31.10.2012 Views

M4-NUWC Overview Fontaine.pdf

M4-NUWC Overview Fontaine.pdf

M4-NUWC Overview Fontaine.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Advanced Unmanned Undersea Vehicle<br />

Energy Solutions<br />

Presented by: Dr. Joe <strong>Fontaine</strong><br />

11 th Electrochemical Power Sources<br />

R&D Symposium<br />

July 13 – 16, 2009<br />

Baltimore, MD<br />

Principal Investigators:<br />

Dr. Alan Burke<br />

Dr. Louis Carreiro<br />

Mr. Eric Dow<br />

Dr. Charles Patrissi<br />

Mr. Christian Schumacher<br />

Dr. Craig Urian


Science &<br />

Technology<br />

Naval Undersea Warfare Center<br />

Division Newport<br />

Mission<br />

Development<br />

INNOVATION<br />

Acquisition<br />

Support<br />

Fleet<br />

Support<br />

Prototyping Undersea Warfare Analysis<br />

Test & Evaluation<br />

� Provide research, development, test and evaluation, engineering, analysis and<br />

assessment, and fleet support capabilities for:<br />

• submarines, autonomous underwater systems, and offensive and defensive<br />

undersea weapon systems, and<br />

� Steward existing and emerging technologies in support of undersea warfare


•<br />

Joint / Coalition Battlespace Management<br />

•<br />

Ship / Shore Training Tools<br />

•<br />

Tactical Analysis & Decision Support<br />

Towed Arrays<br />

Comms<br />

ASW Modules<br />

For USVs<br />

Division Newport Contributions to<br />

USW Technology<br />

Towed Array<br />

Handlers<br />

Advanced Sensors<br />

• Smart Skins<br />

• Nanosensors<br />

Hull Arrays<br />

Distributed Undersea Networks<br />

Littoral Combat Ship<br />

with Mission Modules<br />

Surface Ship Sonar<br />

Surface Ship USW Offensive & Defensive Systems<br />

Including Torpedo Recognition & Alertment<br />

Sonar Systems<br />

Harbor Defense Systems<br />

Torpedo Tubes<br />

Supercavitating<br />

Torpedoes Weapons<br />

Periscopes,<br />

Antennas &<br />

Imaging Systems<br />

Sail Arrays<br />

CMs<br />

CCS, FCS<br />

Tomahawk Integration<br />

Launchers<br />

0010100101001010<br />

Towed Array<br />

Handlers<br />

Towed Arrays<br />

UUVs<br />

Undersea Comms<br />

At Speed & Depth


People<br />

Bird’s Eye View of <strong>NUWC</strong>DIVNPT<br />

• 2544 Civilian employees<br />

• The nation’s experts on USW<br />

• Highly educated & dedicated to<br />

Fleet excellence<br />

• 75% are Scientists & Engineers;<br />

44% have advanced degrees<br />

Customers<br />

• Scientific sponsors<br />

• Fleet<br />

• Navy Program sponsors<br />

• Intelligence community<br />

• Defense industry<br />

• Non-defense industry<br />

• Foreign Navies<br />

Facilities<br />

• Highly specialized for USW<br />

• Have full life cycle<br />

application<br />

• Reduce cost, risk, and<br />

development time<br />

• Make use of state-of-the-art<br />

simulations and networking<br />

• 256 Acres<br />

75% Of Our Workforce are Engineers and Scientists<br />

Advanced Degrees - 136 PhD’s (7%) and 711 Master’s (37%)


