M4-NUWC Overview Fontaine.pdf

M4-NUWC Overview Fontaine.pdf M4-NUWC Overview Fontaine.pdf

11ecpss.betterbtr.com
from 11ecpss.betterbtr.com More from this publisher
31.10.2012 Views

Advanced Unmanned Undersea Vehicle Energy Solutions Presented by: Dr. Joe Fontaine 11 th Electrochemical Power Sources R&D Symposium July 13 – 16, 2009 Baltimore, MD Principal Investigators: Dr. Alan Burke Dr. Louis Carreiro Mr. Eric Dow Dr. Charles Patrissi Mr. Christian Schumacher Dr. Craig Urian

Advanced Unmanned Undersea Vehicle<br />

Energy Solutions<br />

Presented by: Dr. Joe <strong>Fontaine</strong><br />

11 th Electrochemical Power Sources<br />

R&D Symposium<br />

July 13 – 16, 2009<br />

Baltimore, MD<br />

Principal Investigators:<br />

Dr. Alan Burke<br />

Dr. Louis Carreiro<br />

Mr. Eric Dow<br />

Dr. Charles Patrissi<br />

Mr. Christian Schumacher<br />

Dr. Craig Urian


Science &<br />

Technology<br />

Naval Undersea Warfare Center<br />

Division Newport<br />

Mission<br />

Development<br />

INNOVATION<br />

Acquisition<br />

Support<br />

Fleet<br />

Support<br />

Prototyping Undersea Warfare Analysis<br />

Test & Evaluation<br />

� Provide research, development, test and evaluation, engineering, analysis and<br />

assessment, and fleet support capabilities for:<br />

• submarines, autonomous underwater systems, and offensive and defensive<br />

undersea weapon systems, and<br />

� Steward existing and emerging technologies in support of undersea warfare


•<br />

Joint / Coalition Battlespace Management<br />

•<br />

Ship / Shore Training Tools<br />

•<br />

Tactical Analysis & Decision Support<br />

Towed Arrays<br />

Comms<br />

ASW Modules<br />

For USVs<br />

Division Newport Contributions to<br />

USW Technology<br />

Towed Array<br />

Handlers<br />

Advanced Sensors<br />

• Smart Skins<br />

• Nanosensors<br />

Hull Arrays<br />

Distributed Undersea Networks<br />

Littoral Combat Ship<br />

with Mission Modules<br />

Surface Ship Sonar<br />

Surface Ship USW Offensive & Defensive Systems<br />

Including Torpedo Recognition & Alertment<br />

Sonar Systems<br />

Harbor Defense Systems<br />

Torpedo Tubes<br />

Supercavitating<br />

Torpedoes Weapons<br />

Periscopes,<br />

Antennas &<br />

Imaging Systems<br />

Sail Arrays<br />

CMs<br />

CCS, FCS<br />

Tomahawk Integration<br />

Launchers<br />

0010100101001010<br />

Towed Array<br />

Handlers<br />

Towed Arrays<br />

UUVs<br />

Undersea Comms<br />

At Speed & Depth


People<br />

Bird’s Eye View of <strong>NUWC</strong>DIVNPT<br />

• 2544 Civilian employees<br />

• The nation’s experts on USW<br />

• Highly educated & dedicated to<br />

Fleet excellence<br />

• 75% are Scientists & Engineers;<br />

44% have advanced degrees<br />

Customers<br />

• Scientific sponsors<br />

• Fleet<br />

• Navy Program sponsors<br />

• Intelligence community<br />

• Defense industry<br />

• Non-defense industry<br />

• Foreign Navies<br />

Facilities<br />

• Highly specialized for USW<br />

• Have full life cycle<br />

application<br />

• Reduce cost, risk, and<br />

development time<br />

• Make use of state-of-the-art<br />

simulations and networking<br />

• 256 Acres<br />

75% Of Our Workforce are Engineers and Scientists<br />

Advanced Degrees - 136 PhD’s (7%) and 711 Master’s (37%)


