000<br />

4000000<br />

3000000<br />

2000000<br />

1000000<br />

0<br />

5000000<br />

4000000<br />

3000000<br />

2000000<br />

1000000<br />

0<br />

Vehicle<br />

Vehicle<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> SC<br />

p=0.06<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> IT<br />

**<br />

***<br />

IL-<strong>21</strong> IT<br />

*<br />

IL-<strong>21</strong> IT<br />

Cells / g tumor tissue<br />

Cells / g tumor tissue<br />

Cells / g tumor tissue<br />

600000<br />

400000<br />

200000<br />

0<br />

1000000<br />

800000<br />

600000<br />

400000<br />

200000<br />

0<br />

800000<br />

600000<br />

400000<br />

200000<br />

0<br />

Vehicle<br />

Vehicle<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> IT<br />

*<br />

*<br />

IL-<strong>21</strong> IT<br />

IL-<strong>21</strong> IT<br />

Cells / g tumor tissue<br />

Cells / g tumor tissue<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

Vehicle<br />

Tregs<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> IT<br />

Figure 5. The density of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + <strong>and</strong> CD4 + CD25 - T cells, but not Tregs <strong>in</strong>creases after<br />

<strong>in</strong>tratumoral IL-<strong>21</strong> correlat<strong>in</strong>g with tumor-growth <strong>in</strong>hibition. BALB/c mice bear<strong>in</strong>g SC RenCa tumors were treated<br />

with vehicle, 50 µg IL-<strong>21</strong> SC or IT similar to the experiment <strong>in</strong> figure 1b. Tumor-biopsies were taken out <strong>and</strong> weighed<br />

at the end of the experiment <strong>and</strong> the absolute numbers of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells were quantified by flow<br />

cytometry <strong>and</strong> related to biopsy weight (a), <strong>and</strong> the CD8 + T cell density was related to f<strong>in</strong>al tumor volume (b). In a<br />

separate but similar experiment tumor-biopsies were taken out on day 1, 5 <strong>and</strong> 10 post treatment-start <strong>and</strong> the densities<br />

of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD8 + <strong>and</strong> CD4 + CD25 - T cells were quantified (c), also on day 1 <strong>and</strong> day 10 post treatment-start the<br />

density of tumor-<strong>in</strong>filtrat<strong>in</strong>g CD4 + CD25 + FoxP3 + T cells (Tregs) were quantified (d). Bars represent mean±SEM, n=7<br />

(a) <strong>and</strong> n=4 (c <strong>and</strong> d), *P


a<br />

Day 5 post treatment-start<br />

Isotype<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> IT<br />

b<br />

CD107a<br />

Granzyme B<br />

IFNγ<br />

Day 5 Day 1<br />

%CD107a+CD8+ T cells<br />

%CD107a+CD8+ T cells<br />

8<br />

6<br />

4<br />

2<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

*<br />

Granzyme B Median FI<br />

of CD8+ T cells<br />

Granzyme B Median FI<br />

of CD8+ T cells<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

*<br />

%IFNγ+CD8+ T cells<br />

%IFNγ+CD8+ T cells<br />

3<br />

2<br />

1<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

*<br />

Day 10<br />

%CD107a+CD8+ T cells<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

*<br />

IL-<strong>21</strong> IT<br />

Granzyme B Median FI<br />

of CD8+ T cells<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

IL-<strong>21</strong> IT<br />

%IFNy+CD8+ T cells<br />

15<br />

10<br />

5<br />

0<br />

Vehicle<br />

IL-<strong>21</strong> SC<br />

*<br />

IL-<strong>21</strong> IT<br />

Figure 6. Intratumoral IL-<strong>21</strong> <strong>in</strong>creases IFNγ <strong>and</strong> granzyme B expression <strong>and</strong> degranulation <strong>in</strong> tumor<strong>in</strong>filtrat<strong>in</strong>g<br />

CD8 + T cells. BALB/c mice bear<strong>in</strong>g SC RenCa tumors were treated with vehicle, 50 µg IL-<strong>21</strong> SC or IT<br />

similar to the experiment <strong>in</strong> figure 1b. Tumor-biopsies were taken out on day 1, 5 <strong>and</strong> 10 post treatment-start <strong>and</strong><br />

sta<strong>in</strong>ed for <strong>in</strong>tracellular IFNγ <strong>and</strong> granzyme B, <strong>and</strong> for surface expression of CD107a. Representative FACS plots are<br />

shown from day 5 post treatment-start (a) <strong>and</strong> bar plots show the percent of CD107a + , median fluorescence <strong>in</strong>tensity<br />

(MFI) of granzyme B expression <strong>and</strong> percent of IFNγ express<strong>in</strong>g CD8 + T cells from day 1, 5 <strong>and</strong> 10 post treatment-start<br />

(b). Bars depict mean±SEM, n=4, *p


a<br />

IL-<strong>21</strong><br />

Vehicle<br />

b<br />

Number of cells (10 6 )<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

**<br />

*<br />

* * *<br />

IL-<strong>21</strong><br />

Vehicle<br />

*<br />

c<br />

Number of cells (10 6 )<br />

1.5<br />

1.2<br />

0.9<br />

0.6<br />

0.3<br />

0.0<br />

**<br />

*<br />

**<br />

IL-<strong>21</strong><br />

Vehicle<br />

Vehicle<br />

IL-<strong>21</strong><br />

% KI67+ cells<br />

15 IL-<strong>21</strong><br />

Vehicle<br />

10<br />

5<br />

**<br />

*<br />

**<br />

*<br />

0<br />

TCRβ + CD8 + T cells<br />

TCRβ + CD4 + T cells<br />

TCRβ+CD8+<br />

TCRβ+CD4+<br />

TCRβ - CD19 + B cells<br />

TCRβ+CD19+<br />

Number of KI67+ cells (10 6 )<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

*<br />

IL-<strong>21</strong><br />

Vehicle<br />

**<br />

*<br />

Number of KI67+ cells (10 6 )<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

IL-<strong>21</strong><br />

Vehicle<br />

** *<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

IL-<strong>21</strong><br />

Vehicle<br />

*<br />

CD62L+CD44+<br />

CD62L-CD44+<br />

CD62L+CD44+<br />

CD62L-CD44+<br />

CD62L+CD44+<br />

CD62L+CD44-<br />

CD62L-CD44-<br />

CD62L+CD44-<br />

CD62L-CD44-<br />

CD62L+CD44-<br />

CD62L-CD44-<br />

CD62L-CD44+<br />

Total cells<br />

Lymphocytes<br />

TCRβ+CD4+<br />

TCRβ+CD8+<br />

CD4+CD25+<br />

TCRβ-CD19+<br />

CD62L+CD44+<br />

CD62L-CD44+<br />

CD62L+CD44+<br />

CD4+CD25-<br />

CD62L+CD44-<br />

CD62L-CD44-<br />

CD62L+CD44-<br />

CD62L-CD44-<br />

CD62L-CD44+<br />

d<br />

CD8 + T cells CD4 + T cells<br />

e<br />

f<br />

Number of KI67+ cells (10 6 )<br />

Figure 7. IL-<strong>21</strong> enlarges tumor-dra<strong>in</strong><strong>in</strong>g lymph nodes by <strong>in</strong>creas<strong>in</strong>g naïve lymphocyte numbers <strong>and</strong> proliferation<br />

of activated lymphocytes. BALB/c mice were <strong>in</strong>oculated with 1x10 6 RenCa tumor cells SC <strong>in</strong> the h<strong>in</strong>d foot pad <strong>and</strong><br />

treated on day 12 post <strong>in</strong>oculation with vehicle or 50 µg IL-<strong>21</strong> IT 5x/week. On day 20 popliteal LNs were taken out <strong>and</strong><br />

the absolute number of LN lymphocytes was counted <strong>and</strong> analyzed by flow cytometry. Macroscopic picture of IL-<strong>21</strong><br />

<strong>and</strong> vehicle treated dra<strong>in</strong><strong>in</strong>g LNs (a), the absolute number of the <strong>in</strong>dicated lymphocyte populations <strong>in</strong> tumor-dra<strong>in</strong><strong>in</strong>g<br />

LNs (b), <strong>and</strong> the absolute number of the <strong>in</strong>dicated T cell subpopulations (c). In an identical experiment LN lymphocytes<br />

were sta<strong>in</strong>ed for <strong>in</strong>tracellular KI67 <strong>and</strong> analyzed by flow cytometry. Representative FACS plots show KI67 sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

CD8 + <strong>and</strong> CD4 + T cells from vehicle <strong>and</strong> IL-<strong>21</strong> treated mice with the distribution of CD62L <strong>and</strong> CD44 expression (d),<br />

the percent of KI67 + CD8 + <strong>and</strong> CD4 + T cells, <strong>and</strong> CD19 + B cells are shown (e), <strong>and</strong> the number KI67 + CD8 + <strong>and</strong> CD4 +<br />

T cells <strong>and</strong> CD19 + B cells are shown based on their CD62L <strong>and</strong> CD44 expression as <strong>in</strong>dicated (f). Bars represent<br />

mean±SEM, n=5, *P


B16<br />

RenCa<br />

Supplementary figure 1. Greater MHC class I expression on RenCa compared to B16 cells. B16 melanoma <strong>and</strong><br />

RenCa renal cell carc<strong>in</strong>oma cells were sta<strong>in</strong>ed with primary unlabelled mouse anti-H-2Kb <strong>and</strong> H-2Db (B16) <strong>and</strong> mouse<br />

anti-H-2Kd <strong>and</strong> H-2Dd (RenCa). Primary sta<strong>in</strong><strong>in</strong>g with mouse IgG2a was used as an isotype control. Secondary<br />

sta<strong>in</strong><strong>in</strong>g with goat anti-mouse IgG PE was used for detection by flow cytometry. Histogram X-axes depict the level of<br />

MHC class I expression as fluorescence <strong>in</strong>tensity of B16 (left) <strong>and</strong> RenCa (right) after secondary sta<strong>in</strong><strong>in</strong>g.<br />

Representative of two <strong>in</strong>dependent experiments.<br />

74


a<br />

SC <strong>in</strong> lower leg<br />

IT <strong>in</strong> foot tumor<br />

b<br />

4.0<br />

3.5<br />

IL-<strong>21</strong><br />

Vehicle<br />

Cell count (10 6 cells)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

<br />

<br />

<br />

<br />

<br />

<br />

Total cells<br />

Lymphocytes<br />

CD4+<br />

CD8+<br />

CD19+<br />

CD4+CD25-<br />

CD4+CD25+<br />

Supplementary figure 2. IL-<strong>21</strong> <strong>in</strong>creases lymphocyte numbers <strong>in</strong> naïve lymph nodes dra<strong>in</strong><strong>in</strong>g the foot pad.<br />

BALB/c mice <strong>in</strong>oculated with 1x10 6 RenCa tumor cells SC <strong>in</strong> the foot pad were <strong>in</strong>jected once with 30µL of Pantent<br />

Blue V dye 12 days post <strong>in</strong>oculation either SC <strong>in</strong> the lower leg or IT <strong>and</strong> popliteal LNs were taken out 30 m<strong>in</strong>. later.<br />

The macroscopic pictures show two representative popliteal LNs after <strong>in</strong>jection with Pantent Blue V dye SC <strong>in</strong> the<br />

lower leg or IT <strong>in</strong> foot pad tumor as <strong>in</strong>dicated (a). BALB/c mice bear<strong>in</strong>g no tumors were <strong>in</strong>jected <strong>in</strong> the foot pad with<br />

50 µg IL-<strong>21</strong> on days 0, 2 <strong>and</strong> 4, popliteal LNs were taken out on day 7 <strong>and</strong> LN lymphocytes were quantified by flow<br />

cytometry <strong>and</strong> the bar plot shows the absolute number of the <strong>in</strong>dicated lymphocyte populations (b). Bars represent<br />

mean±SEM, n=5, P


Supplementary figure 3.<br />

Cell count (10 6 cells)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

IL-<strong>21</strong><br />

Vehicle<br />

Total cells<br />

Lymphocytes<br />

TCRb-CD19+<br />

TCRb+CD8+<br />

TCRb+CD4+<br />

CD4+CD25-<br />

CD4+CD25+<br />

Supplementary figure 3. Intratumoral IL-<strong>21</strong> does not modulate contralateral lymph nodes. BALB/c mice were<br />

<strong>in</strong>oculated with 1x10 6 RenCa tumor cells SC <strong>in</strong> the right h<strong>in</strong>d foot pad <strong>and</strong> treated on day 12 post <strong>in</strong>oculation with<br />

vehicle of 50 µg IL-<strong>21</strong> IT 5x/week (from experiment <strong>in</strong> figure 6). On day 20 the left popliteal LNs (contralateral to the<br />

tumor site) were taken out <strong>and</strong> the absolute number of <strong>in</strong>dicated LN lymphocytes was quantified by flow cytometry.<br />

76


Paper IV:<br />

Endogenous <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong> restricts CD8 + T cell expansion <strong>and</strong> is not required for tumor<br />

immunity<br />

Søndergaard H., Coquet J.M., Uldrich A.P., McLaughl<strong>in</strong> N, Godfrey D.I., Sivakumar P.V. Skak<br />

K. <strong>and</strong> Smyth M.J., J Immunol 2009 Dec 1;183(11):7326-36. Epub 2009 Nov 13.<br />

77


Published November 13, 2009, doi:10.4049/jimmunol.0902697<br />

The Journal of Immunology<br />

Endogenous IL-<strong>21</strong> Restricts CD8 T Cell Expansion <strong>and</strong> Is not<br />

Required for Tumor Immunity 1<br />

Henrik Søndergaard,* ‡ Jonathan M. Coquet, † Adam P. Uldrich,* Nicole McLaughl<strong>in</strong>,*<br />

Dale I. Godfrey, † Pallavur V. Sivakumar, § Kresten Skak, ‡ <strong>and</strong> Mark J. Smyth 2 *<br />

IL-<strong>21</strong> has antitumor activity through actions on NK cells <strong>and</strong> CD8 T cells, <strong>and</strong> is currently <strong>in</strong> cl<strong>in</strong>ical development for the<br />

treatment of <strong>cancer</strong>. However, no studies have addressed the role of endogenous IL-<strong>21</strong> <strong>in</strong> tumor immunity. In this study, we have<br />

studied both primary <strong>and</strong> secondary immune responses <strong>in</strong> IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice aga<strong>in</strong>st several experimental tumors. We<br />

found <strong>in</strong>tact immune surveillance toward methylcholanthrene-<strong>in</strong>duced sarcomas <strong>in</strong> IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice compared with<br />

wild-type mice <strong>and</strong> B16 melanomas showed equal growth k<strong>in</strong>etics <strong>and</strong> development of lung metastases. IL-<strong>21</strong>R / mice showed<br />

competent NK cell-mediated rejection of NKG2D lig<strong>and</strong> (Rae1) express<strong>in</strong>g H-2b RMAS lymphomas <strong>and</strong> susta<strong>in</strong>ed transition<br />

to CD8 T cell-dependent memory aga<strong>in</strong>st H-2b RMA lymphomas. -Galactosylceramide stimulation showed equal expansion<br />

<strong>and</strong> activation of NKT <strong>and</strong> NK cells <strong>and</strong> mounted a powerful antitumor response <strong>in</strong> the absence of IL-<strong>21</strong> signal<strong>in</strong>g, despite reduced<br />

expression of granzyme B <strong>in</strong> NKT, NK, <strong>and</strong> CD8 T cells. Surpris<strong>in</strong>gly, host IL-<strong>21</strong> significantly restricted the expansion of<br />

Ag-specific CD8 T cells <strong>and</strong> <strong>in</strong>hibited primary CD8 T cell immunity aga<strong>in</strong>st OVA-express<strong>in</strong>g EG7 lymphomas, as well as the<br />

secondary expansion of memory CD8 T cells. However, host IL-<strong>21</strong> did not alter the growth of less immunogenic MC38 colon<br />

carc<strong>in</strong>omas with dim OVA expression. Overall, our results show that endogenous IL-<strong>21</strong>/IL-<strong>21</strong>R is not required for NK, NKT, <strong>and</strong><br />

CD8 T cell-mediated tumor immunity, but restricts Ag-specific CD8 T cell expansion <strong>and</strong> rejection of immunogenic tumors,<br />

<strong>in</strong>dicat<strong>in</strong>g novel immunosuppressive actions of this cytok<strong>in</strong>e. The Journal of Immunology, 2009, 183: 7326–7336.<br />

The novel class I cytok<strong>in</strong>e IL-<strong>21</strong> is a member of the common<br />

-cha<strong>in</strong> receptor family. IL-<strong>21</strong> is primarily produced<br />

by activated CD4 T cells <strong>and</strong> NKT cells (1, 2) <strong>and</strong> signals<br />

through its unique IL-<strong>21</strong>R. IL-<strong>21</strong>R is expressed by most leukocytes<br />

<strong>in</strong>clud<strong>in</strong>g B, T, NK, NKT, macrophages, <strong>and</strong> dendritic<br />

cells (DCs), 3 giv<strong>in</strong>g IL-<strong>21</strong> substantial effects <strong>in</strong> both humoral <strong>and</strong><br />

cellular immune responses; these effects <strong>in</strong>clude costimulation of<br />

B cell proliferation, differentiation, <strong>and</strong> isotype switch<strong>in</strong>g, Th17<br />

cell differentiation of CD4 T cells, <strong>in</strong>creased CD8 T cell expansion<br />

<strong>and</strong> effector function, <strong>and</strong> activation of NK <strong>and</strong> NKT cells<br />

(3). These profound immunomodulatory effects of IL-<strong>21</strong> regulates<br />

immune responses <strong>in</strong> a variety of diseases, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>fections,<br />

autoimmunity, <strong>and</strong> <strong>cancer</strong> (3–5).<br />

The antitumor effects of IL-<strong>21</strong> have been extensively <strong>in</strong>vestigated<br />

<strong>in</strong> mouse tumor models us<strong>in</strong>g a range of different sources of<br />

IL-<strong>21</strong> delivery such as, IL-<strong>21</strong>-transfected tumor cell l<strong>in</strong>es, IL-<strong>21</strong>-<br />

*Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne,<br />

† Department of Microbiology <strong>and</strong> Immunology, The University of Melbourne,<br />

Parkville, Victoria, Australia; ‡ Immunopharmacology, Novo Nordisk A/S, Måløv,<br />

Denmark; <strong>and</strong> § Zymogenetics, Seattle, WA 98102<br />

Received for publication August 17, 2009. Accepted for publication October 6, 2009.<br />

The costs of publication of this article were defrayed <strong>in</strong> part by the payment of page<br />

charges. This article must therefore be hereby marked advertisement <strong>in</strong> accordance<br />

with 18 U.S.C. Section 1734 solely to <strong>in</strong>dicate this fact.<br />

1 This work was supported by Grant 454569 from the National Health <strong>and</strong> Medical<br />

Research Council of Australia Program (to M.J.S., <strong>and</strong> D.I.G.), by a Cancer Research<br />

Institute Postgraduate Scholarship (to J.M.C.), a Doherty Fellowship (to A.P.U.), <strong>and</strong><br />

by National Health <strong>and</strong> Medical Research Council Research Fellowships (to M.J.S.<br />

<strong>and</strong> D.I.G.). D.I.G. <strong>and</strong> M.J.S. have received research support from Novo Nordisk<br />

A/S.<br />

2 Address correspondence <strong>and</strong> repr<strong>in</strong>t requests to Dr. Mark J. Smyth, Peter MacCallum<br />

Cancer Centre, St Andrews Place, East Melbourne, 3002, Victoria, Australia.<br />

E-mail address: mark.smyth@petermac.org<br />

3 Abbreviations used <strong>in</strong> this paper: DC, dendritic cell; MCA, methylcholanthrene;<br />

GC, alpha-galactosylceramide; MSCV, mur<strong>in</strong>e stem cell virus; WT, wild type.<br />

Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00<br />

express<strong>in</strong>g plasmids <strong>and</strong> recomb<strong>in</strong>ant mouse IL-<strong>21</strong>. In this study,<br />

antitumor effects have been demonstrated both on established s.c.<br />

tumors, on lung <strong>and</strong> liver metastases from i.v. <strong>in</strong>jected tumors, <strong>and</strong><br />

on dissem<strong>in</strong>ated tumors (4). In addition to its antitumor effects as<br />

monotherapy, IL-<strong>21</strong> shows additional efficacy when used <strong>in</strong> comb<strong>in</strong>ation<br />

with several other therapies (5). The antitumor activity of<br />

IL-<strong>21</strong> is ma<strong>in</strong>ly mediated by NK cells (6–8) <strong>and</strong> CD8 T cells<br />

(9–11) with requirement of IFN-, perfor<strong>in</strong>, or both (7, 8, 12–14)<br />

depend<strong>in</strong>g on specific model conditions. Consistently, IL-<strong>21</strong> has<br />

been found to susta<strong>in</strong> Ag-specific CD8 T cell responses (9), augment<strong>in</strong>g<br />

both naive <strong>and</strong> memory CD8 T cell expansion (11, 15)<br />

<strong>and</strong> boost<strong>in</strong>g both CD8 T cell <strong>and</strong> NK cell cytotoxicity <strong>in</strong> vitro<br />

(11, 16). In a few reports, B cells have also been suggested to be<br />

<strong>in</strong>volved <strong>in</strong> IL-<strong>21</strong> antitumor responses with <strong>in</strong>creased production<br />

of tumor-specific IgG (17, 18). Moreover, IL-<strong>21</strong> has been found to<br />

modulate the activity <strong>and</strong> cytok<strong>in</strong>e production of NKT cells <strong>and</strong><br />

enhance the antitumor effects mediated by NKT cell stimulation<br />

(2, 8, 19). Based on these data, IL-<strong>21</strong> is currently <strong>in</strong> cl<strong>in</strong>ical trials<br />

for the treatment of metastatic melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma<br />

where it has shown an acceptable safety profile with reports of<br />

respond<strong>in</strong>g patients along with several <strong>in</strong>dications of <strong>in</strong> vivo immune<br />

activity (20–22).<br />

The majority of studies on IL-<strong>21</strong> <strong>in</strong> tumor immunology have<br />

used exogenous sources of IL-<strong>21</strong>. However, IL-<strong>21</strong> also plays an<br />

important role <strong>in</strong> the pathogenesis of several autoimmune diseases<br />

<strong>and</strong> here the role of endogenous IL-<strong>21</strong>/IL-<strong>21</strong>R has been widely<br />

studied. Particularly, cross<strong>in</strong>g of IL-<strong>21</strong>R-deficient (IL-<strong>21</strong>R / )<br />

mice onto diabetes prone NOD mice, spontaneous arthritis susceptible<br />

K/XbN mice, <strong>and</strong> BXSB-Yaa mice that develop a systemic<br />

lupus erythematosus-like syndrome all showed significantly reduced<br />

disease activity (23–25). Furthermore, collagen-<strong>in</strong>duced arthritis<br />

were reduced <strong>in</strong> DBA/1 mice treated with IL-<strong>21</strong>R.Fc (26)<br />

<strong>and</strong> IL-<strong>21</strong> / mice showed resistance to DSS- <strong>and</strong> TNBS-<strong>in</strong>duced<br />

colitis (27). To this end, blockade of the host IL-<strong>21</strong>/IL-<strong>21</strong>R axis<br />