Science and Technology for:<br />

Shock Analysis<br />

and Testing<br />

<strong>NUWC</strong> Autonomous Systems and<br />

Technology Department<br />

– Torpedoes<br />

– Autonomous Undersea Vehicles (AUVs)<br />

– Countermeasures/Counterweapons<br />

System Development, Integration and Test<br />

– AUVs<br />

– Mobile ASW Targets<br />

– Undersea Defense Systems<br />

Acquisition and In-Service Engineering<br />

– AUVs<br />

– Mobile ASW Targets<br />

– Undersea Defense Systems<br />

Electric Torpedoes<br />

Science & Technology<br />

AUVs & Mobile Targets<br />

Undersea Defense Systems


Autonomous Undersea Vehicles


•<br />

•<br />

Propulsion and Energy Thrust<br />

Historically focused on both high power and<br />

energy dense air independent systems<br />

– Active participant from 6.1 to 6.3<br />

–<br />

Level of effort ranging from developer to technical<br />

evaluator at the component to system level<br />

Prime movers<br />

– Thermal<br />

–<br />

•<br />

•<br />

•<br />

Electric<br />

•<br />

Piston gas expander engines<br />

Turbines<br />

Advanced thermal cycles<br />

Permanent Magnet Brushless DC motors<br />

• Power electronics/motor controller


•<br />

Propulsion and Energy Thrust<br />

(cont.)<br />

Energy sources<br />

–<br />

–<br />

Thermal based systems<br />

•<br />

• Chemical stored energy<br />

Electrochemical<br />

• Batteries<br />

–<br />

–<br />

• Fuel cell development<br />

– Semi-Fuel cells<br />

– SOFC<br />

– Borohydride<br />

Mon/bi-propellant development and T&E<br />

Technical evaluation: Zn-AgO, Li-ion<br />

Development: Al-AgO, Li-H2O


Advanced Air-Independent Energy<br />

Solutions for Unmanned Undersea Vehicles<br />

Specific energy, Wh/kg<br />

1375 Wh/kg = TNT<br />

Challenges to meeting UUV<br />

power requirements include:<br />

• Air-independent operation<br />

• Refuelability<br />

• Multi-mission capability<br />

• Stealth<br />

• Safety<br />

• Environmentally benign<br />

• Endurance (high energy<br />

density)<br />

• Weight/volume constraints<br />

• Buoyancy<br />

• Start-up<br />

• low/no signature<br />

* David Linden Handbook of Batteries, 2nd ed, 1995<br />

Existing Commercial Sector and Conventional Energy<br />

Sources will NOT meet the Navy UUV Future Requirements


SOFC


•<br />

•<br />

•<br />

Fuel Flexibility<br />

–<br />

–<br />

–<br />

–<br />

Benefit of SOFC Powered UUV<br />

Pure H2 not required for operation<br />

Hydrocarbon fuels (diesel-type) can be utilized &<br />

rapidly refueled<br />

Internal reforming of light hydrocarbons within fuel cell<br />

stack<br />

Tolerates impurities such as carbon monoxide and<br />

sulfur (ppm level)<br />

High Efficiency, 55-65%<br />

– (based on LHV of fuel conversion to electricity)<br />

Noble metal catalysts not required for electrodes<br />

and fast reaction kinetics at electrodes


•<br />

•<br />

Government<br />

– ONR -<br />

–<br />

–<br />

– NASA -<br />

Industry<br />

–<br />

–<br />

–<br />

– TDA -<br />

–<br />

–<br />

–<br />

–<br />

Benefit of SOFC Powered UUV<br />

Refuelable Fuel Cells for UUV’s<br />

DoE/NETL - Testing of SOFC Stacks for SECA Program<br />

Internally funded fuel development effort<br />

LOX/Methane Solid Oxide Fuel Cell<br />

Versa Power Systems - SOFC stack evaluation<br />

Delphi Corporation - SOFC stack evaluation<br />

Innovatek - Fuel processing<br />

CO2 high-temperature sorbent and Phase II reformer<br />

R&D Dynamics - high-temperature blower for anode gas<br />

recycle<br />

NexTech, SBIR Phase II JP10 based system<br />

MSRI Phase II Stack development<br />

SBIR Phase I JP-10 based energy system<br />

ceramatec<br />

•<br />

• Fuel Cell Energy<br />

• Innovatek


SOFC Stack Test Stand<br />

Versa Power Systems


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Broad Fuel Comparisons<br />