Science and Technology for:<br />

Shock Analysis<br />

and Testing<br />

<strong>NUWC</strong> Autonomous Systems and<br />

Technology Department<br />

– Torpedoes<br />

– Autonomous Undersea Vehicles (AUVs)<br />

– Countermeasures/Counterweapons<br />

System Development, Integration and Test<br />

– AUVs<br />

– Mobile ASW Targets<br />

– Undersea Defense Systems<br />

Acquisition and In-Service Engineering<br />

– AUVs<br />

– Mobile ASW Targets<br />

– Undersea Defense Systems<br />

Electric Torpedoes<br />

Science & Technology<br />

AUVs & Mobile Targets<br />

Undersea Defense Systems


Autonomous Undersea Vehicles


•<br />

•<br />

Propulsion and Energy Thrust<br />

Historically focused on both high power and<br />

energy dense air independent systems<br />

– Active participant from 6.1 to 6.3<br />

–<br />

Level of effort ranging from developer to technical<br />

evaluator at the component to system level<br />

Prime movers<br />

– Thermal<br />

–<br />

•<br />

•<br />

•<br />

Electric<br />

•<br />

Piston gas expander engines<br />

Turbines<br />

Advanced thermal cycles<br />

Permanent Magnet Brushless DC motors<br />

• Power electronics/motor controller


•<br />

Propulsion and Energy Thrust<br />

(cont.)<br />

Energy sources<br />

–<br />

–<br />

Thermal based systems<br />

•<br />

• Chemical stored energy<br />

Electrochemical<br />

• Batteries<br />

–<br />

–<br />

• Fuel cell development<br />

– Semi-Fuel cells<br />

– SOFC<br />

– Borohydride<br />

Mon/bi-propellant development and T&E<br />

Technical evaluation: Zn-AgO, Li-ion<br />

Development: Al-AgO, Li-H2O


Advanced Air-Independent Energy<br />

Solutions for Unmanned Undersea Vehicles<br />

Specific energy, Wh/kg<br />

1375 Wh/kg = TNT<br />

Challenges to meeting UUV<br />

power requirements include:<br />

• Air-independent operation<br />

• Refuelability<br />

• Multi-mission capability<br />

• Stealth<br />

• Safety<br />

• Environmentally benign<br />

• Endurance (high energy<br />

density)<br />

• Weight/volume constraints<br />

• Buoyancy<br />

• Start-up<br />

• low/no signature<br />

* David Linden Handbook of Batteries, 2nd ed, 1995<br />

Existing Commercial Sector and Conventional Energy<br />

Sources will NOT meet the Navy UUV Future Requirements


SOFC


•<br />

•<br />

•<br />

Fuel Flexibility<br />

–<br />

–<br />

–<br />

–<br />

Benefit of SOFC Powered UUV<br />

Pure H2 not required for operation<br />

Hydrocarbon fuels (diesel-type) can be utilized &<br />

rapidly refueled<br />

Internal reforming of light hydrocarbons within fuel cell<br />

stack<br />

Tolerates impurities such as carbon monoxide and<br />

sulfur (ppm level)<br />

High Efficiency, 55-65%<br />

– (based on LHV of fuel conversion to electricity)<br />

Noble metal catalysts not required for electrodes<br />

and fast reaction kinetics at electrodes


•<br />

•<br />

Government<br />

– ONR -<br />

–<br />

–<br />

– NASA -<br />

Industry<br />

–<br />

–<br />

–<br />

– TDA -<br />

–<br />

–<br />

–<br />

–<br />