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0902697<br />

79


The Journal of Immunology<br />

has been suggested as a potential therapeutic opportunity <strong>in</strong> several<br />

of these autoimmune disorders.<br />

To date, no studies have <strong>in</strong>vestigated the role of endogenous<br />

IL-<strong>21</strong>/IL-<strong>21</strong>R signal<strong>in</strong>g <strong>in</strong> the control of tumor <strong>in</strong>itiation, growth<br />

<strong>and</strong> metastasis. Based on the evident antitumor effect of exogenous<br />

IL-<strong>21</strong>, we wanted to explore the contribution of host signal<strong>in</strong>g via<br />

the endogenous IL-<strong>21</strong>/IL-<strong>21</strong>R axis <strong>in</strong> both primary <strong>and</strong> secondary<br />

tumor immune responses. In fully backcrossed IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R<br />

gene-targeted mice, we <strong>in</strong>vestigated the response to several different<br />

experimental tumors controlled by different effector cells or<br />

with responsiveness to IL-<strong>21</strong> therapy. We show <strong>in</strong> this study that<br />

endogenous IL-<strong>21</strong> is not required for tumor immunity but reveal a<br />

novel suppressive effect of IL-<strong>21</strong> on CD8 T cell immunity.<br />

Materials <strong>and</strong> Methods<br />

Mice<br />

C57BL/6 (B6) wild-type (WT) mice were purchased from the Walter <strong>and</strong><br />

Eliza Hall Institute of Medical Research (Melbourne, Victoria, Australia),<br />

or bred <strong>in</strong>-house at the Peter MacCallum Cancer Centre Animal Facility<br />

(Melbourne, Victoria, Australia). B6 IL-<strong>21</strong>-deficient (IL-<strong>21</strong> / ) mice,<br />

orig<strong>in</strong>ally provided by Dr. P. Sivakumar (Zymogenetics, Seattle, WA), <strong>and</strong><br />

B6 IL-<strong>21</strong>R / mice, orig<strong>in</strong>ally provided Dr. W. J. Leonard (National<br />

Heart, Blood <strong>and</strong> Lung Institute, Bethesda, MD) were backcrossed to B6<br />

for 8–12 generations at the Peter MacCallum Cancer Centre Animal Facility<br />

(Melbourne, Victoria, Australia). B6 TCR.J18 / mice obta<strong>in</strong>ed<br />

from Dr. M. Taniguchi (Chiba, Japan) were backcrossed for 12 generations<br />

to B6 at the Peter MacCallum Cancer Centre Animal Facility (Melbourne,<br />

Victoria, Australia). Mice age 6–14 wk were used <strong>in</strong> all experiments <strong>in</strong><br />

accord with animal ethics guidel<strong>in</strong>es of the Peter MacCallum Cancer<br />

Centre.<br />

Cell l<strong>in</strong>es <strong>and</strong> culture conditions<br />

B16 (F10) melanoma cells (American Type Culture Collection (CRL-<br />

6322; ATCC), RMA (H-2b ), RMAS (H-2b ), RMAS mur<strong>in</strong>e stem cell<br />

virus (MSCV) (empty vector transfected) <strong>and</strong> stable transfectant RMAS-<br />

Rae1, <strong>and</strong> MC38 OVA dim (28) were all ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> RPMI 1640 supplemented<br />

with 10% heat-<strong>in</strong>activated FCS, 100 U/ml penicill<strong>in</strong>, 100 g/ml<br />

streptomyc<strong>in</strong>, 1 mM sodium pyruvate, 0.1 mM nonessential am<strong>in</strong>o acids, 2<br />

mM glutamax, <strong>and</strong> 15 mM HEPES buffer (all from Invitrogen). Chicken<br />

OVA transfected EL-4 T cell lymphoma cells EG7 (CRL-<strong>21</strong>13; ATCC)<br />

<strong>and</strong> a more immunogenic variant of EG7 were grown <strong>in</strong> similar medium<br />

supplemented with 0.4 g/ml genetic<strong>in</strong> G418 (Invitrogen).<br />

Reagents <strong>and</strong> Abs<br />

-Galactosylceramide (GC), a mar<strong>in</strong>e sponge glycolipid that activates<br />

CD1d-restricted NKT cells (29), was provided by the Pharmaceutical Research<br />

Laboratories (Kir<strong>in</strong> Brewery), <strong>and</strong> work<strong>in</strong>g concentrations were prepared<br />

<strong>in</strong> PBS. Methylcholanthrene (MCA) was purchased from Sigma-<br />

Aldrich. For flow cytometric analysis, the follow<strong>in</strong>g anti-mouse Abs were<br />

used: FITC-conjugated, FoxP3 (FJK-16s) <strong>and</strong> CD44 (IM7) (eBioscience);<br />

PE-conjugated CD25 (PC61.5) <strong>and</strong> TCR- (H57-597) (eBioscience); PE-<br />

Cy5.5-conjugated TCR- (H57-597) (eBioscience); PE-Cy7-conjugated,<br />

CD3 (145-2C11), CD8 (53-6.7), <strong>and</strong> NK1.1 (PK136) (BD Pharm<strong>in</strong>gen);<br />

allophycocyan<strong>in</strong>-conjugated TCR- (H57-597), CD62L (MEL-14), CD4<br />

(GK1.5), B220 (RA3-6B2) (eBioscience), allophycocyan<strong>in</strong>-Cy7-conjugated<br />

CD3 (145-2C11), CD8 (53-6.7) <strong>and</strong> B220 (RA3-6B2) (BD Pharm<strong>in</strong>gen);<br />

<strong>and</strong> Pacific blue-conjugated CD4 (RM4-5) (eBioscience). PE-conjugated<br />

SIINFEKL-loaded MHC class I tetramer from Dr. A. Brooks<br />

(University of Melbourne, Parkville, Australia) <strong>and</strong> GC-loaded CD1d tetramer<br />

produced <strong>in</strong> house by K. Kyparissoudis (University of Melbourne,<br />

Parkville, Australia), us<strong>in</strong>g a construct orig<strong>in</strong>ally provided by M. Kronenberg<br />

(La Jolla Institute for Allergy <strong>and</strong> Immunology, La Jolla, CA) were<br />

used to detect OVA-specific CD8 T cells <strong>and</strong> NKT cells, respectively.<br />

Furthermore, Fc receptor block (clone 2.4G2; grown <strong>in</strong>-house) was used <strong>in</strong><br />

all experiments to prevent nonspecific b<strong>in</strong>d<strong>in</strong>g of Abs. Cell suspensions<br />

were sta<strong>in</strong>ed <strong>in</strong> FACS tubes or 96-well U-bottom plates for 30 m<strong>in</strong> at 4°C<br />

<strong>in</strong> the dark <strong>and</strong> washed between <strong>in</strong>cubations. Flow cytometric acquisition<br />

was performed on a FACSCanto-II or LSR-II (BD Biosciences). Nonviable<br />

lymphocytes were excluded on the basis of sta<strong>in</strong><strong>in</strong>g with 7-am<strong>in</strong>oact<strong>in</strong>omyc<strong>in</strong><br />

D (eBioscience) or hydroxystilbamid<strong>in</strong>e methanesulfonate/Fluoro-<br />

Gold (FG) (Molecular Probes). Analysis was performed us<strong>in</strong>g FlowJo software<br />

(Tree Star) <strong>and</strong> FACSDiva software (BD Biosciences).<br />

MCA-<strong>in</strong>duced fibrosarcoma model<br />

Male B6 WT, IL-<strong>21</strong> / , or IL-<strong>21</strong>R / mice were <strong>in</strong>jected s.c. with 100 l<br />

of corn oil conta<strong>in</strong><strong>in</strong>g MCA (100 g or 25 g) on the left h<strong>in</strong>d flank <strong>and</strong><br />

were monitored for the onset <strong>and</strong> progression of tumors on a weekly basis<br />

until 50 wk of age (30). Survival was plotted us<strong>in</strong>g a Kaplan-Meier curve<br />

<strong>in</strong> which the time when tumors exceeded 150 mm 2 was used as endpo<strong>in</strong>t.<br />

Other experimental tumor models<br />

B6 WT, IL-<strong>21</strong> / , or IL-<strong>21</strong>R / mice were <strong>in</strong>oculated s.c. <strong>in</strong> the right<br />

flank with 10 5 B16F10 melanoma, 5 10 6 RMAS (H-2b-negative), 5 <br />

10 6 RMA-S MSCV (empty vector transfected), 5 10 6 RMAS-Rae1,<br />

5 10 5 MC38 OVA dim , or 3 10 6 immunogenic EG7 cells. Rechallenges<br />

were made more than 40 days post tumor regression with 10 6 RMA or 3 <br />

10 6 EG7 cells. In these experiments, tumor size was calculated as a product<br />

of two perpendicular diameters measured with a digital caliper approximately<br />

three times per week. The term<strong>in</strong>ation criterion was a tumor volume<br />

of 150 mm 2 , which was used as a surrogate survival endpo<strong>in</strong>t <strong>in</strong> Kaplan-<br />

Meier analysis. In other experiments, B6 WT, IL-<strong>21</strong> / , or IL-<strong>21</strong>R /<br />

mice were <strong>in</strong>jected i.v. <strong>in</strong> the tail ve<strong>in</strong> on day 0 with 2 10 5 B16 melanoma<br />

cells either unpulsed or pulsed for 2 days <strong>in</strong> vitro with 500 ng/ml<br />

GC. On day 14 post<strong>in</strong>oculation, mice were sacrificed, lungs were harvested,<br />

<strong>and</strong> the number of surface metastasis per lung was counted us<strong>in</strong>g a<br />

dissect<strong>in</strong>g microscope.<br />

In vivo stimulation of NKT cells<br />

B6 WT, IL-<strong>21</strong> / , IL-<strong>21</strong>R / , or TCR.J18 / mice were <strong>in</strong>jected i.p.<br />

with 2 g of GC prepared <strong>in</strong> PBS at 200-l doses. After 2, 24, 72, or<br />

144 h post<strong>in</strong>jection, livers <strong>and</strong> spleens were harvested to assay for NK,<br />

NKT, <strong>and</strong> CD8 T cell activation by flow cytometry. NKT cells were<br />

identified as TCR GC/CD1dtetramer cells, NK cells as<br />

NK.1.1 TCR GC/CD1dtetramer <strong>and</strong> CD8 T cells as TCR CD8 <br />

cells. For <strong>in</strong>tracellular sta<strong>in</strong><strong>in</strong>g, cells were cultured <strong>in</strong> GolgiStop (BD<br />

Biosciences) for 2–4 h before be<strong>in</strong>g surface sta<strong>in</strong>ed <strong>and</strong> subsequently fixed<br />

<strong>and</strong> permeabilized us<strong>in</strong>g the BD Cytofix/Cytoperm Plus Fixation/Permeabilization<br />

kit (BD Biosciences). In experiments <strong>in</strong> which GC was used<br />

<strong>in</strong> conjunction with chicken OVA, B6 WT, IL-<strong>21</strong> / , or TCR.J18 /<br />

were <strong>in</strong>jected with OVA (400 g/mouse) <strong>and</strong> GC (1 g/mouse) i.v. <strong>in</strong><br />

200 l of PBS. On days 7 <strong>and</strong> 35 post<strong>in</strong>jection, livers <strong>and</strong> spleens were<br />

harvested <strong>and</strong> assayed for CD8 T cell activation by sta<strong>in</strong><strong>in</strong>g with SIIN<br />

FEKL-loaded MHC class I tetramers. For <strong>in</strong>tracellular IFN- sta<strong>in</strong><strong>in</strong>g, cells<br />

were restimulated with SIINFEKL peptide for 12 h <strong>in</strong> vitro <strong>in</strong> the presence<br />

of GolgiStop for the last 4 h, <strong>and</strong> subsequently sta<strong>in</strong>ed for CD8 <strong>and</strong> <strong>in</strong>tracellular<br />

IFN- <strong>and</strong> analyzed by flow cytometry.<br />

Statistics<br />

7327<br />

Student’s t test (two-tailed, assum<strong>in</strong>g equal variance), two-tailed Mann-<br />

Whitney U test or Kruskal-Wallis test with Dunn’s posttest was used for<br />

statistical evaluations of differences between WT B6 mice <strong>and</strong> IL-<strong>21</strong> / /<br />

IL-<strong>21</strong>R / mice as <strong>in</strong>dicated <strong>in</strong> each experiment. Mantel Cox Log Rank<br />

test was used to evaluate statistical differences <strong>in</strong> Kaplan-Meier analyses.<br />

Data are generally shown as <strong>in</strong>dividual observations or as mean SEM<br />

unless otherwise noted, <strong>and</strong> p 0.05 was considered statistically<br />

significant.<br />

Results<br />

Endogenous IL-<strong>21</strong> does not protect from MCA-<strong>in</strong>duced<br />

carc<strong>in</strong>ogenesis<br />

To date no studies have evaluated the effect of endogenous IL-<strong>21</strong>/<br />

IL-<strong>21</strong>R signal<strong>in</strong>g <strong>in</strong> tumor immunity or tumor immune surveillance.<br />

Initially we wanted to study the <strong>in</strong>volvement of the IL-<strong>21</strong>/<br />

IL-<strong>21</strong>R axis <strong>in</strong> tumor immune surveillance <strong>and</strong> here we used the<br />

chemical carc<strong>in</strong>ogen 3-MCA, which is known for its ability to<br />

promote fibrosarcoma carc<strong>in</strong>ogenesis (31) <strong>and</strong> illustrate natural antitumor<br />

immunity (32). Groups of B6 WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<br />

<strong>21</strong>R / mice were <strong>in</strong>oculated s.c. with 25 or 100 g of MCA <strong>and</strong><br />

observed for fibrosarcoma development over a period of 50 wk<br />

(Fig. 1). At 100 g of MCA, 80% of WT mice were sacrificed<br />

over the course of the experiment, whereas 50% were sacrificed<br />

at the 25-g dose. However, at the doses exam<strong>in</strong>ed <strong>in</strong> this study,<br />

neither the onset nor <strong>in</strong>cidence of MCA-<strong>in</strong>duced fibrosarcomas<br />

were significantly different between the IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R /<br />

80


7328 HOST IL-<strong>21</strong> IN TUMOR IMMUNITY<br />

FIGURE 1. Endogenous IL-<strong>21</strong> does not protect aga<strong>in</strong>st MCA-<strong>in</strong>duced<br />

carc<strong>in</strong>ogenesis. Cohorts of mice were challenged with 25 or 100<br />

g of the chemical carc<strong>in</strong>ogen 3 MCA s.c. <strong>and</strong> were monitored for<br />

sarcoma <strong>in</strong>cidence. Data depict survival of B6 WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<br />

<strong>21</strong>R / mice. Survival was def<strong>in</strong>ed as when tumor size 150 mm 2 for<br />

n 16 –<strong>21</strong> mice per group. Results are representative of two <strong>in</strong>dependent<br />

experiments.<br />

mice compared with WT, suggest<strong>in</strong>g that natural immune surveillance<br />

aga<strong>in</strong>st chemically <strong>in</strong>duced fibrosarcomas does not require<br />

IL-<strong>21</strong> signal<strong>in</strong>g.<br />

IL-<strong>21</strong>/IL-<strong>21</strong>R signal<strong>in</strong>g does not protect aga<strong>in</strong>st B16F10 tumor<br />

growth or lung metastasis<br />

In previous studies of IL-<strong>21</strong> antitumor activity, we <strong>and</strong> others have<br />

found that the B16 melanoma model was sensitive to treatments<br />

with IL-<strong>21</strong> alone or <strong>in</strong> different comb<strong>in</strong>ations (6, 10, 11, 14, 33). In<br />

this study, we used the B16 melanoma model to exam<strong>in</strong>e whether<br />

host-derived IL-<strong>21</strong> or IL-<strong>21</strong>R signal<strong>in</strong>g might play a role <strong>in</strong> the<br />

control of B16 tumor growth. WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R / mice<br />

were <strong>in</strong>jected with B16F10 melanoma cells s.c. <strong>and</strong> monitored for<br />

tumor growth <strong>and</strong> survival (Fig. 2A) or i.v. <strong>and</strong> evaluated 14 days<br />

later for development of lung metastases (Fig. 2B). The results of<br />

the s.c. experiment showed equal growth k<strong>in</strong>etics of B16F10 <strong>in</strong><br />

both WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R / with similar survival measured<br />

as the <strong>in</strong>dividual time when tumor size exceeded 150 mm 2 .<br />

Furthermore, after i.v. <strong>in</strong>jection of B16F10, the number of metastases<br />

observed <strong>in</strong> the lungs 14 days later was also equivalent between<br />

WT <strong>and</strong> IL-<strong>21</strong> / or IL-<strong>21</strong>R / mice. These results suggest<br />

that endogenous IL-<strong>21</strong>/IL-<strong>21</strong>R signal<strong>in</strong>g does not protect aga<strong>in</strong>st<br />

B16 melanoma growth or metastasis development.<br />

Primary tumor rejection by NK cells via NKG2D <strong>and</strong> transition<br />

to CD8 T cell immunity does not require IL-<strong>21</strong>R signal<strong>in</strong>g<br />

IL-<strong>21</strong> has been suggested to mediate tumor rejection through NK<br />

cells <strong>and</strong> more specifically via the activat<strong>in</strong>g receptor NKG2D (6,<br />

7). To specifically <strong>in</strong>vestigate NK cell-mediated tumor immunity<br />

<strong>and</strong> particularly NKG2D rejection mechanisms, we used the TAPdeficient<br />

T cell lymphoma cell l<strong>in</strong>e RMAS, which expresses very<br />

FIGURE 2. B16 melanoma growth <strong>and</strong> lung metastases are not controlled<br />

by IL-<strong>21</strong>/IL-<strong>21</strong>R signal<strong>in</strong>g. B6 WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R / mice<br />

were <strong>in</strong>jected with B16F10 melanoma cells either s.c. with 1 10 5 cells<br />

on the right flank <strong>and</strong> monitored for tumor growth <strong>and</strong> survival def<strong>in</strong>ed as<br />

time when tumor size 150 mm 2 (A) or 2 10 5 cells i.v. <strong>and</strong> harvest<strong>in</strong>g<br />

of lungs 14 days later for evaluation of lung metastases (B). Tumor growth<br />

curves represent mean SEM <strong>and</strong> Kaplan-Meier survival curves depict<br />

survival def<strong>in</strong>ed as time when tumor size 150 mm 2 for n 9–12 mice<br />

<strong>in</strong> A. Data show mean SEM for n 6–7 mice <strong>in</strong> B.<br />

low levels of H-2b <strong>and</strong> a variant transfected to express the NKG2D<br />

lig<strong>and</strong> ret<strong>in</strong>oic acid <strong>in</strong>ducible-1 (Rae1). RMAS lymphomas are<br />

well known for their NK cell sensitivity both <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo<br />

(34) <strong>and</strong> Rae1-transfected variants have been shown to enhance<br />

the NK cell-mediated rejection (35). In this study, we <strong>in</strong>oculated<br />

IL-<strong>21</strong>R / <strong>and</strong> WT mice s.c. with parental RMAS cells, RMAS<br />

MSCV (RMAS cells transfected with an empty vector), <strong>and</strong><br />

RMAS-Rae1 (Fig. 3A). WT <strong>and</strong> IL-<strong>21</strong>R / showed equal outgrowth<br />

of the RMAS <strong>and</strong> RMAS MSCV, whereas RMAS-Rae1<br />

showed equal rejection <strong>in</strong> both stra<strong>in</strong>s (9 of 10 tumors were rejected<br />

<strong>in</strong> WT <strong>and</strong> 9 of 11 tumors were rejected <strong>in</strong> IL-<strong>21</strong>R / ).<br />

These results suggest competent NKG2D-dependent NK cell-mediated<br />

tumor rejection despite IL-<strong>21</strong>R deficiency.<br />

To further explore the functional properties of this NK cellmediated<br />

rejection we next addressed whether or not endogenous<br />

IL-<strong>21</strong>/IL-<strong>21</strong>R signal<strong>in</strong>g plays a role <strong>in</strong> the transition from <strong>in</strong>nate to<br />

adaptive immunity, which has previously been suggested (16). In<br />

this experiment, we rechallenged WT <strong>and</strong> IL-<strong>21</strong>R / mice that<br />

<strong>in</strong>itially had rejected RMAS-Rae1 over 40 days postregression<br />

with Ag-process<strong>in</strong>g competent <strong>and</strong> H-2b-positive cells RMA (Fig.<br />

3B). As a control, RMA tumors were <strong>in</strong>oculated <strong>in</strong> naive WT mice<br />

<strong>and</strong> these tumors all grew out. The RMAS-Rae1 immunized<br />

81


The Journal of Immunology<br />

FIGURE 3. Primary NKG2D-dependent tumor rejection by NK cells<br />

<strong>and</strong> transition to CD8 T cell memory is <strong>in</strong>tact <strong>in</strong> IL-<strong>21</strong>R / mice. A, B6<br />

WT <strong>and</strong> IL-<strong>21</strong>R / mice were challenged with 5 10 6 RMAS, RMAS<br />

MSCV (empty vector), or RMAS-Rae1 s.c. on the right flank <strong>and</strong> monitored<br />

for tumor growth. B, Naive B6 WT mice <strong>and</strong> WT <strong>and</strong> IL-<strong>21</strong>R /<br />

mice that rejected their primary RMAS-Rae1 tumor challenge were rechallenged<br />

40 days postrejection with 10 6 RMA cells s.c. on the contralateral<br />

flank <strong>and</strong> monitored for tumor growth. Data <strong>in</strong> A depict mean <br />

SEM for n 8–11 mice per group. Data <strong>in</strong> B show <strong>in</strong>dividual tumor<br />

growth curves for n 6 mice (naive WT), n 10 mice (immune WT), <strong>and</strong><br />

n 9 mice (immune IL-<strong>21</strong>R / ).<br />

mice, however, showed potent memory responses regardless of the<br />

lack of IL-<strong>21</strong>R signal<strong>in</strong>g with <strong>in</strong>itial tumor growth followed by<br />

complete rejection already with<strong>in</strong> 10 days post-rechallenge <strong>in</strong> both<br />

stra<strong>in</strong>s. These results suggest that IL-<strong>21</strong>R signal<strong>in</strong>g is redundant <strong>in</strong><br />

the transition from an <strong>in</strong>itial NK cell-mediated immunization to a<br />

successful CD8 T cell-mediated response.<br />

7329<br />

NKT cell activation primes NK cells <strong>and</strong> mediates antitumor<br />

response <strong>in</strong> the absence of IL-<strong>21</strong>/IL-<strong>21</strong>R function<br />

Recently, our lab showed that NKT cells produce IL-<strong>21</strong> follow<strong>in</strong>g<br />

GC stimulation <strong>and</strong> show activation <strong>in</strong> response to IL-<strong>21</strong> stimulation<br />

(2). In this experiment, we used GC stimulation as a way<br />

to <strong>in</strong>duce IL-<strong>21</strong> production <strong>and</strong> to <strong>in</strong>vestigate whether the activation<br />

<strong>and</strong> antitumor response of NKT cells could <strong>in</strong> part be mediated<br />

by IL-<strong>21</strong>. We <strong>in</strong>jected WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R / with 2<br />

g of GC i.p. <strong>and</strong> quantified the expansion of NKT cells after 2,<br />