Energy Content (LHV)<br />

Fuel Flashpoint,ºC MP,ºC MJ/L MJ/kg<br />

Methanol 12<br />

-98<br />

15-18<br />

19-22<br />

Ethanol 13<br />

-114<br />

18<br />

23<br />

Gasoline -7.2<br />

-58 (aviation) 31-34<br />

42-46<br />

Diesel 40-50 -20 to 5 (cloud) ~36-40 42-47<br />

Liquid H2 (no tank) -252 (BP) 8<br />

121<br />

LNG (no tank)<br />

-164(BP) 21<br />

51<br />

2015 H2 Storage Goal (9wt% systems basis) 10-15<br />

10<br />

Glycerin 176<br />

~ 17 22<br />

18<br />

Coal<br />

13-25 15-30


Fuel Processing (Reformers)<br />

Catalytic Partial Oxidation (CPOX )<br />

•<br />

•<br />

•<br />

CmHn + m/2 O 2<br />

Exothermic Reaction -<br />

n/2 H 2<br />

+ mCO + heat<br />

no additional heating required for heating inlet<br />

Fast Kinetics - reformer starts and achieves operating temperature quickly<br />

Air-dependent Operation -<br />

Steam Reforming<br />

•<br />

•<br />

CmHn + mH2O + heat (m+n/2) H2 further studies needed to consider pure O 2<br />

+ mCO<br />

Endothermic reaction - requires heat for reaction and fuel/water<br />

evaporation<br />

-<br />

-<br />

Heat is supplied from fuel cell exhaust gases and CO2 scrubber<br />

Steam can be supplied by SOFC product gases (anode recycle)<br />

More hydrogen produced per mole of fuel than in CPOX<br />

feed<br />

• Air-independent operation & 15% reduction in O 2 consumption vs. combustion


•<br />

•<br />

•<br />

•<br />

<strong>NUWC</strong> SOFC Test Facility<br />

& Prototype SOFC Cell Stack w/Reformer<br />

The Naval Undersea Warfare Center (<strong>NUWC</strong>) Division Newport is<br />

providing independent testing and evaluation of solid oxide fuel cell<br />

(SOFC) stacks being developed under DOE’s Solid State Energy<br />

Conversion Alliance (SECA) program.<br />

This testing targets SOFC performance in an air-independent<br />

environment, which simulates operating conditions of Unmanned<br />

Undersea Vehicles (UUVs).<br />

Through an IA w/DOE, FY09 Testing of Versa SOFC stacks (28 cell)<br />

will demonstrate upwards of 1 kW with Reformed S-8 and Pure O2.<br />

FY08 Testing of Delphi SOFC stacks (30 cell) demonstrated<br />

upwards of 1 kW using Reformed S-8 and Pure O2 under Closed<br />

Loop Anode gas recirculation conditions.


•<br />

•<br />

30-Cell<br />

<strong>NUWC</strong> SOFC Lab System<br />

Demo<br />

Delphi Stack integrated with:<br />

1) InnovaTek’s Steam Reformer<br />

2) TDA Research’s CO2 Sorbent<br />

3) R&D Dynamics’ High Temperature Blower<br />

Benchmarks achieved in first Demo:<br />

– > 75% S-8 Utilization<br />

– > 90% Oxygen Utilization<br />

– > 50% Efficiency (PSOFC / S-8 LHV) *<br />

– > 1 kW<br />

Delphi Stack, 30-cell<br />

All achieved<br />

simultaneously in<br />

initial proof-of-<br />

concept study<br />

(several hours of<br />

operation).<br />

C m H m Hn + n + m H 2 O 2 O (g) + (g) + heat (m+n/2) H 2 + 2 + m CO R&D Dynamics<br />

* Furnace power neglected


28-cell Versa Power Systems SOFC<br />

Stack


•<br />

•<br />

•<br />

•<br />

In house Laboratory Independent<br />

Research (ILIR) Fuel Development Effort<br />

Develop a carbide fuel system (CFS) for use with a<br />

solid oxide fuel cell (SOFC) that has the ability to<br />

generate a hydrocarbon fuel and sequester/store<br />

carbon dioxide efficiently<br />

Demonstrate the ability of the CFS to co-generate<br />

acetylene and hydrogen and to trap/store carbon<br />

dioxide<br />

Establish parameters for processing acetylene gas<br />

Integrate CFS with fuel processor, SOFC and BoP<br />

for unmanned underwater vehicle (UUV) propulsion<br />

applications


•<br />

•<br />

•<br />

CaC 2(s) + 2H 2 O (l)<br />

Acetylene Generation<br />

C 2 H 2(g) + Ca(OH) 2(aq)<br />

Highly exothermic reaction (DH = -120 kJ/mole)<br />

Reaction kinetics affected by:<br />

– Temperature<br />

– Purity of CaC2 – Particle size of CaC2 – Rate of addition of water to CaC2 (or CaC2 to water)<br />

Storage of C2H2 under low pressure (less than 2<br />

atm)