Benefit of SOFC Powered UUV<br />

Refuelable Fuel Cells for UUV’s<br />

DoE/NETL - Testing of SOFC Stacks for SECA Program<br />

Internally funded fuel development effort<br />

LOX/Methane Solid Oxide Fuel Cell<br />

Versa Power Systems - SOFC stack evaluation<br />

Delphi Corporation - SOFC stack evaluation<br />

Innovatek - Fuel processing<br />

CO2 high-temperature sorbent and Phase II reformer<br />

R&D Dynamics - high-temperature blower for anode gas<br />

recycle<br />

NexTech, SBIR Phase II JP10 based system<br />

MSRI Phase II Stack development<br />

SBIR Phase I JP-10 based energy system<br />

ceramatec<br />

•<br />

• Fuel Cell Energy<br />

• Innovatek


SOFC Stack Test Stand<br />

Versa Power Systems


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Broad Fuel Comparisons<br />

Energy Content (LHV)<br />

Fuel Flashpoint,ºC MP,ºC MJ/L MJ/kg<br />

Methanol 12<br />

-98<br />

15-18<br />

19-22<br />

Ethanol 13<br />

-114<br />

18<br />

23<br />

Gasoline -7.2<br />

-58 (aviation) 31-34<br />

42-46<br />

Diesel 40-50 -20 to 5 (cloud) ~36-40 42-47<br />

Liquid H2 (no tank) -252 (BP) 8<br />

121<br />

LNG (no tank)<br />

-164(BP) 21<br />

51<br />

2015 H2 Storage Goal (9wt% systems basis) 10-15<br />

10<br />

Glycerin 176<br />

~ 17 22<br />

18<br />

Coal<br />

13-25 15-30


Fuel Processing (Reformers)<br />

Catalytic Partial Oxidation (CPOX )<br />

•<br />

•<br />

•<br />

CmHn + m/2 O 2<br />

Exothermic Reaction -<br />

n/2 H 2<br />

+ mCO + heat<br />

no additional heating required for heating inlet<br />

Fast Kinetics - reformer starts and achieves operating temperature quickly<br />

Air-dependent Operation -<br />

Steam Reforming<br />

•<br />

•<br />

CmHn + mH2O + heat (m+n/2) H2 further studies needed to consider pure O 2<br />

+ mCO<br />

Endothermic reaction - requires heat for reaction and fuel/water<br />

evaporation<br />

-<br />

-<br />

Heat is supplied from fuel cell exhaust gases and CO2 scrubber<br />

Steam can be supplied by SOFC product gases (anode recycle)<br />

More hydrogen produced per mole of fuel than in CPOX<br />

feed<br />

• Air-independent operation & 15% reduction in O 2 consumption vs. combustion


•<br />

•<br />

•<br />

•<br />

<strong>NUWC</strong> SOFC Test Facility<br />

& Prototype SOFC Cell Stack w/Reformer<br />

The Naval Undersea Warfare Center (<strong>NUWC</strong>) Division Newport is<br />

providing independent testing and evaluation of solid oxide fuel cell<br />

(SOFC) stacks being developed under DOE’s Solid State Energy<br />

Conversion Alliance (SECA) program.<br />

This testing targets SOFC performance in an air-independent<br />

environment, which simulates operating conditions of Unmanned<br />

Undersea Vehicles (UUVs).<br />

Through an IA w/DOE, FY09 Testing of Versa SOFC stacks (28 cell)<br />

will demonstrate upwards of 1 kW with Reformed S-8 and Pure O2.<br />

FY08 Testing of Delphi SOFC stacks (30 cell) demonstrated<br />

upwards of 1 kW using Reformed S-8 and Pure O2 under Closed<br />

Loop Anode gas recirculation conditions.