24, 72, <strong>and</strong> 144 h <strong>in</strong> liver <strong>and</strong> spleen us<strong>in</strong>g flow cytometry where<br />

NKT cells were identified as TCR GC/CD1dtetramer lymphocytes<br />

(Fig. 4A). Two hours after GC stimulation the detection<br />

of NKT cells decreased compared with unstimulated mice <strong>and</strong> almost<br />

disappeared after 24 h due to down-regulation of their TCR.<br />

However, after 72 h a substantial expansion (4- to 7-fold <strong>in</strong> both<br />

liver <strong>and</strong> spleen) of the NKT cell population was observed followed<br />

by a contraction of the NKT cell population by 144 h (Fig.<br />

4A). NKT cell expansion was found to be similar between WT <strong>and</strong><br />

IL-<strong>21</strong> / /IL-<strong>21</strong>R / mice, suggest<strong>in</strong>g a normal proliferative response<br />

of NKT cells without IL-<strong>21</strong> signal<strong>in</strong>g. In addition, NKT<br />

cells were sta<strong>in</strong>ed for CD4 <strong>and</strong> <strong>in</strong>tracellular IFN- expression after<br />

GC stimulation (Fig. 4B). These data showed a rapid <strong>in</strong>duction<br />

of, <strong>and</strong> <strong>in</strong>creased proportion of, IFN- express<strong>in</strong>g NKT cells after<br />

2 <strong>and</strong> 24 h <strong>in</strong> both CD4 /CD4 subsets, which decl<strong>in</strong>ed aga<strong>in</strong> at<br />

72 h <strong>and</strong> almost returned to basel<strong>in</strong>e by 144 h. FACS plots are only<br />

shown for liver NKT cells but similar results were obta<strong>in</strong>ed <strong>in</strong> the<br />

spleen (data not shown). No difference was seen between WT <strong>and</strong><br />

IL-<strong>21</strong> / or IL-<strong>21</strong>R / NKT cell IFN- responses after GC<br />

stimulation, suggest<strong>in</strong>g that cytok<strong>in</strong>e production from NKT cells <strong>in</strong><br />

response to GC does not require endogenous IL-<strong>21</strong>.<br />

Because GC also stimulates potent IFN- production by NK<br />

cells (36), NK cell activation was also exam<strong>in</strong>ed by gat<strong>in</strong>g on NK<br />

cells (GC/CD1d tetramer NK1.1 TCR ) <strong>and</strong> detect<strong>in</strong>g their<br />

<strong>in</strong>tracellular IFN- expression (Fig. 4, C <strong>and</strong> D). Representative<br />

FACS plots of gated liver NK cells are shown, but similar results<br />

were found <strong>in</strong> spleen NK cells (data not shown). The results show<br />

that NK cell proportions <strong>and</strong> <strong>in</strong>tracellular IFN- expression was<br />

comparable between NK cells from WT, IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R /<br />

mice follow<strong>in</strong>g GC stimulation at all time po<strong>in</strong>ts (Fig. 4, C <strong>and</strong><br />

D). Thus, IL-<strong>21</strong> did not appear to be important for NK cell IFN-<br />

production follow<strong>in</strong>g GC stimulation.<br />

The granularity/cytotoxicity of NK cells (33), CD8 T cells (11)<br />

<strong>and</strong> NKT cells (2) can also be augmented by IL-<strong>21</strong>. In this experiment,<br />

we analyzed the expression of <strong>in</strong>tracellular granzyme B on<br />

gated NKT, NK, <strong>and</strong> CD8 T cells follow<strong>in</strong>g GC adm<strong>in</strong>istration<br />

(Fig. 4E). Intracellular granzyme B expression was most strik<strong>in</strong>gly<br />

up-regulated <strong>in</strong> NK cells with<strong>in</strong> 24 h of stimulation. NKT, NK, <strong>and</strong><br />

CD8 T cells from WT mice expressed slightly more <strong>in</strong>tracellular<br />

granzyme B than IL-<strong>21</strong> / mice at the 72 h time po<strong>in</strong>t. IL-<strong>21</strong> also<br />

appeared to be <strong>in</strong>volved <strong>in</strong> the ma<strong>in</strong>tenance of NKT cell granzyme<br />

B expression at 144 h as well as NK cell granzyme B expression<br />

at 24 h. These results suggest that endogenous IL-<strong>21</strong> is produced<br />

after GC stimulation <strong>and</strong> may play a role <strong>in</strong> GC-mediated granzyme<br />

B up-regulation <strong>and</strong> possibly cytotoxicity of NKT, NK, <strong>and</strong><br />

CD8 T cells. Therefore, to explore the capacity of IL-<strong>21</strong> / NKT<br />

cell-mediated tumor immune responses, we <strong>in</strong>jected WT <strong>and</strong> IL-<br />

<strong>21</strong> / mice i.v. with B16F10 melanoma cells either unpulsed or<br />

pulsed <strong>in</strong> vitro for 2 days with 500 ng/ml GC <strong>and</strong> 14 days later<br />

lungs were harvested to count metastases (Fig. 4F). This experimental<br />

protocol, based on a previously published approach (37),<br />

affected neither the <strong>in</strong> vitro growth nor viability of the tumor cells<br />

82


7330 HOST IL-<strong>21</strong> IN TUMOR IMMUNITY<br />

FIGURE 4. Activated NKT cells prime NK cells <strong>and</strong> mediate antitumor response <strong>in</strong> the absence of IL-<strong>21</strong> or IL-<strong>21</strong>R. B6 WT (n 4 mice), IL-<strong>21</strong> /<br />

(n 4 mice), <strong>and</strong> IL-<strong>21</strong>R / (n 2–4 mice) were adm<strong>in</strong>istered 2 g of GC i.p. Liver <strong>and</strong> spleen specimens were harvested 2, 24, 72, or 144 h later<br />

to assay for NKT <strong>and</strong> NK cell activation by flow cytometry. A, NKT cells were gated as TCR GC/CD1dtetramer <strong>and</strong> the absolute number of NKT<br />

cells <strong>in</strong> the liver (left) <strong>and</strong> spleen (right) of mice after adm<strong>in</strong>istration of GC are shown. B, Representative profiles of CD4 vs <strong>in</strong>tracellular IFN- expression<br />

of gated NKT cells from the liver follow<strong>in</strong>g GC. Number represents the percentage of cells <strong>in</strong> that quadrant. C, Representative density profiles of TCR<br />

vs NK1.1 expression on non-NKT cells <strong>in</strong> the liver follow<strong>in</strong>g GC adm<strong>in</strong>istration where gated region depicts NK cells (GC/<br />

CD1dtetramer NK1.1 TCR ). The number represents the percentage of cells <strong>in</strong> that gate. D, Representative histograms of <strong>in</strong>tracellular IFN- expression<br />

by gated NK cells from C. WT <strong>and</strong> IL-<strong>21</strong> / mice were adm<strong>in</strong>istered 2 g of GC i.p. <strong>and</strong> liver <strong>and</strong> spleen specimens were harvested at the specified time<br />

po<strong>in</strong>ts <strong>and</strong> cells were sta<strong>in</strong>ed for TCR-, GC/CD1dtetramer, NK1.1, CD8, <strong>and</strong> <strong>in</strong>tracellular granzyme B. E, Representative histograms of n 4 mice at<br />

each time po<strong>in</strong>t of granzyme B expression on gated NKT cells (GC/CD1d tetramer TCR ), NK cells (GC/CD1d tetramer NK1.1 TCR ) <strong>and</strong> CD8 <br />

T cells (GC/CD1d tetramer TCR CD8 ) from WT <strong>and</strong> IL-<strong>21</strong> / mice after GC adm<strong>in</strong>istration. F, B6 WT <strong>and</strong> IL-<strong>21</strong> / mice were <strong>in</strong>jected i.v. with<br />

2 10 5 B16F10 melanomas either unpulsed or pulsed <strong>in</strong> vitro for 2 days with 500 ng/ml GC, 14 days later lungs were harvested <strong>and</strong> lung metastasis<br />

were counted. Data depict mean SEM for n 7–8 mice. Representative experiment is of three separate experiments, <strong>and</strong> Kruskal-Wallis test with Dunn’s<br />

posttest was used to compare B16 GC <strong>in</strong> WT <strong>and</strong> IL-<strong>21</strong> / . , p 0.01; , p 0.001.<br />

(data not shown). The results showed a significant reduction <strong>in</strong> the<br />

number of lung metastases <strong>in</strong> mice that had received the GCpulsed<br />

B16F10 cells compared with mice receiv<strong>in</strong>g unpulsed cells,<br />

but this reduction was similar <strong>in</strong> WT <strong>and</strong> IL-<strong>21</strong> / , suggest<strong>in</strong>g that<br />

IL-<strong>21</strong> did not contribute to the NKT cell-mediated antitumor response<br />

<strong>in</strong> this model. Similar results, but with <strong>in</strong>creas<strong>in</strong>g number<br />

of lung metastases, were obta<strong>in</strong>ed when cells were pulsed with<br />

lower concentrations of GC (data not shown).<br />

CD8 T cell expansion, but not IFN- production is enhanced<br />

<strong>in</strong> IL-<strong>21</strong> / mice<br />

Stimulation of NKT cells with GC have also been shown to enhance<br />

CD8 T cell responses (38–40). To test whether IL-<strong>21</strong> production<br />

from NKT cells might contribute to the generation of<br />

CD8 T cell-based immune responses, we <strong>in</strong>jected WT, IL-<strong>21</strong> / ,<br />

or TCR.J18 / mice with chicken OVA prote<strong>in</strong> i.p. 1 g of<br />

GC <strong>and</strong> detected the Ag-specific CD8 T cell response after 7 or<br />

35 days <strong>in</strong> spleens <strong>and</strong> livers via SIINFEKL-loaded MHC class I<br />

tetramers (Fig. 5A). Immunization with OVA alone did not produce<br />

a very strong Ag-specific response, whereas addition of GC<br />

produced a marked <strong>in</strong>crease <strong>in</strong> SIINFEKL-specific CD8 T cells<br />

<strong>in</strong> both WT <strong>and</strong> IL-<strong>21</strong> / on day 7. Intrigu<strong>in</strong>gly, CD8 T cells<br />

exp<strong>and</strong>ed to a greater proportion <strong>in</strong> livers of IL-<strong>21</strong> / mice ( p <br />

0.05), suggest<strong>in</strong>g that IL-<strong>21</strong> <strong>in</strong>hibited the expansion of Ag-specific<br />

CD8 T cells. As a control NKT cell-deficient TCR.J18 / mice<br />

showed no <strong>in</strong>creased response to OVA plus GC. On day 35, the<br />

level of OVA-specific CD8 T cells were reduced to the levels<br />

seen with OVA immunization alone <strong>in</strong> both stra<strong>in</strong>s. For a more<br />

functional readout, splenocytes from WT or IL-<strong>21</strong> / mice were<br />

also re-stimulated on day 7 or 35 with SIINFEKL peptide for 12 h<br />

83


The Journal of Immunology<br />

7331<br />

FIGURE 6. OVA dim express<strong>in</strong>g MC38 tumor growth is similar <strong>in</strong> WT<br />

<strong>and</strong> IL-<strong>21</strong> / mice. B6 WT <strong>and</strong> IL-<strong>21</strong> / mice were challenged with 5 <br />

10 5 MC38-OVA dim cells s.c. on the right flank <strong>and</strong> monitored for tumor<br />

growth. Survival was def<strong>in</strong>ed as time when tumors 150 mm 2 . Tumor<br />

growth curves represent mean SEM <strong>and</strong> Kaplan-Meier survival curves<br />

depict survival def<strong>in</strong>ed as time when tumor size 150 mm 2 for n 12<br />

mice.<br />

FIGURE 5. CD8 T cell expansion, but not IFN- response is enhanced<br />

<strong>in</strong> IL-<strong>21</strong> / mice. B6 WT, TCR.J18 / , or IL-<strong>21</strong> / mice were <strong>in</strong>jected<br />

i.v. with either 400 g of OVA alone or 400 g of OVA plus 1 g/mouse<br />

of GC i.p. A, On days 7 or 35, spleens <strong>and</strong> livers of mice were harvested<br />

to detect the Ag-specific CD8 T cell response by SIINFEKL-loaded MHC<br />

class I tetramer sta<strong>in</strong><strong>in</strong>g. B, On day 7 or day 35 after OVA plus GC<br />

<strong>in</strong>jection, splenocytes from WT or IL-<strong>21</strong> / mice were restimulated with<br />

SIINFEKL peptide for 12 h <strong>in</strong> vitro, sta<strong>in</strong>ed for CD8 <strong>and</strong> <strong>in</strong>tracellular<br />

IFN-, <strong>and</strong> the percentages of CD8 IFN- were obta<strong>in</strong>ed by flow cytometry.<br />

Each data po<strong>in</strong>t represents <strong>in</strong>dividual mice <strong>and</strong> Mann-Whitney U<br />

test was used to compare WT <strong>and</strong> IL-<strong>21</strong> / groups. , p 0.05.<br />

<strong>in</strong> vitro, sta<strong>in</strong>ed for CD8 <strong>and</strong> <strong>in</strong>tracellular IFN- expression <strong>and</strong><br />

analyzed by flow cytometry (Fig. 5B). On day 7 a detectable<br />

amount of IFN- was found (0.1%–0.2% of lymphocytes), but<br />

with similar levels <strong>in</strong> both WT <strong>and</strong> IL-<strong>21</strong> / <strong>and</strong> on day 35 the<br />

levels of IFN- had dropped to very low levels. Taken together,<br />

these results suggest that an Ag-specific CD8 T cell response can<br />

be mounted by NKT cell stimulation without IL-<strong>21</strong> production, but<br />

that endogenous IL-<strong>21</strong> has suppressive effects on Ag-specific<br />

CD8 T cell expansion at least <strong>in</strong> liver.<br />

Primary antitumor response aga<strong>in</strong>st OVA dim express<strong>in</strong>g MC38<br />

colon carc<strong>in</strong>oma is normal <strong>in</strong> IL-<strong>21</strong> / mice<br />

See<strong>in</strong>g that both NK cell- <strong>and</strong> NKT cell-mediated tumor immune<br />

responses were largely unchanged by the lack of endogenous<br />

IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R, but that a CD8 T cell response <strong>in</strong>creased <strong>in</strong><br />

IL-<strong>21</strong> / mice, we next wanted to explore the functionality of<br />

CD8 T cell-dependent antitumor immune responses without host<br />

IL-<strong>21</strong> signal<strong>in</strong>g. Initially, we used a MC38 colon carc<strong>in</strong>oma cell<br />

l<strong>in</strong>e transfected to express low levels of OVA (MC38 OVA dim ).<br />

This cell l<strong>in</strong>e was recently established <strong>in</strong> our laboratory <strong>and</strong> found<br />

to give 100% outgrowth <strong>in</strong> WT mice, but with a period of tumor<br />

growth <strong>in</strong>hibition (our unpublished observations). Another MC38<br />

variant established with high expression of OVA (MC38<br />

OVA bright ) showed complete CD8 T cell-dependent rejection <strong>in</strong><br />

WT (28), suggest<strong>in</strong>g that MC38 OVA dim tumors generate an <strong>in</strong>sufficient<br />

immune response for tumor rejection with the potential<br />

for modulation <strong>in</strong> IL-<strong>21</strong> / mice. We <strong>in</strong>jected WT <strong>and</strong> IL-<strong>21</strong> /<br />

mice with MC38 OVA dim cells s.c. <strong>and</strong> monitored tumor growth<br />

<strong>and</strong> survival, def<strong>in</strong>ed as time when tumor size 150 mm 2 (Fig. 6).<br />

The results showed equal tumor growth <strong>and</strong> survival <strong>in</strong> WT <strong>and</strong><br />

IL-<strong>21</strong> / mice with a period of tumor growth delay observed <strong>in</strong><br />

both stra<strong>in</strong>s. These results suggest that MC38 OVA dim tumor<br />

growth is not controlled by IL-<strong>21</strong>-dependent mechanisms.<br />

IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice show potent CD8 T cell<br />

mediated antitumor response aga<strong>in</strong>st immunogenic EG7 tumors<br />

To <strong>in</strong>vestigate the CD8 T cell response <strong>in</strong> another <strong>and</strong> more<br />

immunogenic tumor model we used an immunogenic variant of the<br />

OVA-express<strong>in</strong>g EL-4 lymphoma cell l<strong>in</strong>e EG7 grown <strong>in</strong> our laboratory.<br />

EG7 lymphomas have previously been found to respond to<br />

IL-<strong>21</strong> therapy (9). Our EG7 variant gives a m<strong>in</strong>or fraction of spontaneous<br />

rejections <strong>in</strong> WT mice (our unpublished observations), so<br />

this model has an active CD8 T cell driven tumor immune response<br />

that possibly could be modulated by IL-<strong>21</strong>/IL-<strong>21</strong>R deficiency.<br />

WT <strong>and</strong> IL-<strong>21</strong> / mice (Fig. 7A) or IL-<strong>21</strong>R / mice (Fig.<br />

7B) were <strong>in</strong>oculated with EG7 cells s.c. <strong>and</strong> monitored for tumor<br />

growth <strong>and</strong> survival def<strong>in</strong>ed as the time when <strong>in</strong>dividual tumor size<br />

exceeded 150 mm 2 . The results showed, as previously observed,<br />

spontaneous complete rejection <strong>in</strong> WT mice of 18% (3/17) <strong>and</strong><br />

33% (5/15) <strong>in</strong> the two separate experiments shown. Interest<strong>in</strong>gly,<br />

IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice both showed <strong>in</strong>creased rejection<br />

rates of 53% (9/17) <strong>and</strong> 94% (15/16), respectively. In Kaplan-<br />

Meier survival analysis this difference was significant for both IL-<br />

<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / when compared with WT ( p 0.01). Furthermore,<br />

we detected the OVA-specific CD8 T cell response <strong>in</strong><br />

blood us<strong>in</strong>g SIINFEKL-loaded MHC class I tetramers on day 13<br />

post<strong>in</strong>jection of tumor <strong>in</strong> the IL-<strong>21</strong> / experiment (Fig. 7C) <strong>and</strong><br />

84


7332 HOST IL-<strong>21</strong> IN TUMOR IMMUNITY<br />

FIGURE 7. IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice show powerful immune response aga<strong>in</strong>st immunogenic EG7 tumors. In two separate experiments, B6 WT<br />

<strong>and</strong> IL-<strong>21</strong> / (A) or IL-<strong>21</strong>R / (B) mice were challenged with 3 10 6 EG7 cells s.c. on the right flank <strong>and</strong> monitored for tumor growth <strong>and</strong> survival,<br />

which was def<strong>in</strong>ed as time when tumors 150 mm 2 . On day 13 post<strong>in</strong>jection of tumor, blood was drawn from WT <strong>and</strong> IL-<strong>21</strong> / mice <strong>and</strong> sta<strong>in</strong>ed with<br />

SIINFEKL-loaded MHC class I tetramers (C) <strong>and</strong> similarly on day 10 post<strong>in</strong>jection tumor <strong>in</strong> WT <strong>and</strong> IL-<strong>21</strong>R / mice (D). Data are <strong>in</strong>dividual tumor growth<br />

curves show<strong>in</strong>g number of mice <strong>in</strong> which tumors have grown out or regressed out of total mice <strong>in</strong> A <strong>and</strong> B. Kaplan-Meier survival curves depict time when<br />

<strong>in</strong>dividual tumors exceeded 150 mm 2 , Mantel Cox Log Rank test was used to evaluate statistical differences <strong>in</strong> survival between WT <strong>and</strong> IL-<strong>21</strong> / or<br />

IL-<strong>21</strong>R / . , p 0.01. Dot plots represent the percentage of SIINFEKL-specific cells of total CD8 T cells <strong>in</strong> blood from <strong>in</strong>dividual mice. Mann-<br />

Whitney U test was used to compare differences between WT <strong>and</strong> IL-<strong>21</strong> / or IL-<strong>21</strong>R / . , p 0.05.<br />

day 10 post<strong>in</strong>jection of tumor <strong>in</strong> the IL-<strong>21</strong>R / experiment (Fig.<br />

7D). In general, more than 90% of the detected OVA-specific<br />

CD8 T cells had the phenotype CD62L CD44 (data not<br />

shown), <strong>in</strong>dicat<strong>in</strong>g that they were activated effector-memory cells.<br />

In the IL-<strong>21</strong> / experiment the results on day 13 showed a robust<br />

OVA-specific CD8 T cell response with a significant <strong>in</strong>crease <strong>in</strong><br />

the percentage of OVA-specific CD8 T cells <strong>in</strong> IL-<strong>21</strong> / mice<br />

compared with WT mice with a mean of 9.6% vs 2.6% ( p 0.05),<br />

respectively. Similar results were found <strong>in</strong> IL-<strong>21</strong>R / mice, where<br />

OVA-specific CD8 T cells were <strong>in</strong>creased already on day 10<br />

post<strong>in</strong>jection of tumor with generally lower percentages as expected<br />

at this earlier time po<strong>in</strong>t (mean of 1.1% <strong>in</strong> IL-<strong>21</strong>R / mice<br />

vs 0.7% <strong>in</strong> WT mice, ( p 0.05). Furthermore, we found that the<br />

level of OVA-specific CD8 T cells showed significant <strong>in</strong>verse<br />

correlation with the tumor size at the time of sampl<strong>in</strong>g <strong>and</strong> it was<br />

also significantly predictive of complete rejection (data not<br />

shown). Together, these observations suggest a suppressive role of<br />

endogenous IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R signal<strong>in</strong>g <strong>in</strong> CD8 T cell-dependent<br />

immunity toward immunogenic tumors, restrict<strong>in</strong>g the expansion<br />

of Ag-specific CD8 T cells.<br />

CD8 T cell-mediated memory responses are <strong>in</strong>tact <strong>in</strong> IL-<strong>21</strong> /<br />

<strong>and</strong> IL-<strong>21</strong>R / mice<br />

See<strong>in</strong>g the suppressive effect of IL-<strong>21</strong> on primary tumor immune<br />

responses we next explored whether IL-<strong>21</strong> / or IL-<strong>21</strong>R / mice<br />

might have altered long-term CD8 T cell-based memory responses.<br />

To test this, cohorts of WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R /<br />

mice that <strong>in</strong>itially had rejected their primary tumor challenge with<br />

the immunogenic EG7 tumors were rechallenged with conventional<br />

EG7 tumor cells. In naive WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R /<br />

mice, these tumors all grew out (data not shown). The rechallenged<br />

mice were <strong>in</strong>jected between 40 days <strong>and</strong> up to 6 mo after their<br />

primary tumor rejection <strong>and</strong> monitored for tumor growth (Fig. 8A).<br />

Initial tumor growth was observed <strong>in</strong> most mice followed by complete<br />

rejection of all tumors <strong>in</strong> both WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R /<br />

mice, with<strong>in</strong> 10–15 days post <strong>in</strong>jection, suggest<strong>in</strong>g that IL-<strong>21</strong> /<br />

<strong>and</strong> IL-<strong>21</strong>R / mice have competent CD8 T cell-mediated memory<br />

responses. To evaluate the magnitude of the adaptive memory<br />

response <strong>in</strong> the absence of IL-<strong>21</strong>, blood samples were collected<br />

pre-rechallenge <strong>and</strong> on day 3 post-rechallenge to detect the level of<br />