Carbide / Hydride Fuel System<br />

CaC 2(s)<br />

CaH 2(s)<br />

+ 4H2O (l) C2H2(g) + 2H2(g) + 2Ca(OH) 2(aq)<br />

C 2 H 2 + 2H 2 + nH 2 O<br />

Hydrogenation<br />

Reactor and<br />

Steam Reformer<br />

2CO + 5H 2 + (3+n)H 2 O<br />

3.5 O 2 (recycle)<br />

Gas Generation Chamber<br />

SOFC<br />

2H 2 O (l)<br />

+<br />

Q Burner<br />

2CaCO 3(s)<br />

2CO 2 + (8+n)H 2 O<br />

and residual fuel gases<br />

2CO 2 + (8+n)H 2 O


SOFC Stack Performance<br />

Fuel: Acetylene reformate Oxidizer: Oxygen


•<br />

•<br />

•<br />

Summary of SOFC Effort<br />

Continued independent evaluation of third party<br />

stacks and components at various levels of<br />

integration for both ONR and DOE/SECA<br />

Acetylene and Hydrogen mixture generated<br />

using Carbide Fuel Source (CSF)<br />

Cell stack operated on acetylene reformate<br />

Principal Investigators:<br />

Dr. Alan Burke and Dr. Louis Carreiro


Sodium Borohydride Based<br />

Fuel Cells


•<br />

•<br />

•<br />

NaBH 4<br />

Objective:<br />

–<br />

/ H2O2 Fuel Cell Program<br />

Develop a low temperature, aqueous fuel/oxidant,<br />

refuelable, energy conversion system using either<br />

Direct topology or PEM based external decomposition<br />

Task:<br />

–<br />

Evaluate the different technical approaches of this<br />

fuel/oxidant combination<br />

Goal:<br />

–<br />

Identify a technology path that will deliver a system<br />

energy density of > 300 Wh/kg for a 21” UUV energy<br />

section at 2kW


Reaction Chemistries:<br />

Direct Electro oxidation/reduction<br />

1. Alkaline Anolyte and Catholyte<br />

Anode BH 4 -<br />

Cathode HO 2 -<br />

+ 8OH -<br />

�<br />

+ H2O + 2e- Overall 4HO 2 - + BH4 - �<br />

BO 2 -<br />

�<br />

+ 6H2O + 8e- 3OH -<br />

2. Alkaline Anolyte / Acid Catholyte<br />

Anode BH 4 -<br />

Cathode 4H2O2 + 8OH -<br />

+ 8H +<br />

�<br />

Overall 4HO 2 - + BH4 - �<br />

+ 8e -<br />

BO 2 -<br />

�<br />

1.24 V<br />

0.87 V<br />

BO 2 - + 2H2 O + 4OH - 2.11 V<br />

+ 6H2O + 8e- 8H2O 1.24 V<br />

1.77 V<br />

BO 2 - + 2H2 O + 4OH - 3.01 V<br />

Key to this chemistry is to minimize the amount of caustic and acid needed to preserve the two pH<br />

levels of the respective electrolytes. Use of an anion exchange membrane or bi-polar membrane<br />

may be the key enabler but electro-osmotic drag will be difficult to compensate for.


Oxidation of BH 4 -<br />

Anode BH 4 -<br />

Reaction Chemistries:<br />

/ Reduction of O 2 via H 2<br />

+ 8OH -<br />

�<br />

BO 2 -<br />

O 2<br />

3. Alkaline Anolyte and Catholyte<br />

Cathode 2O 2<br />

+ 4H2O + 8e- Overall 2O 2 + BH 4 - �<br />

�<br />

+ 6H2O + 8e- 8OH -<br />

decomposition<br />

1.24 V<br />

0.41 V<br />

BO 2 - + 2H2 O + 4OH - 1.64 V<br />

4. Alkaline Anolyte / Acid Catholyte<br />

Anode BH 4 -<br />

Cathode 2O 2<br />

+ 8OH -<br />

+ 8H +<br />

Overall 2O 2 + BH 4 - �<br />

�<br />

+ 8e -<br />

BO 2 -<br />

�<br />

+ 6H2O + 8e- 4H2O 1.24 V<br />

1.23 V<br />

BO 2 - + 8H2 O 2.47 V


Reaction Chemistries:<br />

Oxidation / Reduction of H 2<br />

5a. BH 4 - Decomposition<br />

BH 4 -<br />

+ 2H2O �<br />

BO 2 -<br />

+ 4H 2<br />

5b. H 2 O 2 Decomposition<br />

2H2O2 �<br />

O 2<br />

+ 2H2O O 2 via decomposition<br />

5c. H 2 /O 2 Electro-Oxidation/reduction<br />

(acid environment)<br />

Anode 2H 2<br />

Cathode O 2<br />

�<br />

+ 4H +<br />

4H +<br />

Overall 2H 2 + O 2 �<br />

+ 4e -<br />

+ 4e -<br />

�<br />

2H2O 0.00 V<br />

1.23 V<br />

2H 2 O 1.23 V<br />

This chemistry would support a Proton Exchange Fuel Cell (PEMFC)