•<br />

•<br />

30-Cell<br />

<strong>NUWC</strong> SOFC Lab System<br />

Demo<br />

Delphi Stack integrated with:<br />

1) InnovaTek’s Steam Reformer<br />

2) TDA Research’s CO2 Sorbent<br />

3) R&D Dynamics’ High Temperature Blower<br />

Benchmarks achieved in first Demo:<br />

– > 75% S-8 Utilization<br />

– > 90% Oxygen Utilization<br />

– > 50% Efficiency (PSOFC / S-8 LHV) *<br />

– > 1 kW<br />

Delphi Stack, 30-cell<br />

All achieved<br />

simultaneously in<br />

initial proof-of-<br />

concept study<br />

(several hours of<br />

operation).<br />

C m H m Hn + n + m H 2 O 2 O (g) + (g) + heat (m+n/2) H 2 + 2 + m CO R&D Dynamics<br />

* Furnace power neglected


28-cell Versa Power Systems SOFC<br />

Stack


•<br />

•<br />

•<br />

•<br />

In house Laboratory Independent<br />

Research (ILIR) Fuel Development Effort<br />

Develop a carbide fuel system (CFS) for use with a<br />

solid oxide fuel cell (SOFC) that has the ability to<br />

generate a hydrocarbon fuel and sequester/store<br />

carbon dioxide efficiently<br />

Demonstrate the ability of the CFS to co-generate<br />

acetylene and hydrogen and to trap/store carbon<br />

dioxide<br />

Establish parameters for processing acetylene gas<br />

Integrate CFS with fuel processor, SOFC and BoP<br />

for unmanned underwater vehicle (UUV) propulsion<br />

applications


•<br />

•<br />

•<br />

CaC 2(s) + 2H 2 O (l)<br />

Acetylene Generation<br />

C 2 H 2(g) + Ca(OH) 2(aq)<br />

Highly exothermic reaction (DH = -120 kJ/mole)<br />

Reaction kinetics affected by:<br />

– Temperature<br />

– Purity of CaC2 – Particle size of CaC2 – Rate of addition of water to CaC2 (or CaC2 to water)<br />

Storage of C2H2 under low pressure (less than 2<br />

atm)