OVA-specific CD8 T cells us<strong>in</strong>g SIINFEKL-loaded MHC class<br />

I tetramers (Fig. 8B). Before rechallenge all mice displayed a significant<br />

level of circulat<strong>in</strong>g SIINFEKL-specific CD8 T cells but<br />

with no difference between stra<strong>in</strong>s (WT: 1.4%, IL-<strong>21</strong> / : 1.5%,<br />

IL-<strong>21</strong>R / : 2.3%, mean % of total CD8 T cells), suggest<strong>in</strong>g that<br />

IL-<strong>21</strong>/IL-<strong>21</strong>R deficiency does not alter the circulat<strong>in</strong>g effectormemory<br />

CD8 T cell pool. On day 3 post-rechallenge the level of<br />

OVA-specific CD8 T cells generally <strong>in</strong>creased <strong>in</strong> all three stra<strong>in</strong>s<br />

compared with pre-rechallenge (WT: 1.8%, IL-<strong>21</strong> / : 2.7%, IL-<br />

<strong>21</strong>R / : 3.7%, mean % of total CD8 T cells). For comparison,<br />

naive WT <strong>and</strong> IL-<strong>21</strong> / or IL-<strong>21</strong>R / mice challenged with EG7<br />

showed on average 0.25% OVA-specific CD8 T cells, <strong>in</strong>dicat<strong>in</strong>g<br />

that the level of de novo generated OVA-specific CD8 T cells<br />

was very low on day 3 postchallenge of tumor as expected. The<br />

average absolute changes of OVA-specific CD8 T cells on day 3<br />

relative to pre-rechallenge was 0.4% <strong>in</strong> WT mice, but was <strong>in</strong>creased<br />

to 1.2% <strong>in</strong> IL-<strong>21</strong> / mice <strong>and</strong> 1.3% <strong>in</strong> IL-<strong>21</strong>R / mice.<br />

This difference was statistically significant <strong>in</strong> IL-<strong>21</strong> / mice compared<br />

with WT mice ( p 0.05), but not for IL-<strong>21</strong>R / mice.<br />

Overall, these data suggest that CD8 T cell memory is <strong>in</strong>tact <strong>in</strong><br />

mice deficient for IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R, but that IL-<strong>21</strong> also suppresses<br />

the secondary expansion of Ag-specific CD8 T cells.<br />

Discussion<br />

In this study, we present the first set of data exam<strong>in</strong><strong>in</strong>g both primary<br />

<strong>and</strong> secondary tumor immune responses <strong>in</strong> mice deficient of<br />

IL-<strong>21</strong> or IL-<strong>21</strong>R. Our results show that these mice have <strong>in</strong>tact<br />

tumor immune surveillance, primary <strong>and</strong> secondary tumor immunity,<br />

but, <strong>in</strong> contrast to the literature, reveal a suppressive role for<br />

endogenous IL-<strong>21</strong> dur<strong>in</strong>g Ag-specific CD8 T cell expansion <strong>and</strong><br />

reactivity to immunogenic tumors. Exogenous IL-<strong>21</strong> has shown<br />

significant antitumor activity <strong>in</strong> numerous experimental mouse tumor<br />

studies, either secreted from artificial tumor cells, expressed<br />

by plasmids, or <strong>in</strong>jected as recomb<strong>in</strong>ant prote<strong>in</strong> (4). Studies of<br />

85


The Journal of Immunology<br />

7333<br />

FIGURE 8. CD8 T cell-mediated memory responses are <strong>in</strong>tact <strong>in</strong> IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice. A, Groups of B6 WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R / mice<br />

that had <strong>in</strong>itially rejected a primary tumor challenge with 3 10 6 EG7 (immunogenic) cells s.c. on the right flank were rechallenged 40 days <strong>and</strong> up<br />

to 6 mo postrejection with 3 10 6 EG7 (conventional) s.c. on the flank contralateral to the primary challenge <strong>and</strong> monitored for tumor growth. B,<br />

Pre-rechallenge <strong>and</strong> on day 3 post-rechallenge blood was drawn <strong>and</strong> sta<strong>in</strong>ed with SIINFEKL-loaded MHC-I tetramers. Data <strong>in</strong> A depict <strong>in</strong>dividual tumor<br />

growth curves, for n 8 (WT), n 13 (IL-<strong>21</strong> / ), <strong>and</strong> n 14 (IL-<strong>21</strong>R / ) mice <strong>and</strong> are representative of three <strong>in</strong>dependent experiments. B, Dot plots<br />

represent percentage of SIINFEKL-specific cells of total CD8 T cells <strong>in</strong> blood from <strong>in</strong>dividual mice pre-rechallenge <strong>and</strong> day 3 post-rechallenge <strong>and</strong> the<br />

absolute percentage of change from pre-rechallenge to day 3 post-rechallenge. Kruskal-Wallis test with Dunn’s posttest was used to compare the absolute<br />

percentage of change <strong>in</strong> WT, IL-<strong>21</strong> / , <strong>and</strong> IL-<strong>21</strong>R / mice , p 0.05 compared with WT.<br />

endogenous IL-<strong>21</strong> have established that the cytok<strong>in</strong>e <strong>and</strong> its<br />

signal<strong>in</strong>g pathway play a significant role <strong>in</strong> the pathogenesis of<br />

several experimental autoimmune diseases, <strong>in</strong>clud<strong>in</strong>g colitis (27),<br />

diabetes (25), arthritis (24), <strong>and</strong> systemic lupus erythematosus<br />

(23), with experimental autoimmune encephalomyelitis be<strong>in</strong>g debated<br />

(41, 42). These results highlight that IL-<strong>21</strong> is primarily a<br />

pro<strong>in</strong>flammatory cytok<strong>in</strong>e. However, our data now extend these<br />

results <strong>and</strong> propose that endogenous IL-<strong>21</strong> might also have potentially<br />

immunosuppressive effects.<br />

IL-<strong>21</strong> therapy has shown antitumor activity through effects on<br />

NK cells <strong>and</strong> CD8 T cells (4), <strong>and</strong> augmented antitumor responses<br />

by NKT cells (8). Based on these data we anticipated that<br />

IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice might have reduced immunity to<br />

tumors particularly mediated by these effector cells. We found <strong>in</strong>tact<br />

tumor immune surveillance toward MCA-<strong>in</strong>duced sarcomas<br />

despite the lack of functional IL-<strong>21</strong> or IL-<strong>21</strong>R. In contrast to transplantable<br />

tumor models, the MCA-<strong>in</strong>duced sarcoma model reflects<br />

a more biologically relevant carc<strong>in</strong>ogenesis process, which is subjected<br />

to natural tumor immune surveillance ma<strong>in</strong>ly conducted by<br />

NKT cells <strong>and</strong> NK cells <strong>in</strong> a perfor<strong>in</strong>- <strong>and</strong> IFN--dependent manner<br />

(43, 44). So, dur<strong>in</strong>g the course of this model, activation of NK<br />

<strong>and</strong> NKT cells must be occurr<strong>in</strong>g. This seems to be a suitable<br />

model to test for potential IL-<strong>21</strong> <strong>in</strong>volvement as IL-<strong>21</strong> is reported<br />

to <strong>in</strong>crease IFN- production <strong>and</strong> perfor<strong>in</strong>-dependent antitumor<br />

responses by NK cells as well as stimulate granularity <strong>and</strong> IFN-<br />

production by NKT cells, which can also produce IL-<strong>21</strong> upon activation<br />

(2, 33).<br />

We used the B16 melanoma model <strong>and</strong> H-2b RMAS-Rae1<br />

tumors to detect potential IL-<strong>21</strong> <strong>in</strong>volvement <strong>in</strong> primary tumor<br />

responses with different degrees of immune activity. B16 melanomas<br />

showed equal s.c. growth k<strong>in</strong>etics <strong>and</strong> development of lung<br />

metastases <strong>and</strong> RMAS-Rae1 tumors were equally rejected <strong>in</strong> the<br />

absence of IL-<strong>21</strong> signal<strong>in</strong>g. Recomb<strong>in</strong>ant IL-<strong>21</strong> has previously<br />

shown antitumor responses <strong>in</strong> both tumor models; <strong>in</strong> B16 melanoma<br />

through actions on either NK cells or CD8 T cells (6, 10,<br />

33), <strong>and</strong> <strong>in</strong> RMAS-Rae1 tumors through NK cells <strong>in</strong> an NKG2Ddependent<br />

manner (7). B16 melanomas are well known for be<strong>in</strong>g<br />

aggressive <strong>and</strong> poorly immunogenic tumors, which might not generate<br />

a sufficient host immune response for endogenous IL-<strong>21</strong> to<br />

play a role <strong>and</strong> the level of endogenous IL-<strong>21</strong> production could <strong>in</strong><br />

this study be <strong>in</strong>significant or otherwise redundant. RMAS-Rae1<br />

tumors clearly show an active immune response as seen previously<br />

(35), but <strong>in</strong> this study it might be that NKG2D stimulation alone is<br />

sufficient for tumor rejection <strong>and</strong> because this response is ma<strong>in</strong>ly<br />

NK cell-mediated it could also be that IL-<strong>21</strong>-produc<strong>in</strong>g cells are<br />

not properly engaged. However, when we rechallenged mice postrejection<br />

of RMAS-Rae1 tumor with H-2b RMA cells, which<br />

are controlled by T cells but not NK cells, we found powerful but<br />

equal rejection compared with WT. Although these results suggest<br />

<strong>in</strong>volvement of T cells, under these conditions IL-<strong>21</strong> signal<strong>in</strong>g was<br />

not essential for the successful transition from <strong>in</strong>nate NK cellmediated<br />

immunity to adaptive T cell-mediated immunity, which<br />

has previously been suggested (16).<br />

A critical factor <strong>in</strong> these experiments is whether IL-<strong>21</strong> is produced<br />

to any significant amount. To address this proposal, we used<br />

the CD1d-restricted lig<strong>and</strong> GC, which <strong>in</strong>duce IL-<strong>21</strong> production<br />

from NKT cells as recently described (2). NKT cells secondarily<br />

enhance IFN- production <strong>and</strong> antitumor activity of NK cells (45),<br />

86


7334 HOST IL-<strong>21</strong> IN TUMOR IMMUNITY<br />

IL-<strong>21</strong> can activate NKT cells (2), <strong>and</strong> similarly enhance IFN-<br />

production <strong>and</strong> antitumor activity of NK cells (16, 33). So, it could<br />

be that IL-<strong>21</strong> was a potential l<strong>in</strong>k <strong>in</strong> the direct effects of GC on<br />

NKT cells <strong>and</strong> <strong>in</strong> the sequential effects on NK cells. However, we<br />

found that NKT cell expansion <strong>and</strong> IFN- production <strong>in</strong> response<br />

to GC stimulation were not <strong>in</strong>fluenced by host IL-<strong>21</strong> nor was the<br />

concomitant IFN- production from NK cells. These data suggest<br />

that IL-<strong>21</strong> does not have a major autocr<strong>in</strong>e role dur<strong>in</strong>g GC activation<br />

of NKT cells or <strong>in</strong> paracr<strong>in</strong>e stimulation of NK cells. Our<br />

f<strong>in</strong>d<strong>in</strong>g that IL-<strong>21</strong> was required to some extent for <strong>in</strong>creased granzyme<br />

B expression <strong>in</strong> NKT, NK <strong>and</strong> CD8 T cells follow<strong>in</strong>g GC<br />

stimulation <strong>in</strong>dicates that IL-<strong>21</strong> is produced follow<strong>in</strong>g GC stimulation<br />

<strong>and</strong> possibly plays a role <strong>in</strong> the optimal development of<br />

effector functions <strong>in</strong> these cells. This f<strong>in</strong>d<strong>in</strong>g is supported by several<br />

studies <strong>in</strong> both mice <strong>and</strong> humans show<strong>in</strong>g that IL-<strong>21</strong> up-regulates<br />

granzyme B <strong>in</strong> NK cells, CD8 T cells <strong>and</strong> B cells (2, <strong>21</strong>,<br />

22, 46, 47). However, our f<strong>in</strong>d<strong>in</strong>g that GC pulsed B16 melanomas<br />

were also strongly rejected <strong>in</strong> the absence of IL-<strong>21</strong> suggests<br />

that host IL-<strong>21</strong> is not a critical factor <strong>in</strong> GC-mediated NKT celldependent<br />

tumor rejection. In contrast, we have previously shown<br />

that the sequential activation of NKT cells <strong>and</strong> NK cells with GC<br />

followed by recomb<strong>in</strong>ant IL-<strong>21</strong> stimulation was a very effective<br />

treatment of experimental tumors (8). Interest<strong>in</strong>gly, this study<br />

showed that the additional effects of IL-<strong>21</strong> were seen only if the<br />

treatment was given 3 days after GC adm<strong>in</strong>istration <strong>and</strong> not if<br />

IL-<strong>21</strong> treatment was started together with or 6 days after GC<br />

adm<strong>in</strong>istration, show<strong>in</strong>g that the tim<strong>in</strong>g or context of IL-<strong>21</strong> is essential<br />

for the antitumor response. So, although the IL-<strong>21</strong> production<br />

we achieve follow<strong>in</strong>g GC stimulation might be <strong>in</strong>significant<br />

to add to the antitumor effect, another explanation might be that<br />

IL-<strong>21</strong> is produced at a suboptimal time po<strong>in</strong>t to add to the antitumor<br />

effect <strong>in</strong> the models tested.<br />

IL-<strong>21</strong> mediates antitumor effects through stimulation of CD8 T<br />

cells, <strong>and</strong> is a potent costimulant of Ag-specific CD8 T cell expansion<br />

<strong>and</strong> cytotoxicity (9–11, 48), suggest<strong>in</strong>g that such responses<br />

might be impaired without functional IL-<strong>21</strong> signal<strong>in</strong>g. In<br />

contrast to what is presented <strong>in</strong> the literature with exogenous IL-<br />

<strong>21</strong>, we found that endogenous IL-<strong>21</strong> has suppressive activity on<br />

CD8 T cell responses, restrict<strong>in</strong>g Ag-specific CD8 T cell expansion<br />

<strong>and</strong> antitumor activity aga<strong>in</strong>st immunogenic tumors.<br />

These results suggest that IL-<strong>21</strong> is produced dur<strong>in</strong>g T cell sensitive<br />

tumor immune responses, but unexpectedly has suppressive rather<br />

than stimulatory effects. In support of these f<strong>in</strong>d<strong>in</strong>gs, we have previously<br />

reported that IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / showed exacerbated<br />

responses to experimental autoimmune encephalomyelitis<br />

(41). Our results are also supported by studies show<strong>in</strong>g that IL-<strong>21</strong><br />

can ma<strong>in</strong>ta<strong>in</strong> DCs <strong>in</strong> an immature state <strong>in</strong>hibit<strong>in</strong>g Ag presentation<br />

<strong>and</strong> T cell activation (49, 50). Furthermore, they are supported by<br />

results show<strong>in</strong>g that the antitumor activity of IL-<strong>21</strong> is lost by treat<strong>in</strong>g<br />

mice around the time of tumor <strong>in</strong>oculation as compared with<br />

treatment started just 2 days posttumor <strong>in</strong>oculation (9). A recent<br />

trio of studies suggests that IL-<strong>21</strong> signal<strong>in</strong>g is essential for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

CD8 T cell responses dur<strong>in</strong>g chronic viral <strong>in</strong>fections (51–<br />

53). Interest<strong>in</strong>gly, they also show that host IL-<strong>21</strong> limits Ag-specific<br />

CD8 T cell expansion dur<strong>in</strong>g the acute phase of <strong>in</strong>fections,<br />

whereas IL-<strong>21</strong> is strictly needed to susta<strong>in</strong> virus-specific CD8 T<br />

cells dur<strong>in</strong>g chronic <strong>in</strong>fections (52). Together with our results,<br />

these f<strong>in</strong>d<strong>in</strong>gs support our notion that the tim<strong>in</strong>g or context of<br />

IL-<strong>21</strong> is critical for the outcome of an immune response; whereas<br />

endogenous IL-<strong>21</strong> produced dur<strong>in</strong>g the prim<strong>in</strong>g phase might limit<br />

expansion of Ag-specific CD8 T cells <strong>and</strong> antitumor activity,<br />

IL-<strong>21</strong> delivered after the <strong>in</strong>itial prim<strong>in</strong>g works to susta<strong>in</strong> or boost<br />

CD8 T cell activity aga<strong>in</strong>st both viruses <strong>and</strong> tumors.<br />

We ma<strong>in</strong>ly found <strong>in</strong>creased CD8 T cell expansion <strong>in</strong> the liver<br />

<strong>in</strong> response to OVA <strong>and</strong> GC immunization, which is most likely<br />

due to the <strong>in</strong>creased proportion of NKT cells <strong>in</strong> this organ compared<br />

with the spleen. However, we only observed an <strong>in</strong>crease <strong>in</strong><br />

OVA-specific CD8 T cells on day 7 after GC <strong>and</strong> OVA immunization,<br />

whereas similar levels were found on day 35 postimmunization.<br />

And, the circulat<strong>in</strong>g level of effector/memory CD8 T<br />

cells more than 40 days postrejection of EG7 was similar between<br />

WT, IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice. These results <strong>in</strong>dicate that<br />

host IL-<strong>21</strong> is not <strong>in</strong>volved <strong>in</strong> the long-term ma<strong>in</strong>tenance of effector/memory<br />

CD8 T cells. This suggestion seems to contrast f<strong>in</strong>d<strong>in</strong>gs<br />

with recomb<strong>in</strong>ant IL-<strong>21</strong> (9), however, <strong>in</strong> this study tumors<br />

were not completely rejected as <strong>in</strong> our model, but <strong>in</strong>stead showed<br />

chronic growth <strong>in</strong>hibition ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the presence of Ag. Furthermore,<br />

<strong>in</strong> studies of viral <strong>in</strong>fections IL-<strong>21</strong> was not needed to<br />

ma<strong>in</strong>ta<strong>in</strong> circulat<strong>in</strong>g effector/memory CD8 T cells after a resolved<br />

<strong>in</strong>fection, only for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g effector CD8 T cells dur<strong>in</strong>g<br />

chronic <strong>in</strong>fections (53). Taken together, these results <strong>in</strong>dicate<br />

that IL-<strong>21</strong> is not required to ma<strong>in</strong>ta<strong>in</strong> circulat<strong>in</strong>g memory CD8 T<br />

cells <strong>in</strong> the absence of Ag, but can susta<strong>in</strong> CD8 T cell responses<br />

dur<strong>in</strong>g Ag persistency. This is also consistent with the f<strong>in</strong>d<strong>in</strong>gs that<br />

TCR stimulation is required for IL-<strong>21</strong> production (1, 2).<br />

In addition to its effects dur<strong>in</strong>g primary CD8 T cell-mediated<br />

tumor immunity, IL-<strong>21</strong> also has a putative role <strong>in</strong> secondary CD8 <br />

T cell memory responses (9, 11, 15, 54). However, we found that<br />

secondary CD8 T cell memory responses were normal or even<br />

<strong>in</strong>creased <strong>in</strong> IL-<strong>21</strong> / <strong>and</strong> IL-<strong>21</strong>R / mice, <strong>in</strong>dicat<strong>in</strong>g that endogenous<br />

IL-<strong>21</strong> might also limit secondary effector CD8 T cell expansion.<br />

Consistently, IL-<strong>21</strong> was not required for viral recall responses<br />

(53). However, <strong>in</strong> this study IL-<strong>21</strong> did not limit secondary<br />

Ag-specific T cell expansion <strong>and</strong> although differences might have<br />

been missed due to small group sizes, more work is warranted to<br />

confirm the role of endogenous IL-<strong>21</strong> dur<strong>in</strong>g secondary CD8 T<br />

cell expansion. At present, the mechanism beh<strong>in</strong>d the suppressive<br />

effect of IL-<strong>21</strong> is unknown. Recently, it was found that TCR prim<strong>in</strong>g<br />

<strong>in</strong> the presence of IL-<strong>21</strong> results <strong>in</strong> IL-10-produc<strong>in</strong>g immunosuppressive<br />

T cells (55). So, the production of IL-<strong>21</strong> <strong>in</strong> response to<br />

Ag could mediate suppression either through <strong>in</strong>hibition of DCs as<br />

stated above or by <strong>in</strong>duction of IL-10-produc<strong>in</strong>g immunosuppressive<br />

T cells. In contrast with this scenario, we did not see any<br />

suppressive effects of host IL-<strong>21</strong> on the growth of less immunogenic<br />

MC38-OVA dim tumors. This may be due to an <strong>in</strong>sufficient<br />

Ag-<strong>in</strong>duced immune response or other redundant immune suppressive<br />

mechanisms by this tumor.<br />

In this study, we anticipated that endogenous IL-<strong>21</strong> would to<br />

some degree be <strong>in</strong>volved <strong>in</strong> tumor immunity. However, based on<br />

the data presented <strong>in</strong> this study, we conclude that endogenous<br />

IL-<strong>21</strong> <strong>and</strong> IL-<strong>21</strong>R is not required for immune surveillance or tumor<br />

immunity mediated by NK, NKT, or CD8 T cells, at least <strong>in</strong> the<br />

range of tumor models tested. We have not <strong>in</strong>vestigated the role of<br />

endogenous IL-<strong>21</strong> <strong>in</strong> the development of B cell lymphomas or <strong>in</strong><br />

B cell-dependent tumor rejection, <strong>in</strong> which IL-<strong>21</strong> could have a role<br />

(18, 56). However, our f<strong>in</strong>d<strong>in</strong>gs suggest that anti-IL-<strong>21</strong> treatment,<br />

which has been proposed as a potential treatment strategy for many<br />

autoimmune diseases (57), would not compromise tumor immune<br />

surveillance. Indeed, given the enhanced CD8 T cell response,<br />

short-term blockade of host IL-<strong>21</strong> signal<strong>in</strong>g dur<strong>in</strong>g the early prim<strong>in</strong>g<br />

phase followed by stimulation with recomb<strong>in</strong>ant IL-<strong>21</strong> therapy<br />

might even enhance tumor immunity. We have highlighted that the<br />

actions of IL-<strong>21</strong> are potentially very context-dependent, but it is<br />

still unknown which cells produce IL-<strong>21</strong> dur<strong>in</strong>g a tumor immune<br />

response, <strong>in</strong> which anatomical context, <strong>and</strong> when does this happen.<br />

Injection of recomb<strong>in</strong>ant IL-<strong>21</strong> <strong>in</strong>to mice results <strong>in</strong> high nanogram<br />

per milliliter serum concentrations that are ma<strong>in</strong>ta<strong>in</strong>ed for<br />

87


The Journal of Immunology<br />

many hours (10), <strong>and</strong> generally endogenous serum cytok<strong>in</strong>e concentrations<br />

are only <strong>in</strong> the picogram range even after stimulation.<br />

Thus it is perhaps not surpris<strong>in</strong>g that our study highlights the great<br />

difference between study<strong>in</strong>g the function of an adm<strong>in</strong>istered recomb<strong>in</strong>ant<br />

cytok<strong>in</strong>e <strong>and</strong> the endogenous cytok<strong>in</strong>e by gene target<strong>in</strong>g.<br />