•<br />

•<br />

•<br />

Direct Borohydride System<br />

Background<br />

Objective: investigate and develop a liquid refuelable DBFC<br />

ONR 332 sponsored program<br />

Collaborative effort between Dstl and <strong>NUWC</strong> to<br />

increase the understanding and science of the DBFC<br />

Parallel approaches taken in demonstrator<br />

development<br />

O2 Dstl<br />

–<br />

–<br />

•<br />

MEA topology with indirect O2 reduction<br />

<strong>NUWC</strong><br />

•<br />

•<br />

Cell topology based<br />

–<br />

–<br />

–<br />

–<br />

Electrodeposited Pd/Ir anode<br />

Electrodeposited Pd/Ir cathode<br />

Cation exchange membrane<br />

DuPont N115<br />

Direct reduction and oxidation of H2O2 PEM<br />

H 2<br />

and NaBH 4<br />

DBH/HPFC<br />

25%<br />

NaBH 4<br />

60%<br />

H2O2 Solution<br />

waste


single cell potential (V)<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

IV Comparison of 3 Systems<br />

0.40<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00<br />

current density (A/cm^2)<br />

PEMFC @ 50C (O2/H2)<br />

DB-DHP-FC @ 25C<br />

DB-O2-FC @ 60C


energy density (Wh/kg)<br />

340<br />

320<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

System Level Energy Density<br />

Calculations of 3 Systems @ 2kW<br />

180<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00<br />

current density (A/cm^2)<br />

PEMFC @ 50C (O2/H2)<br />

DB-DHP-FC @ 25C<br />

DB-O2-FC @ 60C


•<br />

Current Efforts<br />

Study Reaction Chemistry 2<br />

– Alkaline BH -<br />

4<br />

–<br />

–<br />

/ anion exchange membrane / H2O2 (pH


single cell potential (V)<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

Preliminary 2kW System Modeling of<br />

Reaction 2 Using Literature IV Data<br />

PEMFC @ 50C (H2/O2)<br />

DBH-DHP (pH


•<br />

•<br />

•<br />

Future Efforts<br />

Analyze the technological maturity and practicality<br />

of H2/O2 PEMFC operating off of decomposed<br />

borohydride and decomposed hydrogen peroxide<br />

Investigate powdered storage of borohydride to<br />

increase system energy density<br />

– Conceptual analysis<br />

Perform system level analysis and component level<br />

experimentation of both PEM and Gen 2 fuel cells<br />

–<br />

–<br />

System engineering to determine volume/mass<br />

constraints<br />

System safety analysis<br />

• Working with strong oxidizing and strong reducing compounds<br />

Principal Investigator: Dr. Craig Urian


Li –<br />

Lithium-Seawater Battery Development<br />

Charles J. Patrissi, Ph.D. / Christian R. Schumacher, M.S.<br />

seawater battery<br />

Anode: Li Li + + e- Cathode: 2H20 + 2e- Cell: Li + H2O Li +<br />

H 2<br />

+ OH- + ½<br />

+ 2OH -<br />

H 2 (gas)<br />

Theoretical Energy Storage of Li-seawater battery:<br />

8570 Wh / kg of Li<br />

4600 Wh / L of Li<br />

(Al-H 2 O ~ 4380 Wh/kg (Theor.)) (Mg-H 2 O ~ 4120 Wh/kg (Theor.))<br />

<strong>NUWC</strong>DIVNPT<br />

Li anode pouch<br />

Flexible<br />

Pouch<br />

Material<br />

Water proof<br />

electrolyte<br />

Key Enabler: Water proof electrolyte membrane<br />

• Li-ion conductor<br />

• Funding: NAVSEA / ONR<br />

• Ceramic Glass<br />

• Target: low power sensors<br />

Li pouch anode<br />

• FY09<br />

• Fabricated at <strong>NUWC</strong>DIVNPT<br />

– Demonstrate pouch anode in<br />

• Up to 96% coulombic efficiency in seawater (70<br />

the ocean<br />

psig to date)<br />

– Shelf stability<br />

• Low power density<br />

– Cathode development<br />

Seawater battery<br />

– Fundamental studies toward<br />

– High energy density<br />

increased power<br />

– Potentially safer to store than COTS Li – Increased hydrostatic pressure<br />

batteries (no cathode)