Carbide / Hydride Fuel System<br />

CaC 2(s)<br />

CaH 2(s)<br />

+ 4H2O (l) C2H2(g) + 2H2(g) + 2Ca(OH) 2(aq)<br />

C 2 H 2 + 2H 2 + nH 2 O<br />

Hydrogenation<br />

Reactor and<br />

Steam Reformer<br />

2CO + 5H 2 + (3+n)H 2 O<br />

3.5 O 2 (recycle)<br />

Gas Generation Chamber<br />

SOFC<br />

2H 2 O (l)<br />

+<br />

Q Burner<br />

2CaCO 3(s)<br />

2CO 2 + (8+n)H 2 O<br />

and residual fuel gases<br />

2CO 2 + (8+n)H 2 O


SOFC Stack Performance<br />

Fuel: Acetylene reformate Oxidizer: Oxygen


•<br />

•<br />

•<br />

Summary of SOFC Effort<br />

Continued independent evaluation of third party<br />

stacks and components at various levels of<br />

integration for both ONR and DOE/SECA<br />

Acetylene and Hydrogen mixture generated<br />

using Carbide Fuel Source (CSF)<br />

Cell stack operated on acetylene reformate<br />

Principal Investigators:<br />

Dr. Alan Burke and Dr. Louis Carreiro


Sodium Borohydride Based<br />

Fuel Cells


•<br />

•<br />

•<br />

NaBH 4<br />

Objective:<br />

–<br />

/ H2O2 Fuel Cell Program<br />

Develop a low temperature, aqueous fuel/oxidant,<br />

refuelable, energy conversion system using either<br />

Direct topology or PEM based external decomposition<br />

Task:<br />

–<br />

Evaluate the different technical approaches of this<br />

fuel/oxidant combination<br />

Goal:<br />

–<br />

Identify a technology path that will deliver a system<br />

energy density of > 300 Wh/kg for a 21” UUV energy<br />

section at 2kW


Reaction Chemistries:<br />

Direct Electro oxidation/reduction<br />

1. Alkaline Anolyte and Catholyte<br />

Anode BH 4 -<br />

Cathode HO 2 -<br />

+ 8OH -<br />

�<br />

+ H2O + 2e- Overall 4HO 2 - + BH4 - �<br />

BO 2 -<br />

�<br />

+ 6H2O + 8e- 3OH -<br />

2. Alkaline Anolyte / Acid Catholyte<br />

Anode BH 4 -<br />

Cathode 4H2O2 + 8OH -<br />

+ 8H +<br />

�<br />

Overall 4HO 2 - + BH4 - �<br />

+ 8e -<br />

BO 2 -<br />

�<br />

1.24 V<br />

0.87 V<br />

BO 2 - + 2H2 O + 4OH - 2.11 V<br />

+ 6H2O + 8e- 8H2O 1.24 V<br />

1.77 V<br />

BO 2 - + 2H2 O + 4OH - 3.01 V<br />

Key to this chemistry is to minimize the amount of caustic and acid needed to preserve the two pH<br />

levels of the respective electrolytes. Use of an anion exchange membrane or bi-polar membrane<br />

may be the key enabler but electro-osmotic drag will be difficult to compensate for.


Oxidation of BH 4 -<br />

Anode BH 4 -<br />

Reaction Chemistries:<br />

/ Reduction of O 2 via H 2<br />

+ 8OH -<br />

�<br />

BO 2 -<br />

O 2<br />

3. Alkaline Anolyte and Catholyte<br />

Cathode 2O 2<br />

+ 4H2O + 8e- Overall 2O 2 + BH 4 - �<br />

�<br />

+ 6H2O + 8e- 8OH -<br />

decomposition<br />

1.24 V<br />

0.41 V<br />

BO 2 - + 2H2 O + 4OH - 1.64 V<br />

4. Alkaline Anolyte / Acid Catholyte<br />

Anode BH 4 -<br />

Cathode 2O 2<br />

+ 8OH -<br />

+ 8H +<br />

Overall 2O 2 + BH 4 - �<br />

�<br />

+ 8e -<br />

BO 2 -<br />

�<br />

+ 6H2O + 8e- 4H2O 1.24 V<br />

1.23 V<br />

BO 2 - + 8H2 O 2.47 V


Reaction Chemistries:<br />

Oxidation / Reduction of H 2<br />

5a. BH 4 - Decomposition<br />

BH 4 -<br />

+ 2H2O �<br />

BO 2 -<br />

+ 4H 2<br />

5b. H 2 O 2 Decomposition<br />

2H2O2 �<br />

O 2<br />

+ 2H2O O 2 via decomposition<br />

5c. H 2 /O 2 Electro-Oxidation/reduction<br />

(acid environment)<br />

Anode 2H 2<br />

Cathode O 2<br />

�<br />

+ 4H +<br />

4H +<br />

Overall 2H 2 + O 2 �<br />

+ 4e -<br />

+ 4e -<br />

�<br />

2H2O 0.00 V<br />

1.23 V<br />

2H 2 O 1.23 V<br />

This chemistry would support a Proton Exchange Fuel Cell (PEMFC)