CD4 T cells are the most likely producers of IL-<strong>21</strong> <strong>in</strong> our<br />

tumor model <strong>and</strong> the need for TCR stimulation suggests that secondary<br />

lymphoid organs are the primary location for IL-<strong>21</strong> production.<br />

This suggests that IL-<strong>21</strong> could be produced dur<strong>in</strong>g the<br />

early prim<strong>in</strong>g phase, which could be the context of its suppressive<br />

actions. However, we believe the generation of reporter mice coexpress<strong>in</strong>g,<br />

e.g., GFP along with IL-<strong>21</strong> will be an essential tool to<br />

formally answer these questions.<br />

In summary, we have demonstrated that endogenous IL-<strong>21</strong> signal<strong>in</strong>g<br />

is not required for tumor immune surveillance, NK, NKT,<br />

<strong>and</strong> CD8 T cell-dependent primary tumor immunity, or for<br />

CD8 T cell-dependent secondary memory responses. However,<br />

we found that endogenous IL-<strong>21</strong> restricts CD8 T cell expansion<br />

<strong>and</strong> immunity toward immunogenic tumors. These results reveal<br />

an unexpected suppressive role for IL-<strong>21</strong> <strong>in</strong> Ag-specific immunity<br />

<strong>in</strong> contrast to its general perception as a pro<strong>in</strong>flammatory cytok<strong>in</strong>e<br />

<strong>in</strong> both <strong>cancer</strong> <strong>immunotherapy</strong> <strong>and</strong> autoimmunity.<br />

Acknowledgments<br />

We thank Michelle Stirl<strong>in</strong>g for the breed<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>tenance of the mice<br />

<strong>in</strong> these studies <strong>and</strong> Charlene Guan <strong>and</strong> Suzanne Medwell for the genotyp<strong>in</strong>g<br />

of mice. We also thank Ralph Rossi for flow cytometry support <strong>and</strong><br />

Konstant<strong>in</strong>os Kyparissoudis for provid<strong>in</strong>g GC-loaded CD1d tetramer.<br />

Disclosures<br />

H.S. <strong>and</strong> K.S. are employed by Novo Nordisk, <strong>and</strong> P.V.S. is employed by<br />

Zymogenetics. D.I.G. <strong>and</strong> M.J.S. have received research support from<br />

Novo Nordisk. The rema<strong>in</strong><strong>in</strong>g authors have no f<strong>in</strong>ancial conflict of <strong>in</strong>terest.<br />

References<br />

1. Parrish-Novak, J., S. R. Dillon, A. Nelson, A. Hammond, C. Sprecher,<br />

J. A. Gross, J. Johnston, K. Madden, W. Xu, J. West, et al. 2000. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong><br />

<strong>and</strong> its receptor are <strong>in</strong>volved <strong>in</strong> NK cell expansion <strong>and</strong> regulation of lymphocyte<br />

function. Nature 408: 57–63.<br />

2. Coquet, J. M., K. Kyparissoudis, D. G. Pellicci, G. Besra, S. P. Berz<strong>in</strong>s,<br />

M. J. Smyth, <strong>and</strong> D. I. Godfrey. 2007. IL-<strong>21</strong> is produced by NKT cells <strong>and</strong><br />

modulates NKT cell activation <strong>and</strong> cytok<strong>in</strong>e production. J. Immunol. 178:<br />

2827–2834.<br />

3. Spolski, R., <strong>and</strong> W. J. Leonard. 2008. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: basic biology <strong>and</strong> implications<br />

for <strong>cancer</strong> <strong>and</strong> autoimmunity. Annu. Rev. Immunol. 26: 57–79.<br />

4. Leonard, W. J., <strong>and</strong> R. Spolski. 2005. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: a modulator of lymphoid<br />

proliferation, apoptosis <strong>and</strong> differentiation. Nat. Rev. Immunol. 5: 688–698.<br />

5. Skak, K., M. Kragh, D. Hausman, M. J. Smyth, <strong>and</strong> P. V. Sivakumar. 2008.<br />

<strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: comb<strong>in</strong>ation strategies for <strong>cancer</strong> therapy. Nat. Rev. Drug Discov.<br />

7: 231–240.<br />

6. Wang, G., M. Tschoi, R. Spolski, Y. Lou, K. Ozaki, C. Feng, G. Kim,<br />

W. J. Leonard, <strong>and</strong> P. Hwu. 2003. In vivo antitumor activity of <strong>in</strong>terleuk<strong>in</strong> <strong>21</strong><br />

mediated by natural killer cells. Cancer Res. 63: 9016–9022.<br />

7. Takaki, R., Y. Hayakawa, A. Nelson, P. V. Sivakumar, S. Hughes, M. J. Smyth,<br />

<strong>and</strong> L. L. Lanier. 2005. IL-<strong>21</strong> enhances tumor rejection through a NKG2D-dependent<br />

mechanism. J. Immunol. 175: <strong>21</strong>67–<strong>21</strong>73.<br />

8. Smyth, M. J., M. E. Wallace, S. L. Nutt, H. Yagita, D. I. Godfrey, <strong>and</strong><br />

Y. Hayakawa. 2005. Sequential activation of NKT cells <strong>and</strong> NK cells provides<br />

effective <strong>in</strong>nate <strong>immunotherapy</strong> of <strong>cancer</strong>. J. Exp. Med. 201: 1973–1985.<br />

9. Moroz, A., C. Eppolito, Q. Li, J. Tao, C. H. Clegg, <strong>and</strong> P. A. Shrikant. 2004.<br />

IL-<strong>21</strong> enhances <strong>and</strong> susta<strong>in</strong>s CD8 T cell responses to achieve durable tumor<br />

immunity: comparative evaluation of IL-2, IL-15, <strong>and</strong> IL-<strong>21</strong>. J. Immunol. 173:<br />

900–909.<br />

10. Sondergaard, H., K. S. Frederiksen, P. Thygesen, E. D. Galsgaard, K. Skak,<br />

P. E. Kristjansen, N. Odum, <strong>and</strong> M. Kragh. 2007. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> therapy <strong>in</strong>creases<br />

the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 T cells <strong>and</strong> <strong>in</strong>hibits the growth of syngeneic<br />

tumors. Cancer Immunol. Immunother. 56: 1417–1428.<br />

11. Zeng, R., R. Spolski, S. E. F<strong>in</strong>kelste<strong>in</strong>, S. Oh, P. E. Kovanen, C. S. H<strong>in</strong>richs,<br />

C. A. Pise-Masison, M. F. Radonovich, J. N. Brady, N. P. Restifo, et al. 2005.<br />

Synergy of IL-<strong>21</strong> <strong>and</strong> IL-15 <strong>in</strong> regulat<strong>in</strong>g CD8 T cell expansion <strong>and</strong> function.<br />

J. Exp. Med. 201: 139–148.<br />

12. Comes, A., O. Rosso, A. M. Orengo, E. Di Carlo, C. Sorrent<strong>in</strong>o, R. Meazza,<br />

T. Piazza, B. Valzas<strong>in</strong>a, P. Nanni, M. P. Colombo, <strong>and</strong> S. Ferr<strong>in</strong>i. 2006.<br />

CD25 regulatory T cell depletion augments <strong>immunotherapy</strong> of micrometastases<br />

by an IL-<strong>21</strong>-secret<strong>in</strong>g cellular vacc<strong>in</strong>e. J. Immunol. 176: 1750 –1758.<br />

7335<br />

13. Di Carlo, E., A. Comes, A. M. Orengo, O. Rosso, R. Meazza, P. Musiani,<br />

M. P. Colombo, <strong>and</strong> S. Ferr<strong>in</strong>i. 2004. IL-<strong>21</strong> <strong>in</strong>duces tumor rejection by specific<br />

CTL <strong>and</strong> IFN--dependent CXC chemok<strong>in</strong>es <strong>in</strong> syngeneic mice. J. Immunol.<br />

172: 1540–1547.<br />

14. Ma, H. L., M. J. Whitters, R. F. Konz, M. Senices, D. A. Young, M. J. Grusby,<br />

M. Coll<strong>in</strong>s, <strong>and</strong> K. Dunussi-Joannopoulos. 2003. IL-<strong>21</strong> activates both <strong>in</strong>nate <strong>and</strong><br />

adaptive immunity to generate potent antitumor responses that require perfor<strong>in</strong><br />

but are <strong>in</strong>dependent of IFN-. J. Immunol. 171: 608–615.<br />

15. Allard, E. L., M. P. Hardy, J. Leignadier, M. Marquis, J. Rooney, D. Lehoux, <strong>and</strong><br />

N. Labrecque. 2007. Overexpression of IL-<strong>21</strong> promotes massive CD8 memory<br />

T cell accumulation. Eur. J. Immunol. 37: 3069–3077.<br />

16. Kasaian, M. T., M. J. Whitters, L. L. Carter, L. D. Lowe, J. M. Jussif,<br />

B. Deng, K. A. Johnson, J. S. Witek, M. Senices, R. F. Konz, et al. 2002.<br />

IL-<strong>21</strong> limits NK cell responses <strong>and</strong> promotes antigen-specific T cell activation:<br />

a mediator of the transition from <strong>in</strong>nate to adaptive immunity. Immunity<br />

16: 559 –569.<br />

17. Nakano, H., T. Kishida, H. Asada, M. Sh<strong>in</strong>-Ya, T. Sh<strong>in</strong>omiya, J. Imanishi,<br />

T. Shimada, S. Nakai, M. Takeuchi, Y. Hisa, <strong>and</strong> O. Mazda. 2006. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong><br />

triggers both cellular <strong>and</strong> humoral immune responses lead<strong>in</strong>g to therapeutic antitumor<br />

effects aga<strong>in</strong>st head <strong>and</strong> neck squamous cell carc<strong>in</strong>oma. J. Gene Med. 8:<br />

90–99.<br />

18. Daga, A., A. M. Orengo, R. M. Gangemi, D. Marubbi, M. Perera, A. Comes,<br />

S. Ferr<strong>in</strong>i, <strong>and</strong> G. Corte. 2007. Glioma <strong>immunotherapy</strong> by IL-<strong>21</strong> gene-modified<br />

cells or by recomb<strong>in</strong>ant IL-<strong>21</strong> <strong>in</strong>volves antibody responses. Int. J. Cancer 1<strong>21</strong>:<br />

1756–1763.<br />

19. Maeda, M., Y. Yanagawa, K. Iwabuchi, K. M<strong>in</strong>ami, Y. Nakamaru, D. Takagi,<br />

S. Fukuda, <strong>and</strong> K. Onoe. 2007. IL-<strong>21</strong> enhances dendritic cell ability to <strong>in</strong>duce<br />

<strong>in</strong>terferon- production by natural killer T cells. Immunobiology <strong>21</strong>2: 537–547.<br />

20. Davis, I. D., B. K. Skrumsager, J. Cebon, T. Nicholaou, J. W. Barlow,<br />

N. P. Moller, K. Skak, D. Lundsgaard, K. S. Frederiksen, P. Thygesen, <strong>and</strong><br />

G. A. McArthur. 2007. An open-label, two-arm, phase I trial of recomb<strong>in</strong>ant<br />

human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with metastatic melanoma. Cl<strong>in</strong>. Cancer Res.<br />

13: 3630–3636.<br />

<strong>21</strong>. Davis, I. D., B. Brady, R. F. Kefford, M. Millward, J. Cebon, B. K. Skrumsager,<br />

U. Mouritzen, L. T. Hansen, K. Skak, D. Lundsgaard, et al. 2009. Cl<strong>in</strong>ical <strong>and</strong><br />

biological efficacy of recomb<strong>in</strong>ant human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with stage IV<br />

malignant melanoma without prior treatment: a phase IIa trial. Cl<strong>in</strong>. Cancer Res.<br />

15: <strong>21</strong>23–<strong>21</strong>29.<br />

22. Frederiksen, K. S., D. Lundsgaard, J. A. Freeman, S. D. Hughes, T. L. Holm,<br />

B. K. Skrumsager, A. Petri, L. T. Hansen, G. A. McArthur, I. D. Davis, <strong>and</strong><br />

K. Skak. 2008. IL-<strong>21</strong> <strong>in</strong>duces <strong>in</strong> vivo immune activation of NK cells <strong>and</strong> CD8 <br />

T cells <strong>in</strong> patients with metastatic melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma. Cancer<br />

Immunol. Immunother. 57: 1439–1449.<br />

23. Bubier, J. A., T. J. Sproule, O. Foreman, R. Spolski, D. J. Shaffer, H. C. Morse,<br />

III, W. J. Leonard, <strong>and</strong> D. C. Roopenian. 2009. A critical role for IL-<strong>21</strong> receptor<br />

signal<strong>in</strong>g <strong>in</strong> the pathogenesis of systemic lupus erythematosus <strong>in</strong> BXSB-Yaa<br />

mice. Proc. Natl. Acad. Sci. USA 106: 1518–1523.<br />

24. Jang, E., S. H. Cho, H. Park, D. J. Paik, J. M. Kim, <strong>and</strong> J. Youn. 2009. A positive<br />

feedback loop of IL-<strong>21</strong> signal<strong>in</strong>g provoked by homeostatic CD4 . J. Immunol.<br />

182: 4649–4656.<br />

25. Spolski, R., M. Kashyap, C. Rob<strong>in</strong>son, Z. Yu, <strong>and</strong> W. J. Leonard. 2008. IL-<strong>21</strong><br />

signal<strong>in</strong>g is critical for the development of type I diabetes <strong>in</strong> the NOD mouse.<br />

Proc. Natl. Acad. Sci. USA 105: 14028–14033.<br />

26. Young, D. A., M. Hegen, H. L. Ma, M. J. Whitters, L. M. Albert, L. Lowe,<br />

M. Senices, P. W. Wu, B. Sibley, Y. Leathurby, T. P. Brown,<br />

C. Nickerson-Nutter, J. C. Keith, Jr., <strong>and</strong> M. Coll<strong>in</strong>s. 2007. Blockade of the<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>/<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> receptor pathway ameliorates disease <strong>in</strong> animal<br />

models of rheumatoid arthritis. Arthritis Rheum. 56: 1152–1163.<br />

27. F<strong>in</strong>a, D., M. Sarra, M. C. Fant<strong>in</strong>i, A. Rizzo, R. Caruso, F. Caprioli, C. Stolfi,<br />

I. Cardol<strong>in</strong>i, M. Dottori, M. Boirivant, F. Pallone, T. T. MacDonald, <strong>and</strong><br />

G. Monteleone. 2008. Regulation of gut <strong>in</strong>flammation <strong>and</strong> th17 cell response by<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>. Gastroenterology 134: 1038–1048.<br />

28. Gilfillan, S., C. J. Chan, M. Cella, N. M. Haynes, A. S. Rapaport, K. S. Boles,<br />

D. M. Andrews, M. J. Smyth, <strong>and</strong> M. Colonna. 2008. DNAM-1 promotes activation<br />

of cytotoxic lymphocytes by nonprofessional antigen-present<strong>in</strong>g cells <strong>and</strong><br />

tumors. J. Exp. Med. 205: 2965–2973.<br />

29. Smyth, M. J., N. Y. Crowe, D. G. Pellicci, K. Kyparissoudis, J. M. Kelly,<br />

K. Takeda, H. Yagita, <strong>and</strong> D. I. Godfrey. 2002. Sequential production of <strong>in</strong>terferon-<br />

by NK1.1 T cells <strong>and</strong> natural killer cells is essential for the antimetastatic<br />

effect of -galactosylceramide. Blood 99: 1259–1266.<br />

30. Swann, J. B., M. D. Vesely, A. Silva, J. Sharkey, S. Akira, R. D. Schreiber, <strong>and</strong><br />

M. J. Smyth. 2008. Demonstration of <strong>in</strong>flammation-<strong>in</strong>duced <strong>cancer</strong> <strong>and</strong> <strong>cancer</strong><br />

immunoedit<strong>in</strong>g dur<strong>in</strong>g primary tumorigenesis. Proc. Natl. Acad. Sci. USA 105:<br />

652–656.<br />

31. Crowe, N. Y., M. J. Smyth, <strong>and</strong> D. I. Godfrey. 2002. A critical role for natural<br />

killer T cells <strong>in</strong> immunosurveillance of methylcholanthrene-<strong>in</strong>duced sarcomas.<br />

J. Exp. Med. 196: 119–127.<br />

32. Swann, J. B., <strong>and</strong> M. J. Smyth. 2007. Immune surveillance of tumors. J. Cl<strong>in</strong>.<br />

Invest. 117: 1137–1146.<br />

33. Brady, J., Y. Hayakawa, M. J. Smyth, <strong>and</strong> S. L. Nutt. 2004. IL-<strong>21</strong> <strong>in</strong>duces the<br />

functional maturation of mur<strong>in</strong>e NK cells. J. Immunol. 172: 2048–2058.<br />

34. Karre, K., H. G. Ljunggren, G. Piontek, <strong>and</strong> R. Kiessl<strong>in</strong>g. 1986. Selective rejection<br />

of H-2-deficient lymphoma variants suggests alternative immune defence<br />

strategy. Nature 319: 675–678.<br />

35. Hayakawa, Y., J. M. Kelly, J. A. Westwood, P. K. Darcy, A. Diefenbach,<br />

D. Raulet, <strong>and</strong> M. J. Smyth. 2002. Cutt<strong>in</strong>g edge: tumor rejection mediated by<br />

88


7336 HOST IL-<strong>21</strong> IN TUMOR IMMUNITY<br />

NKG2D receptor-lig<strong>and</strong> <strong>in</strong>teraction is dependent upon perfor<strong>in</strong>. J. Immunol. 169:<br />

5377–5381.<br />

36. Carnaud, C., D. Lee, O. Donnars, S. H. Park, A. Beavis, Y. Koezuka, <strong>and</strong><br />

A. Bendelac. 1999. Cutt<strong>in</strong>g edge: cross-talk between cells of the <strong>in</strong>nate immune<br />

system: NKT cells rapidly activate NK cells. J. Immunol. 163:<br />

4647– 4650.<br />

37. Shimizu, K., A. Goto, M. Fukui, M. Taniguchi, <strong>and</strong> S. Fujii. 2007. Tumor<br />

cells loaded with -galactosylceramide <strong>in</strong>duce <strong>in</strong>nate NKT <strong>and</strong> NK cell-dependent<br />

resistance to tumor implantation <strong>in</strong> mice. J. Immunol. 178:<br />

2853–2861.<br />

38. Nishimura, T., H. Kitamura, K. Iwakabe, T. Yahata, A. Ohta, M. Sato, K. Takeda,<br />

K. Okumura, K. L. Van, T. Kawano, et al. 2000. The <strong>in</strong>terface between <strong>in</strong>nate <strong>and</strong><br />

acquired immunity: glycolipid antigen presentation by CD1d-express<strong>in</strong>g dendritic<br />

cells to NKT cells <strong>in</strong>duces the differentiation of antigen-specific cytotoxic<br />

T lymphocytes. Int. Immunol. 12: 987–994.<br />

39. Hermans, I. F., J. D. Silk, U. Gileadi, M. Salio, B. Mathew, G. Ritter, R. Schmidt,<br />

A. L. Harris, L. Old, <strong>and</strong> V. Cerundolo. 2003. NKT cells enhance CD4 <strong>and</strong><br />

CD8 T cell responses to soluble antigen <strong>in</strong> vivo through direct <strong>in</strong>teraction with<br />

dendritic cells. J. Immunol. 171: 5140–5147.<br />

40. Stober, D., I. Jomantaite, R. Schirmbeck, <strong>and</strong> J. Reimann. 2003. NKT cells provide<br />

help for dendritic cell-dependent prim<strong>in</strong>g of MHC class I-restricted CD8<br />

T cells <strong>in</strong> vivo. J. Immunol. 170: 2540–2548.<br />

41. Coquet, J. M., S. Chakravarti, M. J. Smyth, <strong>and</strong> D. I. Godfrey. 2008. Cutt<strong>in</strong>g<br />

edge: IL-<strong>21</strong> is not essential for Th17 differentiation or experimental autoimmune<br />

encephalomyelitis. J. Immunol. 180: 7097–7101.<br />

42. Nurieva, R., X. O. Yang, G. Mart<strong>in</strong>ez, Y. Zhang, A. D. Panopoulos, L. Ma,<br />

K. Schluns, Q. Tian, S. S. Watowich, A. M. Jetten, <strong>and</strong> C. Dong. 2007. Essential<br />

autocr<strong>in</strong>e regulation by IL-<strong>21</strong> <strong>in</strong> the generation of <strong>in</strong>flammatory T cells. Nature<br />

448: 480–483.<br />

43. Street, S. E., E. Cretney, <strong>and</strong> M. J. Smyth. 2001. Perfor<strong>in</strong> <strong>and</strong> <strong>in</strong>terferon- activities<br />

<strong>in</strong>dependently control tumor <strong>in</strong>itiation, growth, <strong>and</strong> metastasis. Blood 97:<br />

192–197.<br />

44. Smyth, M. J., N. Y. Crowe, <strong>and</strong> D. I. Godfrey. 2001. NK cells <strong>and</strong> NKT cells<br />

collaborate <strong>in</strong> host protection from methylcholanthrene-<strong>in</strong>duced fibrosarcoma.<br />

Int. Immunol. 13: 459–463.<br />

45. Hayakawa, Y., K. Takeda, H. Yagita, S. Kakuta, Y. Iwakura, K. L. Van, I. Saiki,<br />

<strong>and</strong> K. Okumura. 2001. Critical contribution of IFN- <strong>and</strong> NK cells, but not<br />

perfor<strong>in</strong>-mediated cytotoxicity, to anti-metastatic effect of -galactosylceramide.<br />

Eur. J. Immunol. 31: 1720–1727.<br />

46. Casey, K. A., <strong>and</strong> M. F. Mescher. 2007. IL-<strong>21</strong> promotes differentiation of naive<br />

CD8 T cells to a unique effector phenotype. J. Immunol. 178: 7640–7648.<br />

47. Skak, K., K. S. Frederiksen, <strong>and</strong> D. Lundsgaard. 2008. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> activates<br />

human natural killer cells <strong>and</strong> modulates their surface receptor expression. Immunology<br />

123: 575–583.<br />

48. Liu, S., G. Lizee, Y. Lou, C. Liu, W. W. Overwijk, G. Wang, <strong>and</strong> P. Hwu. 2007.<br />

IL-<strong>21</strong> synergizes with IL-7 to augment expansion <strong>and</strong> anti-tumor function of<br />

cytotoxic T cells. Int. Immunol. 19: 1<strong>21</strong>3–12<strong>21</strong>.<br />

49. Br<strong>and</strong>t, K., S. Bulfone-Paus, A. Jenckel, D. C. Foster, R. Paus, <strong>and</strong><br />

R. Ruckert. 2003. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> <strong>in</strong>hibits dendritic cell-mediated T cell activation<br />

<strong>and</strong> <strong>in</strong>duction of contact hypersensitivity <strong>in</strong> vivo. J. Invest. Dermatol.<br />

1<strong>21</strong>: 1379 –1382.<br />

50. Br<strong>and</strong>t, K., S. Bulfone-Paus, D. C. Foster, <strong>and</strong> R. Ruckert. 2003. <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong><br />