Academia (ULI)<br />

Additional Basic<br />

Research<br />

–Stevens Inst. Tech - Microplasma Reforming of Acetylene<br />

–UConn - Fuel Cell Performance using H2O2 Reformate as<br />

an Oxidant<br />

–UConn – Button Cell operation using logistic fuels<br />

–Virginia Tech – Grated Anode (sulfur tolerance)


A<br />

outlet<br />

Electrolyte Flow<br />

Reference Electrode<br />

Development of Nano/ Microstructured<br />

Electrodes for Increased Performance<br />

of Electrochemical Energy Sources<br />

Counter Electrode<br />

Technical Approach:<br />

B<br />

100 µm<br />

Working electrode<br />

electrolyte<br />

inlet<br />

Inert<br />

laminar flow<br />

plate<br />

•Quantify Mass transport coefficient, Km, •Characterize the effects of:<br />

-fiber density, fiber length, surface roughness<br />

K m<br />

= (D/ δ L<br />

) = I L<br />

AnFC B<br />

D =Diffusion Coefficient<br />

δL =Boundary Layer<br />

Thickness<br />

IL =Limiting Current<br />

A =Active Surface Area<br />

n =# of Electrons Transferred<br />

F =Faraday’s constant<br />

CB =Bulk concentration of<br />

electroactive species<br />

Objectives:<br />

•Engineer a general, broad-range solution to increasing<br />

battery and fuel cell performance across many systems<br />

•Achieve this by focusing on enhancing the mass transfer of<br />

a high efficiency electrode<br />

•Understand/ Define operating parameters for <strong>NUWC</strong>’s<br />

Carbon Microfiber Array (CMA) Electrode<br />

•Tailor CMA for specific applications depending on energy<br />

and power requirements<br />

Payoff:<br />

•Increase Range and Duration of Stealth Missions that are<br />

Energy Limited such as:<br />

-Sea Based Sensors<br />

-Undersea Distributed Network Systems<br />

-Unmanned Undersea Vehicles<br />

Investigators:<br />

Christian Schumacher, MS<br />

Charles Patrissi, PhD<br />

Funding:<br />

ILIR (FY07) $100K<br />

ILIR (FY08) $100K<br />

ILIR (FY08) $100K


Microplasma Reforming of Acetylene for SOFC Aboard<br />

UUVs Student: E. Lennon, PI: R. Besser, Navy Mentor: A. A.<br />

Burke<br />

elennon@stevens.edu, rbesser@stevens.edu<br />

Non-Thermal Microplasma<br />

S&T OBJECTIVES<br />

Examples:<br />

•<br />

Microplasma chips fabricated by Besser’s group<br />

running with inert gases (nitrogen & neon) in batch<br />

mode.<br />

APPROAC<br />

•H<br />

•<br />

•<br />

Characterize VI behaviors of microplasmas to<br />

determine device efficiencies under various chip<br />

geometries & input settings.<br />

Design next generation flow-thru microplasma<br />

chips & fabricate at Cornell Nanotechnology<br />

Facility (CNF).<br />

Assess hydrogen generation from C2H2 microplasma chips in a closed-loop carbide fuel<br />