•<br />

•<br />

•<br />

Direct Borohydride System<br />

Background<br />

Objective: investigate and develop a liquid refuelable DBFC<br />

ONR 332 sponsored program<br />

Collaborative effort between Dstl and <strong>NUWC</strong> to<br />

increase the understanding and science of the DBFC<br />

Parallel approaches taken in demonstrator<br />

development<br />

O2 Dstl<br />

–<br />

–<br />

•<br />

MEA topology with indirect O2 reduction<br />

<strong>NUWC</strong><br />

•<br />

•<br />

Cell topology based<br />

–<br />

–<br />

–<br />

–<br />

Electrodeposited Pd/Ir anode<br />

Electrodeposited Pd/Ir cathode<br />

Cation exchange membrane<br />

DuPont N115<br />

Direct reduction and oxidation of H2O2 PEM<br />

H 2<br />

and NaBH 4<br />

DBH/HPFC<br />

25%<br />

NaBH 4<br />

60%<br />

H2O2 Solution<br />

waste


single cell potential (V)<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

IV Comparison of 3 Systems<br />

0.40<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00<br />

current density (A/cm^2)<br />

PEMFC @ 50C (O2/H2)<br />

DB-DHP-FC @ 25C<br />

DB-O2-FC @ 60C


energy density (Wh/kg)<br />

340<br />

320<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

System Level Energy Density<br />

Calculations of 3 Systems @ 2kW<br />

180<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00<br />

current density (A/cm^2)<br />

PEMFC @ 50C (O2/H2)<br />

DB-DHP-FC @ 25C<br />

DB-O2-FC @ 60C


•<br />

Current Efforts<br />

Study Reaction Chemistry 2<br />

– Alkaline BH -<br />

4<br />

–<br />

–<br />

/ anion exchange membrane / H2O2 (pH


single cell potential (V)<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

Preliminary 2kW System Modeling of<br />

Reaction 2 Using Literature IV Data<br />

PEMFC @ 50C (H2/O2)<br />

DBH-DHP (pH


•<br />

•<br />

•<br />

Future Efforts<br />

Analyze the technological maturity and practicality<br />

of H2/O2 PEMFC operating off of decomposed<br />

borohydride and decomposed hydrogen peroxide<br />

Investigate powdered storage of borohydride to<br />

increase system energy density<br />

– Conceptual analysis<br />

Perform system level analysis and component level<br />

experimentation of both PEM and Gen 2 fuel cells<br />

–<br />

–<br />

System engineering to determine volume/mass<br />

constraints<br />

System safety analysis<br />

• Working with strong oxidizing and strong reducing compounds<br />

Principal Investigator: Dr. Craig Urian


Li –<br />

Lithium-Seawater Battery Development<br />

Charles J. Patrissi, Ph.D. / Christian R. Schumacher, M.S.<br />

seawater battery<br />

Anode: Li Li + + e- Cathode: 2H20 + 2e- Cell: Li + H2O Li +<br />

H 2<br />

+ OH- + ½<br />

+ 2OH -<br />

H 2 (gas)<br />

Theoretical Energy Storage of Li-seawater battery:<br />

8570 Wh / kg of Li<br />

4600 Wh / L of Li<br />

(Al-H 2 O ~ 4380 Wh/kg (Theor.)) (Mg-H 2 O ~ 4120 Wh/kg (Theor.))<br />

<strong>NUWC</strong>DIVNPT<br />

Li anode pouch<br />

Flexible<br />

Pouch<br />

Material<br />

Water proof<br />

electrolyte<br />

Key Enabler: Water proof electrolyte membrane<br />

• Li-ion conductor<br />

• Funding: NAVSEA / ONR<br />

• Ceramic Glass<br />

• Target: low power sensors<br />

Li pouch anode<br />

• FY09<br />

• Fabricated at <strong>NUWC</strong>DIVNPT<br />

– Demonstrate pouch anode in<br />

• Up to 96% coulombic efficiency in seawater (70<br />

the ocean<br />

psig to date)<br />

– Shelf stability<br />

• Low power density<br />

– Cathode development<br />

Seawater battery<br />

– Fundamental studies toward<br />

– High energy density<br />

increased power<br />

– Potentially safer to store than COTS Li – Increased hydrostatic pressure<br />

batteries (no cathode)


Academia (ULI)<br />

Additional Basic<br />

Research<br />

–Stevens Inst. Tech - Microplasma Reforming of Acetylene<br />

–UConn - Fuel Cell Performance using H2O2 Reformate as<br />

an Oxidant<br />

–UConn – Button Cell operation using logistic fuels<br />

–Virginia Tech – Grated Anode (sulfur tolerance)