<strong>in</strong>hibits dendritic cell activation <strong>and</strong> maturation. Blood 102: 4090–4098.<br />

51. Yi, J. S., M. Du, <strong>and</strong> A. J. Zajac. 2009. A vital role for <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> the<br />

control of a chronic viral <strong>in</strong>fection. Science 324: 1572–1576.<br />

52. Elsaesser, H., K. Sauer, <strong>and</strong> D. G. Brooks. 2009. IL-<strong>21</strong> is required to control<br />

chronic viral <strong>in</strong>fection. Science 324: 1569–1572.<br />

53. Frohlich, A., J. Kisielow, I. Schmitz, S. Freigang, A. T. Shamshiev, J. Weber,<br />

B. J. Marsl<strong>and</strong>, A. Oxenius, <strong>and</strong> M. Kopf. 2009. IL-<strong>21</strong>R on T cells is critical for<br />

susta<strong>in</strong>ed functionality <strong>and</strong> control of chronic viral <strong>in</strong>fection. Science 324:<br />

1576–1580.<br />

54. Rodrigues, L., S. N<strong>and</strong>akumar, C. Bonor<strong>in</strong>o, B. T. Rouse, <strong>and</strong> U. Kumaraguru.<br />

2009. IL-<strong>21</strong> <strong>and</strong> IL-15 cytok<strong>in</strong>e DNA augments HSV specific effector <strong>and</strong> memory<br />

CD8 T cell response. Mol. Immunol. 46: 1494–1504.<br />

55. Spolski, R., H. P. Kim, W. Zhu, D. E. Levy, <strong>and</strong> W. J. Leonard. 2009. IL-<strong>21</strong><br />

mediates suppressive effects via its <strong>in</strong>duction of IL-10. J. Immunol. 182:<br />

2859–2867.<br />

56. Gelebart, P., Z. Zak, M. An<strong>and</strong>, J. en-Bard, H. M. Am<strong>in</strong>, <strong>and</strong> R. Lai. 2009.<br />

<strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> effectively <strong>in</strong>duces apoptosis <strong>in</strong> mantle cell lymphoma through a<br />

STAT1-dependent mechanism. Leukemia 23: 1836–1846.<br />

57. Ett<strong>in</strong>ger, R., S. Kuchen, <strong>and</strong> P. E. Lipsky. 2008. <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> as a target of<br />

<strong>in</strong>tervention <strong>in</strong> autoimmune disease. Ann. Rheum. Dis. 67 (Suppl. 3):<br />

iii83–iii86.<br />

89


Chapter 4 – Discussion<br />

The primary objective of this thesis was to evaluate the anti-tumor effects of IL-<strong>21</strong> prote<strong>in</strong><br />

therapy <strong>in</strong> relevant precl<strong>in</strong>ical <strong>cancer</strong> models <strong>and</strong> secondarily <strong>in</strong>vestigate the role of<br />

endogenous IL-<strong>21</strong> <strong>in</strong> tumor immunity.<br />

In Paper II <strong>and</strong> III, we have demonstrated that IL-<strong>21</strong> significantly <strong>in</strong>hibited growth of B16<br />

melanoma <strong>and</strong> RenCa renal cell carc<strong>in</strong>oma. These models were chosen based on their wide<br />

usage <strong>in</strong> <strong>cancer</strong> therapy studies <strong>and</strong> responsiveness to <strong>immunotherapy</strong> (Sayers et al., 1998;<br />

Wigg<strong>in</strong>ton et al., 1996; DeMatos et al., 1998; van et al., 1999). In order to mimic conditions <strong>in</strong><br />

humans, where the immune system poorly recognizes tumors, B16 <strong>and</strong> RenCa cells were<br />

<strong>in</strong>oculated <strong>in</strong> their respective syngeneic hosts, C57BL/6 <strong>and</strong> BALB/c mice, provid<strong>in</strong>g low<br />

<strong>in</strong>tr<strong>in</strong>sic immune reactivity. Furthermore, these mouse stra<strong>in</strong>s are fully immunocompetent <strong>in</strong><br />

contrast to e.g. xenograft models allow<strong>in</strong>g the entire immune repertoire to come <strong>in</strong> to play as<br />

it would <strong>in</strong> humans. However, the syngeneic <strong>in</strong>teraction between the tumor <strong>and</strong> host also<br />

makes it challeng<strong>in</strong>g to mount an immune response <strong>and</strong> these models therefore represent<br />

reasonable models for the test<strong>in</strong>g of tumor <strong>immunotherapy</strong>.<br />

In Paper II <strong>and</strong> III RenCa tumors were generally found to be more responsive to IL-<strong>21</strong> therapy<br />

compared to B16 tumors <strong>and</strong> showed higher densities of tumor <strong>in</strong>filtrat<strong>in</strong>g T cells. These<br />

observations were expected based on the literature show<strong>in</strong>g <strong>in</strong>creased immunogenicity of<br />

RenCa compared to B16 (Krup et al., 1999; Scheffer et al., 2003), <strong>and</strong> <strong>in</strong> Paper III these<br />

observations were extended to our models, where <strong>in</strong>creased expression of MHC class I was<br />

found on RenCa compare to B16 cells. Nevertheless, B16 <strong>and</strong> RenCa are both aggressive<br />

tumors; <strong>in</strong> Paper II <strong>and</strong> III vehicle treated tumors reached a tumor size of ~1000 mm 3 with<strong>in</strong><br />

16-22 days <strong>and</strong> both tumors have been found to kill their host with<strong>in</strong> approximately 25 days<br />

post <strong>in</strong>traperitoneal <strong>in</strong>jection (Krup et al., 1999). Thus, B16 <strong>and</strong> RenCa are aggressive<br />

precl<strong>in</strong>ical tumor models with different <strong>in</strong>herent immunogenicity <strong>and</strong> it was encourag<strong>in</strong>g that<br />

significant anti-tumor effect was obta<strong>in</strong>ed <strong>in</strong> both models despite their limited therapeutic<br />

w<strong>in</strong>dow. The use of therapeutic adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong> both Paper II <strong>and</strong> III, where<br />

treatment of even larger established tumors results <strong>in</strong> significant tumor-growth <strong>in</strong>hibition,<br />

further strengthens the results. Based on these model characteristics, we consider the results<br />

obta<strong>in</strong>ed <strong>in</strong> Paper II <strong>and</strong> III cl<strong>in</strong>ically relevant.<br />

However, several limitations to these models should be acknowledged. First, both models rely<br />

on transplantation of 10 5 or more tumor cells, which poorly reflect the slow development of<br />

human <strong>cancer</strong>, where the immune system gradually tolerates a tumor. Instead, the <strong>in</strong>jection of<br />

tumor cells could generate considerable cell death, which abruptly exposes the immune system<br />

91


to potentially immunogenic antigens. Second, tumor cells were <strong>in</strong>jected subcutaneously, which<br />

may represent a site with enhanced immunosurveillance because of its critical junction<br />

between the host <strong>and</strong> the environment (Girardi, 2007), <strong>and</strong> although this site has some<br />

anatomical relevance for melanomas, it has much less so for renal <strong>cancer</strong>. Third, the<br />

transplantable tumors used here have a low frequency of spontaneous metastasis, <strong>and</strong> the<br />

effect of IL-<strong>21</strong> on spontaneous metastasis was therefore not evaluated, although this is the<br />

predom<strong>in</strong>ant cause of death <strong>in</strong> humans. An alternative to transplantable models could have<br />

been transgenic <strong>cancer</strong> models, which more closely mimic the slow process of human <strong>cancer</strong><br />

development <strong>and</strong> now <strong>in</strong>clude many organ-specific models (Ostr<strong>and</strong>-Rosenberg, 2004).<br />

However, <strong>cancer</strong>s <strong>in</strong> these models often take months to develop with differential onset <strong>and</strong><br />

disease penetrance, mak<strong>in</strong>g controlled pharmacological test<strong>in</strong>g of drugs very difficult. S<strong>in</strong>ce<br />

there are pros <strong>and</strong> cons for all animal models results should preferably be reproduced <strong>in</strong> more<br />

than one model. Thus, it was encourag<strong>in</strong>g to show qualitatively similar anti-tumor effect <strong>and</strong><br />

similar effect on the density of tumor <strong>in</strong>filtrat<strong>in</strong>g T cells <strong>in</strong> both B16 <strong>and</strong> RenCa tumors,<br />

although of different magnitudes.<br />

In Paper II the anti-tumor efficacy of subcutaneous adm<strong>in</strong>istration appeared greater than<br />

<strong>in</strong>traperitoneal adm<strong>in</strong>istration particularly <strong>in</strong> the RenCa model <strong>and</strong> <strong>in</strong> Paper III <strong>in</strong>tratumoral<br />

adm<strong>in</strong>istration showed superior long-term tumor-growth <strong>in</strong>hibition compared to subcutaneous<br />

adm<strong>in</strong>istration <strong>in</strong> RenCa. To compare the anti-tumor efficacies <strong>in</strong> Paper II <strong>and</strong> III across the<br />

different adm<strong>in</strong>istration routes <strong>and</strong> various start<strong>in</strong>g tumor sizes the classical T/C% value has<br />

been used (see Table 1 <strong>and</strong> 2). The T/C% value describes the ratio of the mean endpo<strong>in</strong>t<br />

tumor sizes of treated over controls, hence a lower T/C% value equals better efficacy. It has<br />

traditionally been used to compare the efficacy of chemotherapies <strong>in</strong> precl<strong>in</strong>ical studies <strong>and</strong><br />

shown to be predictive of their response rates <strong>in</strong> cl<strong>in</strong>ical trials aga<strong>in</strong>st certa<strong>in</strong> <strong>cancer</strong>s<br />

(Voskoglou-Nomikos et al., 2003).<br />

T/C% values support the notion that <strong>in</strong>traperitoneal adm<strong>in</strong>istration is less efficacious compared<br />

to subcutaneous adm<strong>in</strong>istration <strong>and</strong> that <strong>in</strong>tratumoral adm<strong>in</strong>istration has the greatest efficacy<br />

of the evaluated adm<strong>in</strong>istration routes. These data suggest that <strong>in</strong>tratumoral adm<strong>in</strong>istration is<br />

a more effective adm<strong>in</strong>istration route for IL-<strong>21</strong>. Unfortunately, <strong>in</strong>tratumoral adm<strong>in</strong>istration is<br />

not very practical, s<strong>in</strong>ce metastatic <strong>cancer</strong> rarely is available for <strong>in</strong>tratumoral <strong>in</strong>jections.<br />

However, <strong>in</strong>tratumoral <strong>in</strong>jections could help <strong>in</strong>crease immune responses toward primary<br />

tumors, if such are accessible, <strong>and</strong> results from IL-2 cl<strong>in</strong>ical trials have shown that<br />

<strong>in</strong>tratumoral adm<strong>in</strong>istration could <strong>in</strong>crease the response rates <strong>and</strong> lower side effects <strong>in</strong> soft<br />

tissue sk<strong>in</strong> metastasis of melanoma (Radny et al., 2003).<br />

The T/C% values also show that subcutaneous adm<strong>in</strong>istration is a feasible adm<strong>in</strong>istration route<br />

for IL-<strong>21</strong>. Thus, subcutaneous adm<strong>in</strong>istration of IL-<strong>21</strong> deserves cl<strong>in</strong>ical <strong>in</strong>vestigation s<strong>in</strong>ce it<br />

92


could potentially lower adverse events while susta<strong>in</strong><strong>in</strong>g efficacy as previously shown with IL-2<br />

(Geertsen et al., 2004; Negrier et al., 2008). Also, subcutaneous adm<strong>in</strong>istration might allow<br />

outpatient treatment given the moderate toxicity of IL-<strong>21</strong> (Davis et al., 2007; Davis et al.,<br />

2009).<br />

Table 1. Summary of efficacy <strong>in</strong> B16 melanomas<br />

Treatment start (~mean tumor size) Paper/Figure Dose & schedule T/C% * P-value $<br />

& route of adm<strong>in</strong>istration<br />

Early treatment (~5mm 3 )<br />

I.p. II/2A 50 μg daily 30


suggest that earlier treatment start with smaller tumor burdens <strong>and</strong> cont<strong>in</strong>ued presence of IL-<br />

<strong>21</strong> benefit the anti-tumor effect. Unfortunately, this notion contrasts the general practice <strong>in</strong><br />

modern <strong>cancer</strong> therapy, where new experimental treatments must <strong>in</strong>itially show efficacy <strong>in</strong><br />

pre-treated patients with end-stage disease <strong>in</strong> order to be cont<strong>in</strong>ued, <strong>and</strong> this has also been<br />

the case for IL-<strong>21</strong> (Davis et al., 2009). Undoubtedly, many experimental treatments would<br />

benefit from trials <strong>in</strong> patients with less advanced disease. Cytok<strong>in</strong>es are no exception, s<strong>in</strong>ce<br />

they function to boost weak <strong>in</strong>herent immune responses, which might become progressively<br />

more exhausted as disease progresses caused by the tumor-<strong>in</strong>tr<strong>in</strong>sic immunosuppression as<br />

presented <strong>in</strong> figure 1 of this thesis.<br />

In Paper II <strong>and</strong> III, subcutaneous <strong>and</strong> <strong>in</strong>tratumoral adm<strong>in</strong>istration of IL-<strong>21</strong> significantly<br />

<strong>in</strong>creased the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells, which were required for <strong>and</strong> correlated<br />

with the anti-tumor effect. Furthermore, the <strong>in</strong>creased effect of <strong>in</strong>tratumoral adm<strong>in</strong>istration of<br />

IL-<strong>21</strong> was associated with further <strong>in</strong>creased density <strong>and</strong> activity of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cells.<br />

These results suggest that the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells might represent a<br />

relevant biological marker of IL-<strong>21</strong> efficacy that could prove cl<strong>in</strong>ically useful. Although the<br />

mechanism beh<strong>in</strong>d this <strong>in</strong>crease <strong>in</strong> CD8 + T cell <strong>in</strong>filtration still needs to be clarified, these<br />

results also suggest that IL-<strong>21</strong> is able to overcome a critical barrier for successful tumor<br />

<strong>immunotherapy</strong>, namely low immune cell <strong>in</strong>filtration <strong>and</strong> function as outl<strong>in</strong>ed <strong>in</strong> figure 1 of this<br />

thesis. Furthermore, <strong>in</strong> Paper III <strong>in</strong>tratumoral IL-<strong>21</strong> adm<strong>in</strong>itration showed an <strong>in</strong>crease <strong>in</strong> the<br />

density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD4 + T cells but not T regs , suggest<strong>in</strong>g that IL-<strong>21</strong> also is able to<br />

selectively <strong>in</strong>crease certa<strong>in</strong> T cells subsets <strong>in</strong> the tumor environment, without <strong>in</strong>creas<strong>in</strong>g<br />

suppressive T cells.<br />

Results from <strong>cancer</strong> patients have clearly shown what benefit <strong>in</strong>creased CD8 + T cell <strong>in</strong>filtration<br />

<strong>in</strong> tumors <strong>and</strong> particularly an <strong>in</strong>creased CD8 + T cell/T reg ratio could have, if these f<strong>in</strong>d<strong>in</strong>gs are<br />

translatable to humans (Clemente et al., 1996; Galon et al., 2006; Pages et al., 2005; Gao et<br />

al., 2007; Naito et al., 1998; Piersma et al., 2007; Sato et al., 2005; Sharma et al., 2007;<br />

Schumacher et al., 2001; Zhang et al., 2003). However, this rema<strong>in</strong>s an open question s<strong>in</strong>ce<br />

the evaluation of tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes <strong>in</strong> tumor biopsies rema<strong>in</strong>s to be <strong>in</strong>cluded <strong>in</strong> IL-<br />

<strong>21</strong> cl<strong>in</strong>ical trials. But, other signs of relevant immune activation from Paper II <strong>and</strong> III seem to<br />

be translatable. In Paper III we show that the expression of granzyme B <strong>and</strong> IFNγ was<br />

<strong>in</strong>creased <strong>in</strong> tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells. Consistently, IL-<strong>21</strong> adm<strong>in</strong>istration <strong>in</strong> cl<strong>in</strong>ical trials<br />

<strong>in</strong>creased granzyme B <strong>and</strong> IFNγ expression <strong>in</strong> CD8 + T cells from PBMCs (Davis et al., 2009;<br />

Frederiksen et al., 2008). In addition, IL-<strong>21</strong> adm<strong>in</strong>istration <strong>in</strong> cl<strong>in</strong>ical trials <strong>in</strong>creased the<br />

fractions of CD62L + CD4 + <strong>and</strong> CD8 + T cells <strong>in</strong> PBMCs (Davis et al., 2009). This was thought to<br />

be associated with the frequent f<strong>in</strong>d<strong>in</strong>g of lymphopenia <strong>in</strong> treated patients caused by <strong>in</strong>creased<br />

94


secondary lymphoid redistribution. In Paper III, <strong>in</strong>tratumoral adm<strong>in</strong>istration of IL-<strong>21</strong> resulted<br />

<strong>in</strong> <strong>in</strong>creased numbers of CD62L + CD4 + <strong>and</strong> CD8 + T cells <strong>in</strong> tumor-dra<strong>in</strong><strong>in</strong>g lymph nodes caused<br />

primarily by non-proliferative effects, <strong>in</strong>dicat<strong>in</strong>g analogous activities <strong>in</strong> our model. Still, none of<br />

these cl<strong>in</strong>ical biomarkers were associated with anti-tumor responses show<strong>in</strong>g the need for new<br />

predictive markers of IL-<strong>21</strong> anti-tumor efficacy.<br />

In Paper IV, the quest to unveil the role of endogenous IL-<strong>21</strong> <strong>in</strong> <strong>cancer</strong> control surpris<strong>in</strong>gly led<br />

to the conclusion that endogenous IL-<strong>21</strong> is not required for tumor immunity, but rather<br />

restricted CD8 + T cell expansion <strong>and</strong> the control of immunogenic tumors. Consider<strong>in</strong>g the<br />

literature, these results were counter<strong>in</strong>tuitive, s<strong>in</strong>ce endogenous IL-<strong>21</strong> ma<strong>in</strong>ly has been shown<br />

to promote pro<strong>in</strong>flammatory conditions <strong>and</strong> autoimmunity as described <strong>in</strong> Paper I. However, as<br />

it was highlighted <strong>in</strong> Paper I, the actions of IL-<strong>21</strong> are very context dependent <strong>and</strong> both the<br />

tim<strong>in</strong>g of IL-<strong>21</strong> adm<strong>in</strong>istration <strong>and</strong> the level of co-stimulation can greatly <strong>in</strong>fluence the<br />

outcome of IL-<strong>21</strong> stimulated immune responses. This notion is exemplified by the effect IL-<strong>21</strong><br />

has on B cells; IL-<strong>21</strong> stimulation of unstimulated B cells <strong>in</strong>duces apoptosis, whereas the<br />

addition of B cell receptor <strong>and</strong> CD40 co-stimulation enables IL-<strong>21</strong> to drive significant B cell<br />

differentiation (Ett<strong>in</strong>ger et al., 2005). Very recently, it was found that endogenous IL-<strong>21</strong> has a<br />

critical role <strong>in</strong> CD8 + T cell control of chronic viral <strong>in</strong>fections (Elsaesser et al., 2009; Frohlich et<br />

al., 2009; Yi et al., 2009), but <strong>in</strong> one of these studies it was also shown that endogenous IL-<strong>21</strong><br />

restricted antigen-specific CD8 + T cell expansion dur<strong>in</strong>g the acute phase of <strong>in</strong>fections<br />

(Elsaesser et al., 2009). These results are further evidence of the complex role IL-<strong>21</strong> has on<br />

immune responses <strong>and</strong> support a dichotomous role of IL-<strong>21</strong> <strong>in</strong> CD8 + T cell immunity as<br />

suggested here <strong>in</strong> Paper IV. However, they also suggest that endogenous IL-<strong>21</strong> could play a<br />

role <strong>in</strong> a more chronic CD8 + T cell-controlled tumor model, perhaps not thoroughly addressed<br />

<strong>in</strong> Paper IV. Still, the MCA sarcoma model used <strong>in</strong> Paper IV is a more chronic tumor model that<br />

apart from the generation of NK <strong>and</strong> NKT cell-controlled tumors (Crowe et al., 2002; Smyth et<br />

al., 2001) also has been shown to give rise to occult <strong>cancer</strong>s conta<strong>in</strong>ed by adaptive immunity<br />

(Koebel et al., 2007). Despite the unchanged <strong>in</strong>cidence <strong>and</strong> tumor-growth of MCA sarcomas <strong>in</strong><br />

IL-<strong>21</strong>-deficient mice, focus on more chronic tumor models controlled by CD8 + T cells <strong>in</strong> future<br />

studies could conta<strong>in</strong> a role for IL-<strong>21</strong>.<br />

The results <strong>in</strong> Paper IV suggest that neutralization of IL-<strong>21</strong>, which has been suggested as a<br />

potential treatment for several autoimmune diseases as reviewed <strong>in</strong> Paper I, does not overtly<br />

risk more frequent <strong>cancer</strong> development or compromised immunity toward <strong>cancer</strong>s. Rather,<br />

based on the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this thesis, short-term <strong>and</strong> well-timed neutralization of host IL-<strong>21</strong><br />

followed by adm<strong>in</strong>istration of IL-<strong>21</strong> prote<strong>in</strong> might even enhance tumor immunity.<br />

95


Dichotomous features are not unique to IL-<strong>21</strong>. IL-2, which is approved as therapy for<br />

metastatic melanoma <strong>and</strong> advanced renal cell carc<strong>in</strong>oma, shows a very overt paradox <strong>in</strong> its<br />

actions. Orig<strong>in</strong>ally, IL-2 was identified as a critical T cell growth factor <strong>in</strong> vitro <strong>and</strong> therefore<br />

assumed to be an important driver of T cell expansion <strong>in</strong> vivo, able to kick start tumor immune<br />

responses. However, this theory was questioned when the ma<strong>in</strong> phenotype found <strong>in</strong> IL-2-<br />

deficent mice was lymphoproliferation with lethal multi-organ autoimmunity. The discovery of<br />

T reg cell biology has now clarified that IL-2 is <strong>in</strong>dispensable for T reg cell development, but<br />

dispensable for immunity, <strong>and</strong> that T reg deficiency is responsible for the phenotype <strong>in</strong> IL-2-<br />

deficient mice (reviewed by Malek <strong>and</strong> Bayer, 2004). Although the <strong>in</strong> vivo biology of IL-2 is still<br />

<strong>in</strong>completely understood, IL-2 has also shown important functions for CD8 + T cell immunity <strong>in</strong><br />

vivo (Antony et al., 2006), which could expla<strong>in</strong> the anti-tumor effects seen <strong>in</strong> patients.<br />

In a few selected patients, IL-2 shows remarkable cl<strong>in</strong>ical responses, while most do not seem<br />

to respond at all (Atk<strong>in</strong>s et al., 1999; McDermott <strong>and</strong> Atk<strong>in</strong>s, 2006; Klapper et al., 2008). The<br />

oppos<strong>in</strong>g actions of IL-2 comb<strong>in</strong>ed with the <strong>in</strong>completely understood immune status of patients<br />

prior to treatment are perhaps the reason for these <strong>in</strong>consistencies. Arguably, IL-2 is beneficial<br />

for certa<strong>in</strong> <strong>cancer</strong> patients, but as a cytok<strong>in</strong>e for <strong>cancer</strong> <strong>immunotherapy</strong> it may be far from<br />

optimal <strong>and</strong> the exploration of alternatives is clearly warranted.<br />