processing system via measurement of<br />

conversion, yield, selectivity, & process<br />

efficiencies (all potentially improved by high<br />

electron density in microplasma).<br />

•<br />

•<br />

Determine if microplasma reforming of acetylene<br />

(C2H2) is a viable fuel processing option for H2 delivery to UUV SOFC.<br />

Determine if viable, under what conditions<br />

microplasma reforming of acetylene (C2H2) performs best.<br />

Compare microplasma fuel reforming for UUVs<br />

to existing reforming technologies.<br />

Accomplishments Jun’08 – May‘09<br />

• Completed H2 O2 decomposition project &<br />

submitted manuscript to Journal of Power<br />

Sources.<br />

• Completed microplasma fuel processing lit review.<br />

• Reviewed VI data of inert gas microplasmas &<br />

analyzed characteristics for batch chips.<br />

• Integrating mass spec into current experimental<br />

Upcoming setup. Work Jun’09 – May’10<br />

• Complete microplasma flow-thru chip design .<br />

• Fabricate next generation microplasma flow-thru<br />

chips at CNF.<br />

• Run experiments of acetylene reforming with<br />

microplasma chips to quantify hydrogen


APPROACH<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Fuel<br />

H 2 O + O 2 from<br />

decomposed<br />

H 2 O 2<br />

Fuel Cell Performance using Decomposed Hydrogen<br />

Peroxide as the Oxidant<br />

John R. Izzo Jr., Wilson K. S. Chiu, University of Connecticut,<br />

wchiu@engr.uconn.edu<br />

Louis G. Carreiro, A. Alan Burke, Naval Undersea Warfare Center, Newport RI<br />

SOFC<br />

anode<br />

electrolyte<br />

cathode<br />

Develop model to predict SOFC performance<br />

for various oxidant stream compositions.<br />

Validate model via cathode polarization tests on<br />

button cells.<br />

Characterize H2O2 to identify impurities.<br />

Determine extent of LSM cathode degradation<br />

using SEM, EDS, XRD and polarization data.<br />

Couple fuel cell with H2O2 micro-chemical<br />

reactor and optimize cathode for the oxidant<br />

feed stream.<br />

% Change in � at x* =1<br />

Voltage (V)<br />

Performance (modeling)<br />

-2<br />

-1.8<br />

-1.6<br />

-1.4<br />

-1.2<br />

-1<br />

-0.8<br />

-0.6<br />

-0.4<br />

-0.2<br />

0<br />

50 um<br />

400 um<br />

100 um<br />

300 um<br />

200 um<br />

300 200 um um<br />

400 100 um um<br />

50 um<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Oxidant Molar Water Content<br />

Testing (experiments)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Current Density (A/ cm2)<br />

850C<br />

800C<br />

750C<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Power Density (W/ cm2)<br />

ACCOMPLISHMENTS AND PLANS<br />

•<br />

•<br />

•<br />

S&T OBJECTIVES<br />

•<br />

•<br />

•<br />

Understand behavior of air-independent fuel<br />

cells for UUV propulsion applications.<br />

Study the effect of a decomposed H2 on fuel cell performance and durability.<br />

Cathode model coupling gas and charge transport<br />

developed and validated.<br />

LSM cathode exposed to H2O, N2 at 750 ˚C and<br />

characterized with SEM, EDS and XRD.<br />

Baseline polarization experiment performed.<br />

• Perform additional polarization experiments while<br />

varying H2O content in oxidant stream.<br />

• Refine competitive sorption mechanism with O2 and H2O to describe O2 reduction kinetics in model.<br />

O 2<br />

stream<br />

Develop Solid Oxide Fuel Cell (SOFC) system<br />

model and experimental setup for validation with<br />

button cell testing.


•<br />

•<br />

•<br />

•<br />

Conclusion<br />

Energy storage is the limiting factor for these next generation<br />

systems<br />

– New technology development must be tempered by:<br />

• Safety (personnel and platform)<br />

• Robust<br />

• Long shelf life<br />

• Pressure tolerant system<br />

• Total ownership cost<br />

Fuel Cell technology has the potential to greatly increase UUV<br />

mission time compared with current battery technology.<br />

High energy dense low power batteries key enablers for<br />

Distributed Netted Sensors<br />

Main challenges for UUV application:<br />

–<br />

–<br />

–<br />

Fuel & Oxygen Storage Density (liquids preferred, potential Solid NaBH4 dissolution)<br />

Stack reliability for multiple thermal/Electrochem cycles & 1000’s of hours operation<br />

Minimal startup requirements


ONR Sponsors:<br />

•<br />

•<br />

Dr. Michele Anderson<br />

Ms. Maria Mederios<br />

DOE (NETL) Sponsor<br />

• Mr. Wayne A. Surdoval<br />

Acknowledgments<br />

<strong>NUWC</strong> Members:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Mr. Delmas Atwater<br />

Dr. Alan Burke<br />

Dr. Louis Carreiro<br />

Mr. Eric Dow<br />

Dr. Joseph <strong>Fontaine</strong><br />

Mr. Christian Schumacher<br />

Dr. Charles Patrissi<br />

Dr. Craig Urian


Thank you, Questions?<br />

Contact information: joseph.fontaine@navy.mil

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!