A<br />

outlet<br />

Electrolyte Flow<br />

Reference Electrode<br />

Development of Nano/ Microstructured<br />

Electrodes for Increased Performance<br />

of Electrochemical Energy Sources<br />

Counter Electrode<br />

Technical Approach:<br />

B<br />

100 µm<br />

Working electrode<br />

electrolyte<br />

inlet<br />

Inert<br />

laminar flow<br />

plate<br />

•Quantify Mass transport coefficient, Km, •Characterize the effects of:<br />

-fiber density, fiber length, surface roughness<br />

K m<br />

= (D/ δ L<br />

) = I L<br />

AnFC B<br />

D =Diffusion Coefficient<br />

δL =Boundary Layer<br />

Thickness<br />

IL =Limiting Current<br />

A =Active Surface Area<br />

n =# of Electrons Transferred<br />

F =Faraday’s constant<br />

CB =Bulk concentration of<br />

electroactive species<br />

Objectives:<br />

•Engineer a general, broad-range solution to increasing<br />

battery and fuel cell performance across many systems<br />

•Achieve this by focusing on enhancing the mass transfer of<br />

a high efficiency electrode<br />

•Understand/ Define operating parameters for <strong>NUWC</strong>’s<br />

Carbon Microfiber Array (CMA) Electrode<br />

•Tailor CMA for specific applications depending on energy<br />

and power requirements<br />

Payoff:<br />

•Increase Range and Duration of Stealth Missions that are<br />

Energy Limited such as:<br />

-Sea Based Sensors<br />

-Undersea Distributed Network Systems<br />

-Unmanned Undersea Vehicles<br />

Investigators:<br />

Christian Schumacher, MS<br />

Charles Patrissi, PhD<br />

Funding:<br />

ILIR (FY07) $100K<br />

ILIR (FY08) $100K<br />

ILIR (FY08) $100K


Microplasma Reforming of Acetylene for SOFC Aboard<br />

UUVs Student: E. Lennon, PI: R. Besser, Navy Mentor: A. A.<br />

Burke<br />

elennon@stevens.edu, rbesser@stevens.edu<br />

Non-Thermal Microplasma<br />

S&T OBJECTIVES<br />

Examples:<br />

•<br />

Microplasma chips fabricated by Besser’s group<br />

running with inert gases (nitrogen & neon) in batch<br />

mode.<br />

APPROAC<br />

•H<br />

•<br />

•<br />

Characterize VI behaviors of microplasmas to<br />

determine device efficiencies under various chip<br />

geometries & input settings.<br />

Design next generation flow-thru microplasma<br />

chips & fabricate at Cornell Nanotechnology<br />

Facility (CNF).<br />

Assess hydrogen generation from C2H2 microplasma chips in a closed-loop carbide fuel<br />

processing system via measurement of<br />

conversion, yield, selectivity, & process<br />

efficiencies (all potentially improved by high<br />

electron density in microplasma).<br />

•<br />

•<br />

Determine if microplasma reforming of acetylene<br />

(C2H2) is a viable fuel processing option for H2 delivery to UUV SOFC.<br />

Determine if viable, under what conditions<br />

microplasma reforming of acetylene (C2H2) performs best.<br />

Compare microplasma fuel reforming for UUVs<br />

to existing reforming technologies.<br />

Accomplishments Jun’08 – May‘09<br />

• Completed H2 O2 decomposition project &<br />

submitted manuscript to Journal of Power<br />

Sources.<br />

• Completed microplasma fuel processing lit review.<br />

• Reviewed VI data of inert gas microplasmas &<br />

analyzed characteristics for batch chips.<br />

• Integrating mass spec into current experimental<br />

Upcoming setup. Work Jun’09 – May’10<br />

• Complete microplasma flow-thru chip design .<br />

• Fabricate next generation microplasma flow-thru<br />

chips at CNF.<br />

• Run experiments of acetylene reforming with<br />

microplasma chips to quantify hydrogen


APPROACH<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Fuel<br />

H 2 O + O 2 from<br />

decomposed<br />

H 2 O 2<br />

Fuel Cell Performance using Decomposed Hydrogen<br />

Peroxide as the Oxidant<br />

John R. Izzo Jr., Wilson K. S. Chiu, University of Connecticut,<br />

wchiu@engr.uconn.edu<br />

Louis G. Carreiro, A. Alan Burke, Naval Undersea Warfare Center, Newport RI<br />