IL-2 has been known for more than 25 years, <strong>and</strong> despite extensive studies, its critical activity<br />

on T regs was just realized <strong>in</strong> the last decade. IL-<strong>21</strong> is only 9 years old <strong>and</strong> has so far shown<br />

pleiotropic actions ma<strong>in</strong>ly of pro<strong>in</strong>flammatory nature. But, beside the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this thesis<br />

immunosuppressive activities of IL-<strong>21</strong> are now beg<strong>in</strong>n<strong>in</strong>g to emerge (Spolski et al., 2009), <strong>and</strong><br />

it is likely that more are await<strong>in</strong>g discovery. As presented <strong>in</strong> this thesis, endogenous IL-<strong>21</strong>-<br />

signal<strong>in</strong>g limits CD8 + T cell expansion <strong>and</strong> tumor immunity whereas the adm<strong>in</strong>istration of<br />

recomb<strong>in</strong>ant IL-<strong>21</strong> prote<strong>in</strong> enhances CD8 + T cell-mediated anti-tumor immune responses.<br />

Obviously, these paradoxical functions of IL-<strong>21</strong> should be the focus of future studies, but<br />

acknowledg<strong>in</strong>g that IL-<strong>21</strong> has oppos<strong>in</strong>g activities will also <strong>in</strong>crease the need to carefully<br />

determ<strong>in</strong>e when <strong>and</strong> who to treat with IL-<strong>21</strong>. Clarification of the biology beh<strong>in</strong>d the<br />

immunosuppressive activities of IL-<strong>21</strong> will be detrimental to its use with consideration for both<br />

the tim<strong>in</strong>g <strong>and</strong> duration of IL-<strong>21</strong> adm<strong>in</strong>istration. Because <strong>immunotherapy</strong> is relatively new <strong>in</strong><br />

<strong>cancer</strong> therapy, traditional evaluations of predictive factors for treatment efficacy have ma<strong>in</strong>ly<br />

focused on non-immunological parameters (Motzer et al., 2004). However, greater focus on<br />

clarify<strong>in</strong>g patient immune status prior to treatment with identification of immunological factors<br />

predictive of treatment efficacy might help to better select patients that would benefit from<br />

<strong>immunotherapy</strong> <strong>in</strong>clud<strong>in</strong>g IL-<strong>21</strong>. Recently, such efforts have been employed <strong>and</strong> shown to be<br />

relevant for the outcome of IL-2 therapy (Donskov <strong>and</strong> von der, 2006; Jensen et al., 2009).<br />

96


Based on the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this thesis, characteriz<strong>in</strong>g the level <strong>and</strong> proportions of different tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g lymphocytes might be <strong>in</strong>terest<strong>in</strong>g to explore for this purpose.<br />

Collectively, the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this thesis outl<strong>in</strong>e the ma<strong>in</strong> challenge for the use of cytok<strong>in</strong>es as<br />

therapies or as therapeutic targets – their pleiotropic <strong>and</strong> dichotomous actions. A more<br />

thorough underst<strong>and</strong><strong>in</strong>g of the biology of cytok<strong>in</strong>es is essential to yield therapeutic benefit of<br />

their adm<strong>in</strong>istration or neutralization <strong>in</strong> human disease. This thesis has contributed with new<br />

<strong>in</strong>sights <strong>in</strong>to IL-<strong>21</strong> anti-tumor biology <strong>and</strong> shown the role of IL-<strong>21</strong> as a cytok<strong>in</strong>e <strong>in</strong> host tumor<br />

immunity. Specifically, IL-<strong>21</strong> showed significant anti-tumor effects <strong>in</strong> precl<strong>in</strong>ical models with<br />

cl<strong>in</strong>ically relevant immunomodulatory effects, whereas host IL-<strong>21</strong> was not required for tumor<br />

immunity but showed a suppressive role dur<strong>in</strong>g CD8 + T cell-dependent tumor immunity. These<br />

results support the future development of IL-<strong>21</strong> <strong>in</strong> oncology, but highlight the need for<br />

cont<strong>in</strong>ued studies of IL-<strong>21</strong> anti-tumor biology to fully underst<strong>and</strong> its pleiotropic actions.<br />

97


Chapter 5 – Conclusion<br />

From part 1 <strong>in</strong> this thesis it can be concluded that:<br />

1. IL-<strong>21</strong> prote<strong>in</strong> monotherapy therapy can <strong>in</strong>hibit established syngeneic tumor growth <strong>in</strong> two<br />

aggressive subcutaneous tumor models with different immunogenicity: B16 melanoma<br />

<strong>and</strong> RenCa renal cell carc<strong>in</strong>oma.<br />

2. Subcutaneous adm<strong>in</strong>istration of IL-<strong>21</strong> has improved pharmacok<strong>in</strong>etics <strong>and</strong> at least as<br />

good or better efficacy compared to <strong>in</strong>traperitoneal adm<strong>in</strong>istration, suggest<strong>in</strong>g that<br />

subcutaneous adm<strong>in</strong>istration of IL-<strong>21</strong> could be applicable <strong>in</strong> future cl<strong>in</strong>ical trials.<br />

3. CD8 + T cells are essential for the anti-tumor effect of IL-<strong>21</strong> <strong>in</strong> the models used <strong>and</strong> IL-<strong>21</strong><br />

<strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells, which correlates with tumorgrowth<br />

<strong>in</strong>hibition, suggest<strong>in</strong>g that the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells could be a<br />

relevant biological marker of IL-<strong>21</strong> anti-tumor activity.<br />

4. Compared to subcutaneous adm<strong>in</strong>istration, <strong>in</strong>tratumoral adm<strong>in</strong>istration of IL-<strong>21</strong> <strong>in</strong>creases<br />

long-term tumor-growth <strong>in</strong>hibition, <strong>and</strong> <strong>in</strong>creases the density, exocytotic activity, <strong>and</strong><br />

granzyme B <strong>and</strong> IFNγ expression of tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells. Intratumoral<br />

adm<strong>in</strong>istration of IL-<strong>21</strong> selectively <strong>in</strong>creases the density of tumor <strong>in</strong>filtrat<strong>in</strong>g CD4 + T cells<br />

<strong>and</strong> not T regs , <strong>and</strong> <strong>in</strong>creases the number of naïve T cells <strong>and</strong> proliferation of activated T<br />

cells <strong>in</strong> tumor dra<strong>in</strong><strong>in</strong>g lymph nodes. Together, these data suggest that local IL-<strong>21</strong><br />

adm<strong>in</strong>istration benefits the tumor environment, can overcome tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T<br />

cell disability <strong>and</strong> deserves to be cl<strong>in</strong>ically <strong>in</strong>vestigated when this adm<strong>in</strong>istration route is<br />

accessible.<br />

From part 2 <strong>in</strong> this thesis it can be concluded that:<br />

1. Endogenous IL-<strong>21</strong> is not required for tumor immunosurveillance, NK, NKT <strong>and</strong> CD8 + T<br />

cell-dependent primary tumor immunity, or for secondary CD8 + T cell memory responses.<br />

2. Rather, endogenous IL-<strong>21</strong> restricts CD8 + T cell expansion <strong>and</strong> immunity toward<br />

immunogenic tumors, <strong>in</strong>dicat<strong>in</strong>g an unexpected immunosuppressive role of IL-<strong>21</strong> <strong>in</strong> CD8 +<br />

T cell immunity.<br />

Taken together, the results presented <strong>in</strong> this thesis support the cl<strong>in</strong>ical <strong>in</strong>vestigation of IL-<strong>21</strong><br />

prote<strong>in</strong> therapy for the treatment of <strong>cancer</strong>, but reveal a dichotomous role for IL-<strong>21</strong> <strong>in</strong> tumor<br />

immunity.<br />

99


100


Chapter 6 – Future perspectives<br />

The ultimate goal of any <strong>cancer</strong> therapy is to cure the disease. While the f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> this thesis<br />

that IL-<strong>21</strong> significantly <strong>in</strong>hibited tumor growth <strong>and</strong> <strong>in</strong>creased tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells is<br />

encourag<strong>in</strong>g, IL-<strong>21</strong> was not curative <strong>in</strong> our models. In early cl<strong>in</strong>ical trials, IL-<strong>21</strong> has shown<br />

moderate response rates, <strong>and</strong> although a couple of complete responses were achieved, IL-<strong>21</strong><br />

alone was not curative (Davis et al., 2007; Davis et al., 2009). A likely way forward for IL-<strong>21</strong><br />

is exploration of comb<strong>in</strong>ation strategies. For this purpose, a better underst<strong>and</strong><strong>in</strong>g of IL-<strong>21</strong><br />

biology <strong>and</strong> its dichotomous actions as highlighted <strong>in</strong> this thesis will be essential to ensure the<br />

basis for a rational selection of comb<strong>in</strong>ation partners. Specific questions generated by this<br />

thesis <strong>in</strong>clude; what is the causative mechanism beh<strong>in</strong>d the IL-<strong>21</strong>-<strong>in</strong>duced <strong>in</strong>crease <strong>in</strong> tumor<br />

<strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells? What circumstances determ<strong>in</strong>e whether IL-<strong>21</strong> suppresses or promotes<br />

tumor immunity? Where <strong>and</strong> when is IL-<strong>21</strong> produced <strong>and</strong> by what cells dur<strong>in</strong>g tumor immune<br />

responses? Answers to these questions may help to clarify the best way to apply IL-<strong>21</strong>, exp<strong>and</strong><br />

the knowledge about what triggers IL-<strong>21</strong> production physiologically <strong>and</strong> the context <strong>in</strong> which it<br />

is produced, <strong>and</strong> potentially identify new targets or comb<strong>in</strong>ation options to pursue.<br />

Results from the treatment of human immunodeficiency virus (HIV), another highly mutat<strong>in</strong>g<br />

human threat, clearly show the shortage of s<strong>in</strong>gle targeted therapies <strong>and</strong> the success obta<strong>in</strong>ed<br />

by multi-comb<strong>in</strong>ations (Palella, Jr. et al., 1998). These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that to restra<strong>in</strong> a<br />

mutat<strong>in</strong>g enemy it is best to attack from several fronts. For this reason, it is very likely that<br />

the ultimate goal <strong>in</strong> <strong>cancer</strong> therapy will be achieved through multi-comb<strong>in</strong>ation therapy.<br />

An important feature of a drug to be used for comb<strong>in</strong>ation therapy is that the drug is well<br />

tolerated <strong>and</strong> so far this has been the case <strong>in</strong> the early cl<strong>in</strong>ical trials of IL-<strong>21</strong> (Davis et al.,<br />

2007; Davis et al., 2009). In <strong>cancer</strong>, most novel treatments are <strong>in</strong>itially tested <strong>in</strong> end-stage<br />

<strong>and</strong> pre-treated patients, so it is likewise important that a new drug can potentially work <strong>in</strong><br />

concert with conventional drugs. Here, we have recently shown <strong>in</strong> experimental models that<br />

IL-<strong>21</strong> has additive effects <strong>in</strong> comb<strong>in</strong>ation with IFNα <strong>and</strong> is feasible <strong>in</strong> comb<strong>in</strong>ation with several<br />

chemotherapies (Eriksen et al., 2009; Skak et al., 2009 (Cytok<strong>in</strong>e) <strong>in</strong> press<br />

doi:10.1016/j.cyto.2009.07.039). Obviously, the ability to provide additive or synergistic<br />

effects to other therapies is vital for a comb<strong>in</strong>ation drug, <strong>and</strong> here IL-<strong>21</strong> has shown additional<br />

anti-tumor effects together with several <strong>in</strong>terest<strong>in</strong>g comb<strong>in</strong>ation partners as recently reviewed<br />

(Skak et al., 2008).<br />

S<strong>in</strong>ce IL-<strong>21</strong> does not rely on a specific target for its actions, it represents an attractive partner<br />

to many targeted therapies. Experimental evidence of this has been shown us<strong>in</strong>g a triple<br />

immune-stimulat<strong>in</strong>g antibody cocktail together with IL-<strong>21</strong>, which resulted <strong>in</strong> cures of large<br />

101


established tumors (Smyth et al., 2008). Such results show that cl<strong>in</strong>ical <strong>in</strong>vestigation of multicomb<strong>in</strong>ation<br />

therapy should be prioritized <strong>and</strong> that IL-<strong>21</strong> is an attractive partner for this<br />

purpose.<br />

In humans, the currently most successful immunotherapeutic protocol relies on a comb<strong>in</strong>ation<br />

of non-myeloablative radio- or chemotherapy followed by adoptive transfer of ex vivo<br />

exp<strong>and</strong>ed antigen-specific tumor <strong>in</strong>filtrat<strong>in</strong>g CD8 + T cells, which has shown remarkable<br />

response rates <strong>and</strong> cures <strong>in</strong> selected patients with metastatic melanoma (Rosenberg et al.,<br />

2008). Traditionally, IL-2 has been used for the ex vivo expansion of tumor-reactive T cells,<br />

but <strong>in</strong>terest<strong>in</strong>gly, culture experiments with IL-<strong>21</strong> resulted <strong>in</strong> less differentiated CD8 + T cells<br />

with a more robust <strong>in</strong> vivo expansion capacity <strong>and</strong> anti-tumor effect (H<strong>in</strong>richs et al., 2008).<br />

These results highlight another <strong>in</strong>terest<strong>in</strong>g aspect of IL-<strong>21</strong> biology that deserves future<br />

attention.<br />

The implications of IL-<strong>21</strong> <strong>in</strong> autoimmune diseases as outl<strong>in</strong>ed <strong>in</strong> Paper I <strong>and</strong> its emerg<strong>in</strong>g<br />

immunosuppressive activities, further emphasize the multifaceted research needed to<br />

comprehend IL-<strong>21</strong>. Only the future will tell whether IL-<strong>21</strong> ends up as a <strong>cancer</strong> therapy, will be<br />

part of a multi-comb<strong>in</strong>ation strategy or perhaps be targeted for neutralization <strong>in</strong> autoimmune<br />

diseases. Cont<strong>in</strong>ued research to fully underst<strong>and</strong> the biology of this fasc<strong>in</strong>at<strong>in</strong>g cytok<strong>in</strong>e will be<br />

essential to make the most of it.<br />

102


References<br />

1. Antony,P.A., Paulos,C.M., Ahmadzadeh,M., Akp<strong>in</strong>arli,A., Palmer,D.C., Sato,N., Kaiser,A., H<strong>in</strong>richs,C.S.,<br />

Klebanoff,C.A., Tagaya,Y., <strong>and</strong> Restifo,N.P. (2006). <strong>Interleuk<strong>in</strong></strong>-2-dependent mechanisms of tolerance <strong>and</strong><br />

immunity <strong>in</strong> vivo. J. Immunol. 176, 5255-5266.<br />

2. Atk<strong>in</strong>s,M.B., Lotze,M.T., Dutcher,J.P., Fisher,R.I., Weiss,G., Margol<strong>in</strong>,K., Abrams,J., Sznol,M., Park<strong>in</strong>son,D.,<br />

Hawk<strong>in</strong>s,M., Paradise,C., Kunkel,L., <strong>and</strong> Rosenberg,S.A. (1999). High-dose recomb<strong>in</strong>ant <strong>in</strong>terleuk<strong>in</strong> 2 therapy<br />

for patients with metastatic melanoma: analysis of 270 patients treated between 1985 <strong>and</strong> 1993. J. Cl<strong>in</strong>.<br />

Oncol. 17, <strong>21</strong>05-<strong>21</strong>16.<br />

3. Blattman,J.N. <strong>and</strong> Greenberg,P.D. (2004). Cancer <strong>immunotherapy</strong>: a treatment for the masses. Science 305,<br />

200-205.<br />

4. Bubier,J.A., Sproule,T.J., Foreman,O., Spolski,R., Shaffer,D.J., Morse,H.C., III, Leonard,W.J., <strong>and</strong><br />

Roopenian,D.C. (2009). A critical role for IL-<strong>21</strong> receptor signal<strong>in</strong>g <strong>in</strong> the pathogenesis of systemic lupus<br />

erythematosus <strong>in</strong> BXSB-Yaa mice. Proc. Natl. Acad. Sci. U. S. A 106, 1518-1523.<br />

5. Burnet,F.M. (1970). The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1-27.<br />

6. Cabrera,T., Angustias,F.M., Sierra,A., Garrido,A., Herruzo,A., Escobedo,A., Fabra,A., <strong>and</strong> Garrido,F. (1996).<br />

High frequency of altered HLA class I phenotypes <strong>in</strong> <strong>in</strong>vasive breast carc<strong>in</strong>omas. Hum. Immunol. 50, 127-134.<br />

7. Clemente,C.G., Mihm,M.C., Jr., Bufal<strong>in</strong>o,R., Zurrida,S., Coll<strong>in</strong>i,P., <strong>and</strong> Casc<strong>in</strong>elli,N. (1996). Prognostic value of<br />

tumor <strong>in</strong>filtrat<strong>in</strong>g lymphocytes <strong>in</strong> the vertical growth phase of primary cutaneous melanoma. Cancer 77,<br />

1303-1310.<br />

8. Coquet,J.M., Kyparissoudis,K., Pellicci,D.G., Besra,G., Berz<strong>in</strong>s,S.P., Smyth,M.J., <strong>and</strong> Godfrey,D.I. (2007). IL-<br />

<strong>21</strong> Is Produced by NKT Cells <strong>and</strong> Modulates NKT Cell Activation <strong>and</strong> Cytok<strong>in</strong>e Production. J. Immunol. 178,<br />

2827-2834.<br />

9. Crowe,N.Y., Smyth,M.J., <strong>and</strong> Godfrey,D.I. (2002). A critical role for natural killer T cells <strong>in</strong><br />

immunosurveillance of methylcholanthrene-<strong>in</strong>duced sarcomas. J. Exp. Med. 196, 119-127.<br />

10. Davis,I.D., Brady,B., Kefford,R.F., Millward,M., Cebon,J., Skrumsager,B.K., Mouritzen,U., Hansen,L.T.,<br />

Skak,K., Lundsgaard,D., Frederiksen,K.S., Kristjansen,P.E., <strong>and</strong> McArthur,G. (2009). Cl<strong>in</strong>ical <strong>and</strong> biological<br />

efficacy of recomb<strong>in</strong>ant human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with stage IV malignant melanoma without prior<br />

treatment: a phase IIa trial. Cl<strong>in</strong>. Cancer Res. 15, <strong>21</strong>23-<strong>21</strong>29.<br />

11. Davis,I.D., Skrumsager,B.K., Cebon,J., Nicholaou,T., Barlow,J.W., Moller,N.P., Skak,K., Lundsgaard,D.,<br />

Frederiksen,K.S., Thygesen,P., <strong>and</strong> McArthur,G.A. (2007). An open-label, two-arm, phase I trial of<br />

recomb<strong>in</strong>ant human <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> patients with metastatic melanoma. Cl<strong>in</strong>. Cancer Res. 13, 3630-3636.<br />

12. DeMatos,P., Abdel-Wahab,Z., Vervaert,C., Hester,D., <strong>and</strong> Seigler,H. (1998). Puls<strong>in</strong>g of dendritic cells with cell<br />

lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vacc<strong>in</strong>es aga<strong>in</strong>st B16<br />

tumors <strong>in</strong> mice. J. Surg. Oncol. 68, 79-91.<br />

13. Donskov,F. <strong>and</strong> von der,M.H. (2006). Impact of immune parameters on long-term survival <strong>in</strong> metastatic renal<br />

cell carc<strong>in</strong>oma. J. Cl<strong>in</strong>. Oncol. 24, 1997-2005.<br />

14. Dougan,M. <strong>and</strong> Dranoff,G. (2009). Immune therapy for <strong>cancer</strong>. Annu. Rev. Immunol. 27, 83-117.<br />

15. Dunn,G.P., Bruce,A.T., Ikeda,H., Old,L.J., <strong>and</strong> Schreiber,R.D. (2002). Cancer immunoedit<strong>in</strong>g: from<br />

immunosurveillance to tumor escape. Nat. Immunol. 3, 991-998.<br />

16. Dunn,G.P., Old,L.J., <strong>and</strong> Schreiber,R.D. (2004). The immunobiology of <strong>cancer</strong> immunosurveillance <strong>and</strong><br />

immunoedit<strong>in</strong>g. Immunity. <strong>21</strong>, 137-148.<br />

17. Elsaesser,H., Sauer,K., <strong>and</strong> Brooks,D.G. (2009). IL-<strong>21</strong> is required to control chronic viral <strong>in</strong>fection. Science<br />

324, 1569-1572.<br />

103


18. Eriksen,K.W., Sondergaard,H., Woetmann,A., Krejsgaard,T., Skak,K., Geisler,C., Wasik,M.A., <strong>and</strong> Odum,N.<br />

(2009). The comb<strong>in</strong>ation of IL-<strong>21</strong> <strong>and</strong> IFN-alpha boosts STAT3 activation, cytotoxicity <strong>and</strong> experimental<br />

tumor therapy. Mol. Immunol. 46, 812-820.<br />

19. Ett<strong>in</strong>ger,R., Kuchen,S., <strong>and</strong> Lipsky,P.E. (2008). <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> as a target of <strong>in</strong>tervention <strong>in</strong> autoimmune<br />

disease. Ann. Rheum. Dis. 67 Suppl 3, iii83-iii86.<br />

20. Ett<strong>in</strong>ger,R., Sims,G.P., Fairhurst,A.M., Robb<strong>in</strong>s,R., da Silva,Y.S., Spolski,R., Leonard,W.J., <strong>and</strong> Lipsky,P.E.<br />

(2005). IL-<strong>21</strong> <strong>in</strong>duces differentiation of human naive <strong>and</strong> memory B cells <strong>in</strong>to antibody-secret<strong>in</strong>g plasma cells.<br />

J. Immunol. 175, 7867-7879.<br />

<strong>21</strong>. F<strong>in</strong>a,D., Sarra,M., Fant<strong>in</strong>i,M.C., Rizzo,A., Caruso,R., Caprioli,F., Stolfi,C., Cardol<strong>in</strong>i,I., Dottori,M., Boirivant,M.,<br />

Pallone,F., MacDonald,T.T., <strong>and</strong> Monteleone,G. (2008). Regulation of gut <strong>in</strong>flammation <strong>and</strong> th17 cell response<br />

by <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>. Gastroenterology 134, 1038-1048.<br />

22. Frederiksen,K.S., Lundsgaard,D., Freeman,J.A., Hughes,S.D., Holm,T.L., Skrumsager,B.K., Petri,A.,<br />

Hansen,L.T., McArthur,G.A., Davis,I.D., <strong>and</strong> Skak,K. (2008). IL-<strong>21</strong> <strong>in</strong>duces <strong>in</strong> vivo immune activation of NK<br />

cells <strong>and</strong> CD8(+) T cells <strong>in</strong> patients with metastatic melanoma <strong>and</strong> renal cell carc<strong>in</strong>oma. Cancer Immunol.<br />

Immunother. 57, 1439-1449.<br />

23. Frese,K.K. <strong>and</strong> Tuveson,D.A. (2007). Maximiz<strong>in</strong>g mouse <strong>cancer</strong> models. Nat. Rev. Cancer 7, 645-658.<br />