SOFC<br />

anode<br />

electrolyte<br />

cathode<br />

Develop model to predict SOFC performance<br />

for various oxidant stream compositions.<br />

Validate model via cathode polarization tests on<br />

button cells.<br />

Characterize H2O2 to identify impurities.<br />

Determine extent of LSM cathode degradation<br />

using SEM, EDS, XRD and polarization data.<br />

Couple fuel cell with H2O2 micro-chemical<br />

reactor and optimize cathode for the oxidant<br />

feed stream.<br />

% Change in � at x* =1<br />

Voltage (V)<br />

Performance (modeling)<br />

-2<br />

-1.8<br />

-1.6<br />

-1.4<br />

-1.2<br />

-1<br />

-0.8<br />

-0.6<br />

-0.4<br />

-0.2<br />

0<br />

50 um<br />

400 um<br />

100 um<br />

300 um<br />

200 um<br />

300 200 um um<br />

400 100 um um<br />

50 um<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Oxidant Molar Water Content<br />

Testing (experiments)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Current Density (A/ cm2)<br />

850C<br />

800C<br />

750C<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Power Density (W/ cm2)<br />

ACCOMPLISHMENTS AND PLANS<br />

•<br />

•<br />

•<br />

S&T OBJECTIVES<br />

•<br />

•<br />

•<br />

Understand behavior of air-independent fuel<br />

cells for UUV propulsion applications.<br />

Study the effect of a decomposed H2 on fuel cell performance and durability.<br />

Cathode model coupling gas and charge transport<br />

developed and validated.<br />

LSM cathode exposed to H2O, N2 at 750 ˚C and<br />

characterized with SEM, EDS and XRD.<br />

Baseline polarization experiment performed.<br />

• Perform additional polarization experiments while<br />

varying H2O content in oxidant stream.<br />

• Refine competitive sorption mechanism with O2 and H2O to describe O2 reduction kinetics in model.<br />

O 2<br />

stream<br />

Develop Solid Oxide Fuel Cell (SOFC) system<br />

model and experimental setup for validation with<br />

button cell testing.


•<br />

•<br />

•<br />

•<br />

Conclusion<br />

Energy storage is the limiting factor for these next generation<br />

systems<br />

– New technology development must be tempered by:<br />

• Safety (personnel and platform)<br />

• Robust<br />

• Long shelf life<br />

• Pressure tolerant system<br />

• Total ownership cost<br />

Fuel Cell technology has the potential to greatly increase UUV<br />

mission time compared with current battery technology.<br />

High energy dense low power batteries key enablers for<br />

Distributed Netted Sensors<br />

Main challenges for UUV application:<br />

–<br />

–<br />

–<br />

Fuel & Oxygen Storage Density (liquids preferred, potential Solid NaBH4 dissolution)<br />

Stack reliability for multiple thermal/Electrochem cycles & 1000’s of hours operation<br />

Minimal startup requirements


ONR Sponsors:<br />

•<br />

•<br />

Dr. Michele Anderson<br />

Ms. Maria Mederios<br />

DOE (NETL) Sponsor<br />

• Mr. Wayne A. Surdoval<br />

Acknowledgments<br />

<strong>NUWC</strong> Members:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Mr. Delmas Atwater<br />

Dr. Alan Burke<br />

Dr. Louis Carreiro<br />

Mr. Eric Dow<br />

Dr. Joseph <strong>Fontaine</strong><br />

Mr. Christian Schumacher<br />

Dr. Charles Patrissi<br />

Dr. Craig Urian


Thank you, Questions?<br />

Contact information: joseph.fontaine@navy.mil

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!