24. Frohlich,A., Kisielow,J., Schmitz,I., Freigang,S., Shamshiev,A.T., Weber,J., Marsl<strong>and</strong>,B.J., Oxenius,A., <strong>and</strong><br />

Kopf,M. (2009). IL-<strong>21</strong>R on T cells is critical for susta<strong>in</strong>ed functionality <strong>and</strong> control of chronic viral <strong>in</strong>fection.<br />

Science 324, 1576-1580.<br />

25. Gajewski,T.F., Meng,Y., Blank,C., Brown,I., Kacha,A., Kl<strong>in</strong>e,J., <strong>and</strong> Harl<strong>in</strong>,H. (2006). Immune resistance<br />

orchestrated by the tumor microenvironment. Immunol. Rev. <strong>21</strong>3, 131-145.<br />

26. Galon,J., Costes,A., Sanchez-Cabo,F., Kirilovsky,A., Mlecnik,B., Lagorce-Pages,C., Tosol<strong>in</strong>i,M., Camus,M.,<br />

Berger,A., W<strong>in</strong>d,P., Z<strong>in</strong>z<strong>in</strong>dohoue,F., Bruneval,P., Cugnenc,P.H., Trajanoski,Z., Fridman,W.H., <strong>and</strong> Pages,F.<br />

(2006). Type, density, <strong>and</strong> location of immune cells with<strong>in</strong> human colorectal tumors predict cl<strong>in</strong>ical outcome.<br />

Science 313, 1960-1964.<br />

27. Gao,Q., Qiu,S.J., Fan,J., Zhou,J., Wang,X.Y., Xiao,Y.S., Xu,Y., Li,Y.W., <strong>and</strong> Tang,Z.Y. (2007). Intratumoral<br />

balance of regulatory <strong>and</strong> cytotoxic T cells is associated with prognosis of hepatocellular carc<strong>in</strong>oma after<br />

resection. J. Cl<strong>in</strong>. Oncol. 25, 2586-2593.<br />

28. Garcia-Lora,A., Algarra,I., <strong>and</strong> Garrido,F. (2003). MHC class I antigens, immune surveillance, <strong>and</strong> tumor<br />

immune escape. J. Cell Physiol 195, 346-355.<br />

29. Geertsen,P.F., Gore,M.E., Negrier,S., Tourani,J.M., <strong>and</strong> von der,M.H. (2004). Safety <strong>and</strong> efficacy of<br />

subcutaneous <strong>and</strong> cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion rIL-2 <strong>in</strong> patients with metastatic renal cell carc<strong>in</strong>oma. Br.<br />

J. Cancer 90, 1156-1162.<br />

30. Girardi,M. (2007). Cutaneous perspectives on adaptive immunity. Cl<strong>in</strong>. Rev. Allergy Immunol. 33, 4-14.<br />

31. Hanahan,D. <strong>and</strong> We<strong>in</strong>berg,R.A. (2000). The hallmarks of <strong>cancer</strong>. Cell 100, 57-70.<br />

32. Hickl<strong>in</strong>,D.J., Wang,Z., Arienti,F., Rivolt<strong>in</strong>i,L., Parmiani,G., <strong>and</strong> Ferrone,S. (1998). beta2-Microglobul<strong>in</strong><br />

mutations, HLA class I antigen loss, <strong>and</strong> tumor progression <strong>in</strong> melanoma. J. Cl<strong>in</strong>. Invest 101, 2720-2729.<br />

33. H<strong>in</strong>richs,C.S., Spolski,R., Paulos,C.M., Gatt<strong>in</strong>oni,L., Kerstann,K.W., Palmer,D.C., Klebanoff,C.A.,<br />

Rosenberg,S.A., Leonard,W.J., <strong>and</strong> Restifo,N.P. (2008). IL-2 <strong>and</strong> IL-<strong>21</strong> confer oppos<strong>in</strong>g differentiation<br />

programs to CD8+ T cells for adoptive <strong>immunotherapy</strong>. Blood 111, 5326-5333.<br />

34. Jensen,H.K., Donskov,F., Nordsmark,M., Marcussen,N., <strong>and</strong> von der,M.H. (2009). Increased <strong>in</strong>tratumoral<br />

FOXP3-positive regulatory immune cells dur<strong>in</strong>g <strong>in</strong>terleuk<strong>in</strong>-2 treatment <strong>in</strong> metastatic renal cell carc<strong>in</strong>oma.<br />

Cl<strong>in</strong>. Cancer Res. 15, 1052-1058.<br />

35. Khong,H.T. <strong>and</strong> Restifo,N.P. (2002). Natural selection of tumor variants <strong>in</strong> the generation of "tumor escape"<br />

phenotypes. Nat. Immunol. 3, 999-1005.<br />

104


36. Klapper,J.A., Downey,S.G., Smith,F.O., Yang,J.C., Hughes,M.S., Kammula,U.S., Sherry,R.M., Royal,R.E.,<br />

Ste<strong>in</strong>berg,S.M., <strong>and</strong> Rosenberg,S. (2008). High-dose <strong>in</strong>terleuk<strong>in</strong>-2 for the treatment of metastatic renal cell<br />

carc<strong>in</strong>oma : a retrospective analysis of response <strong>and</strong> survival <strong>in</strong> patients treated <strong>in</strong> the surgery branch at the<br />

National Cancer Institute between 1986 <strong>and</strong> 2006. Cancer 113, 293-301.<br />

37. Koebel,C.M., Vermi,W., Swann,J.B., Zerafa,N., Rodig,S.J., Old,L.J., Smyth,M.J., <strong>and</strong> Schreiber,R.D. (2007).<br />

Adaptive immunity ma<strong>in</strong>ta<strong>in</strong>s occult <strong>cancer</strong> <strong>in</strong> an equilibrium state. Nature 450, 903-907.<br />

38. Krup,O.C., Kroll,I., Bose,G., <strong>and</strong> Falkenberg,F.W. (1999). Cytok<strong>in</strong>e depot formulations as adjuvants for tumor<br />

vacc<strong>in</strong>es. I. Liposome-encapsulated IL-2 as a depot formulation. J. Immunother. 22, 525-538.<br />

39. Leonard,W.J. <strong>and</strong> Spolski,R. (2005). <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: a modulator of lymphoid proliferation, apoptosis <strong>and</strong><br />

differentiation. Nat. Rev. Immunol. 5, 688-698.<br />

40. Malek,T.R. <strong>and</strong> Bayer,A.L. (2004). Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4,<br />

665-674.<br />

41. McDermott,D.F. <strong>and</strong> Atk<strong>in</strong>s,M.B. (2006). <strong>Interleuk<strong>in</strong></strong>-2 therapy of metastatic renal cell carc<strong>in</strong>oma--predictors<br />

of response. Sem<strong>in</strong>. Oncol. 33, 583-587.<br />

42. Mellor,H.R. <strong>and</strong> Callaghan,R. (2008). Resistance to chemotherapy <strong>in</strong> <strong>cancer</strong>: a complex <strong>and</strong> <strong>in</strong>tegrated<br />

cellular response. Pharmacology 81, 275-300.<br />

43. Mestas,J. <strong>and</strong> Hughes,C.C. (2004). Of mice <strong>and</strong> not men: differences between mouse <strong>and</strong> human<br />

immunology. J. Immunol. 172, 2731-2738.<br />

44. Motzer,R.J., Bacik,J., Schwartz,L.H., Reuter,V., Russo,P., Marion,S., <strong>and</strong> Mazumdar,M. (2004). Prognostic<br />

factors for survival <strong>in</strong> previously treated patients with metastatic renal cell carc<strong>in</strong>oma. J. Cl<strong>in</strong>. Oncol. 22, 454-<br />

463.<br />

45. Naito,Y., Saito,K., Shiiba,K., Ohuchi,A., Saigenji,K., Nagura,H., <strong>and</strong> Ohtani,H. (1998). CD8+ T cells <strong>in</strong>filtrated<br />

with<strong>in</strong> <strong>cancer</strong> cell nests as a prognostic factor <strong>in</strong> human colorectal <strong>cancer</strong>. Cancer Res. 58, 3491-3494.<br />

46. Negrier,S., Perol,D., Ravaud,A., Bay,J.O., Oudard,S., Chabaud,S., Fargeot,P., Delva,R., Deplanque,G.,<br />

Gravis,G., <strong>and</strong> Escudier,B. (2008). R<strong>and</strong>omized study of <strong>in</strong>travenous versus subcutaneous <strong>in</strong>terleuk<strong>in</strong>-2, <strong>and</strong><br />

IFNalpha <strong>in</strong> patients with good prognosis metastatic renal <strong>cancer</strong>. Cl<strong>in</strong>. Cancer Res. 14, 5907-5912.<br />

47. Nurieva,R., Yang,X.O., Mart<strong>in</strong>ez,G., Zhang,Y., Panopoulos,A.D., Ma,L., Schluns,K., Tian,Q., Watowich,S.S.,<br />

Jetten,A.M., <strong>and</strong> Dong,C. (2007). Essential autocr<strong>in</strong>e regulation by IL-<strong>21</strong> <strong>in</strong> the generation of <strong>in</strong>flammatory T<br />

cells. Nature 448, 480-483.<br />

48. Ostr<strong>and</strong>-Rosenberg,S. (2004). Animal models of tumor immunity, <strong>immunotherapy</strong> <strong>and</strong> <strong>cancer</strong> vacc<strong>in</strong>es. Curr.<br />

Op<strong>in</strong>. Immunol. 16, 143-150.<br />

49. Pages,F., Berger,A., Camus,M., Sanchez-Cabo,F., Costes,A., Molidor,R., Mlecnik,B., Kirilovsky,A., Nilsson,M.,<br />

Damotte,D., Meatchi,T., Bruneval,P., Cugnenc,P.H., Trajanoski,Z., Fridman,W.H., <strong>and</strong> Galon,J. (2005).<br />

Effector memory T cells, early metastasis, <strong>and</strong> survival <strong>in</strong> colorectal <strong>cancer</strong>. N. Engl. J. Med. 353, 2654-2666.<br />

50. Palella,F.J., Jr., Delaney,K.M., Moorman,A.C., Loveless,M.O., Fuhrer,J., Satten,G.A., Aschman,D.J., <strong>and</strong><br />

Holmberg,S.D. (1998). Decl<strong>in</strong><strong>in</strong>g morbidity <strong>and</strong> mortality among patients with advanced human<br />

immunodeficiency virus <strong>in</strong>fection. HIV Outpatient Study Investigators. N. Engl. J. Med. 338, 853-860.<br />

51. Parrish-Novak,J., Dillon,S.R., Nelson,A., Hammond,A., Sprecher,C., Gross,J.A., Johnston,J., Madden,K.,<br />

Xu,W., West,J., Schrader,S., Burkhead,S., Heipel,M., Br<strong>and</strong>t,C., Kuijper,J.L., Kramer,J., Conkl<strong>in</strong>,D.,<br />

Presnell,S.R., Berry,J., Shiota,F., Bort,S., Hambly,K., Mudri,S., Clegg,C., Moore,M., Grant,F.J., Lofton-Day,C.,<br />

Gilbert,T., Rayond,F., Ch<strong>in</strong>g,A., Yao,L., Smith,D., Webster,P., Whitmore,T., Maurer,M., Kaushansky,K.,<br />

Holly,R.D., <strong>and</strong> Foster,D. (2000). <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> <strong>and</strong> its receptor are <strong>in</strong>volved <strong>in</strong> NK cell expansion <strong>and</strong><br />

regulation of lymphocyte function. Nature 408, 57-63.<br />

52. Piersma,S.J., Jordanova,E.S., van Poelgeest,M.I., Kwappenberg,K.M., van der Hulst,J.M., Drijfhout,J.W.,<br />

Melief,C.J., Kenter,G.G., Fleuren,G.J., Offr<strong>in</strong>ga,R., <strong>and</strong> van der Burg,S.H. (2007). High number of<br />

<strong>in</strong>traepithelial CD8+ tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes is associated with the absence of lymph node metastases<br />

<strong>in</strong> patients with large early-stage cervical <strong>cancer</strong>. Cancer Res. 67, 354-361.<br />

105


53. Rab<strong>in</strong>ovich,G.A., Gabrilovich,D., <strong>and</strong> Sotomayor,E.M. (2007). Immunosuppressive strategies that are<br />

mediated by tumor cells. Annu. Rev. Immunol. 25, 267-296.<br />

54. Radny,P., Caroli,U.M., Bauer,J., Paul,T., Schlegel,C., Eigentler,T.K., Weide,B., Schwarz,M., <strong>and</strong> Garbe,C.<br />

(2003). Phase II trial of <strong>in</strong>tralesional therapy with <strong>in</strong>terleuk<strong>in</strong>-2 <strong>in</strong> soft-tissue melanoma metastases. Br. J.<br />

Cancer 89, 1620-1626.<br />

55. Rosenberg,S.A. (2001). Progress <strong>in</strong> human tumour immunology <strong>and</strong> <strong>immunotherapy</strong>. Nature 411, 380-384.<br />

56. Rosenberg,S.A., Restifo,N.P., Yang,J.C., Morgan,R.A., <strong>and</strong> Dudley,M.E. (2008). Adoptive cell transfer: a<br />

cl<strong>in</strong>ical path to effective <strong>cancer</strong> <strong>immunotherapy</strong>. Nat. Rev. Cancer 8, 299-308.<br />

57. Sato,E., Olson,S.H., Ahn,J., Bundy,B., Nishikawa,H., Qian,F., Jungbluth,A.A., Fros<strong>in</strong>a,D., Gnjatic,S.,<br />

Ambrosone,C., Kepner,J., Odunsi,T., Ritter,G., Lele,S., Chen,Y.T., Ohtani,H., Old,L.J., <strong>and</strong> Odunsi,K. (2005).<br />

Intraepithelial CD8+ tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes <strong>and</strong> a high CD8+/regulatory T cell ratio are associated<br />

with favorable prognosis <strong>in</strong> ovarian <strong>cancer</strong>. Proc. Natl. Acad. Sci. U. S. A 102, 18538-18543.<br />

58. Savage,P., Stebb<strong>in</strong>g,J., Bower,M., <strong>and</strong> Crook,T. (2009). Why does cytotoxic chemotherapy cure only some<br />

<strong>cancer</strong>s? Nat. Cl<strong>in</strong>. Pract. Oncol. 6, 43-52.<br />

59. Sayers,T.J., Brooks,A.D., Lee,J.K., Fenton,R.G., Komschlies,K.L., Wigg<strong>in</strong>ton,J.M., W<strong>in</strong>kler-Pickett,R., <strong>and</strong><br />

Wiltrout,R.H. (1998). Molecular mechanisms of immune-mediated lysis of mur<strong>in</strong>e renal <strong>cancer</strong>: differential<br />

contributions of perfor<strong>in</strong>-dependent versus Fas-mediated pathways <strong>in</strong> lysis by NK <strong>and</strong> T cells. J. Immunol.<br />

161, 3957-3965.<br />

60. Scheffer,S.R., Nave,H., Korangy,F., Schlote,K., Pabst,R., Jaffee,E.M., Manns,M.P., <strong>and</strong> Greten,T.F. (2003).<br />

Apoptotic, but not necrotic, tumor cell vacc<strong>in</strong>es <strong>in</strong>duce a potent immune response <strong>in</strong> vivo. Int. J. Cancer 103,<br />

205-<strong>21</strong>1.<br />

61. Schumacher,K., Haensch,W., Roefzaad,C., <strong>and</strong> Schlag,P.M. (2001). Prognostic significance of activated<br />

CD8(+) T cell <strong>in</strong>filtrations with<strong>in</strong> esophageal carc<strong>in</strong>omas. Cancer Res. 61, 3932-3936.<br />

62. Shankaran,V., Ikeda,H., Bruce,A.T., White,J.M., Swanson,P.E., Old,L.J., <strong>and</strong> Schreiber,R.D. (2001).<br />

IFNgamma <strong>and</strong> lymphocytes prevent primary tumour development <strong>and</strong> shape tumour immunogenicity.<br />

Nature 410, 1107-1111.<br />

63. Sharma,P., Shen,Y., Wen,S., Yamada,S., Jungbluth,A.A., Gnjatic,S., Bajor<strong>in</strong>,D.F., Reuter,V.E., Herr,H.,<br />

Old,L.J., <strong>and</strong> Sato,E. (2007). CD8 tumor-<strong>in</strong>filtrat<strong>in</strong>g lymphocytes are predictive of survival <strong>in</strong> muscle-<strong>in</strong>vasive<br />

urothelial carc<strong>in</strong>oma. Proc. Natl. Acad. Sci. U. S. A 104, 3967-3972.<br />

64. Skak,K., Kragh,M., Hausman,D., Smyth,M.J., <strong>and</strong> Sivakumar,P.V. (2008). <strong>Interleuk<strong>in</strong></strong> <strong>21</strong>: comb<strong>in</strong>ation<br />

strategies for <strong>cancer</strong> therapy. Nat. Rev. Drug Discov. 7, 231-240.<br />

65. Smyth,M.J., Cretney,E., Kershaw,M.H., <strong>and</strong> Hayakawa,Y. (2004). Cytok<strong>in</strong>es <strong>in</strong> <strong>cancer</strong> immunity <strong>and</strong><br />

<strong>immunotherapy</strong>. Immunol. Rev. 202, 275-293.<br />

66. Smyth,M.J., Crowe,N.Y., <strong>and</strong> Godfrey,D.I. (2001). NK cells <strong>and</strong> NKT cells collaborate <strong>in</strong> host protection from<br />

methylcholanthrene-<strong>in</strong>duced fibrosarcoma. Int. Immunol. 13, 459-463.<br />

67. Smyth,M.J., Teng,M.W., Sharkey,J., Westwood,J.A., Haynes,N.M., Yagita,H., Takeda,K., Sivakumar,P.V., <strong>and</strong><br />

Kershaw,M.H. (2008). <strong>Interleuk<strong>in</strong></strong> <strong>21</strong> enhances antibody-mediated tumor rejection. Cancer Res. 68, 3019-<br />

3025.<br />

68. Spolski,R., Kashyap,M., Rob<strong>in</strong>son,C., Yu,Z., <strong>and</strong> Leonard,W.J. (2008). IL-<strong>21</strong> signal<strong>in</strong>g is critical for the<br />

development of type I diabetes <strong>in</strong> the NOD mouse. Proc. Natl. Acad. Sci. U. S. A 105, 14028-14033.<br />

69. Spolski,R., Kim,H.P., Zhu,W., Levy,D.E., <strong>and</strong> Leonard,W.J. (2009). IL-<strong>21</strong> mediates suppressive effects via its<br />

<strong>in</strong>duction of IL-10. J. Immunol. 182, 2859-2867.<br />

70. Spolski,R. <strong>and</strong> Leonard,W.J. (2008). <strong>Interleuk<strong>in</strong></strong>-<strong>21</strong>: basic biology <strong>and</strong> implications for <strong>cancer</strong> <strong>and</strong><br />

autoimmunity. Annu. Rev. Immunol. 26, 57-79.<br />

71. Sutherl<strong>and</strong>,A.P., Van,B.T., Wurster,A.L., Suto,A., Michaud,M., Zhang,D., Grusby,M.J., <strong>and</strong> von,H.M. (2009).<br />

<strong>Interleuk<strong>in</strong></strong>-<strong>21</strong> is required for the development of type 1 diabetes <strong>in</strong> NOD mice. Diabetes 58, 1144-1155.<br />

106


72. van der,B.P., Traversari,C., Chomez,P., Lurqu<strong>in</strong>,C., De Plaen,E., Van den,E.B., Knuth,A., <strong>and</strong> Boon,T. (1991).<br />

A gene encod<strong>in</strong>g an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254,<br />

1643-1647.<br />

73. van,E.A., Hurwitz,A.A., <strong>and</strong> Allison,J.P. (1999). Comb<strong>in</strong>ation <strong>immunotherapy</strong> of B16 melanoma us<strong>in</strong>g anticytotoxic<br />

T lymphocyte-associated antigen 4 (CTLA-4) <strong>and</strong> granulocyte/macrophage colony-stimulat<strong>in</strong>g factor<br />

(GM-CSF)-produc<strong>in</strong>g vacc<strong>in</strong>es <strong>in</strong>duces rejection of subcutaneous <strong>and</strong> metastatic tumors accompanied by<br />

autoimmune depigmentation. J. Exp. Med. 190, 355-366.<br />

74. Voskoglou-Nomikos,T., Pater,J.L., <strong>and</strong> Seymour,L. (2003). Cl<strong>in</strong>ical predictive value of the <strong>in</strong> vitro cell l<strong>in</strong>e,<br />

human xenograft, <strong>and</strong> mouse allograft precl<strong>in</strong>ical <strong>cancer</strong> models. Cl<strong>in</strong>. Cancer Res. 9, 4227-4239.<br />

75. Wigg<strong>in</strong>ton,J.M., Komschlies,K.L., Back,T.C., Franco,J.L., Brunda,M.J., <strong>and</strong> Wiltrout,R.H. (1996).<br />

Adm<strong>in</strong>istration of <strong>in</strong>terleuk<strong>in</strong> 12 with pulse <strong>in</strong>terleuk<strong>in</strong> 2 <strong>and</strong> the rapid <strong>and</strong> complete eradication of mur<strong>in</strong>e<br />

renal carc<strong>in</strong>oma. J. Natl. Cancer Inst. 88, 38-43.<br />

76. Yee,C., Thompson,J.A., Byrd,D., Riddell,S.R., Roche,P., Celis,E., <strong>and</strong> Greenberg,P.D. (2002). Adoptive T cell<br />

therapy us<strong>in</strong>g antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: <strong>in</strong><br />

vivo persistence, migration, <strong>and</strong> antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. U. S. A 99,<br />

16168-16173.<br />

77. Yi,J.S., Du,M., <strong>and</strong> Zajac,A.J. (2009). A vital role for <strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> <strong>in</strong> the control of a chronic viral <strong>in</strong>fection.<br />

Science 324, 1572-1576.<br />

78. Young,D.A., Hegen,M., Ma,H.L., Whitters,M.J., Albert,L.M., Lowe,L., Senices,M., Wu,P.W., Sibley,B.,<br />

Leathurby,Y., Brown,T.P., Nickerson-Nutter,C., Keith,J.C., Jr., <strong>and</strong> Coll<strong>in</strong>s,M. (2007). Blockade of the<br />

<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong>/<strong>in</strong>terleuk<strong>in</strong>-<strong>21</strong> receptor pathway ameliorates disease <strong>in</strong> animal models of rheumatoid arthritis.<br />

Arthritis Rheum. 56, 1152-1163.<br />

79. Zhang,L., Conejo-Garcia,J.R., Katsaros,D., Gimotty,P.A., Massobrio,M., Regnani,G., Makrigiannakis,A.,<br />

Gray,H., Schlienger,K., Liebman,M.N., Rub<strong>in</strong>,S.C., <strong>and</strong> Coukos,G. (2003). Intratumoral T cells, recurrence,<br />

<strong>and</strong> survival <strong>in</strong> epithelial ovarian <strong>cancer</strong>. N. Engl. J. Med. 348, 203-<strong>21</strong>3.<br />

107

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!