02.05.2014 Views

Nuclear Production of Hydrogen, Fourth Information Exchange ...

Nuclear Production of Hydrogen, Fourth Information Exchange ...

Nuclear Production of Hydrogen, Fourth Information Exchange ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CONCEPTUAL DESIGN OF THE HTTR-IS NUCLEAR HYDROGEN PRODUCTION SYSTEM<br />

Figure 3: Nodalisation <strong>of</strong> the HTTR-IS system model<br />

TV<br />

190<br />

9<br />

8<br />

T<br />

J1<br />

TV<br />

184<br />

TJ185<br />

0<br />

P<br />

5 AHX<br />

92<br />

52<br />

P: Pipe<br />

SV: Single volume<br />

B: Branch<br />

TV: Time dependent volume<br />

TJ: Time dependent junction<br />

V: Valve<br />

Pump, Circulator<br />

Heat structure<br />

P94<br />

P54<br />

P48<br />

TJ187<br />

TV<br />

186<br />

1<br />

0<br />

P<br />

B4<br />

0<br />

P<br />

1<br />

8<br />

P<br />

B12<br />

Reactor<br />

P56<br />

2<br />

P<br />

B1<br />

V<br />

C<br />

S<br />

8<br />

P<br />

2<br />

1<br />

6<br />

P<br />

B14<br />

P24<br />

1<br />

8<br />

P<br />

6<br />

P<br />

8<br />

6<br />

2<br />

P<br />

Containment<br />

isolation valves<br />

P88<br />

P166<br />

P90<br />

V91<br />

P164<br />

P64<br />

P60<br />

V77<br />

6<br />

8<br />

1<br />

8<br />

1<br />

B<br />

P<br />

1<br />

V182 TV<br />

183<br />

P22<br />

IHX<br />

20<br />

P84<br />

P46 P44 42<br />

P38<br />

82<br />

36<br />

P76 74<br />

P80<br />

P40<br />

P34<br />

P32<br />

5<br />

P102<br />

P170<br />

B140<br />

1<br />

2<br />

B<br />

P171<br />

P172 P702 P174 P704 P96 P706 P98 P708 P160<br />

TV<br />

178<br />

V179<br />

B180<br />

B72<br />

PPWC<br />

TV<br />

150<br />

P152<br />

P68<br />

B70<br />

TV<br />

385<br />

Helium<br />

cooler<br />

Process heat exchangers<br />

TV<br />

142<br />

3<br />

7<br />

0<br />

S<br />

V<br />

3<br />

8<br />

0<br />

S<br />

V<br />

3<br />

9<br />

0<br />

S<br />

V<br />

TV<br />

154<br />

P162<br />

Air<br />

5<br />

4<br />

2<br />

S<br />

V<br />

P360<br />

SV355<br />

B280<br />

SV270<br />

SV260<br />

B250<br />

B244<br />

SV242 SV240<br />

SV232 SV232<br />

SV222 SV220<br />

P66<br />

B210<br />

B114<br />

3<br />

4<br />

5<br />

B<br />

Air<br />

cooler<br />

TV<br />

290<br />

TV<br />

200<br />

3<br />

0<br />

S<br />

V<br />

Steam<br />

generator<br />

0<br />

P<br />

3<br />

6<br />

1<br />

P<br />

P30<br />

B104<br />

P100<br />

B132<br />

B126<br />

B130<br />

124<br />

128<br />

B120<br />

reactor core is classified into two sections: a hot channel with a flow channel (P6), fuel (HS10) and<br />

graphite block (HS11), and average channels with a flow channel (P8), fuel (HS20) and graphite block<br />

(HS21). The flow rate <strong>of</strong> the reactor core bypass flow is adjusted by a pressure loss using valve model<br />

(V9). Radiation heat transfer in radius direction are considered and heat produced by the fuel transfers<br />

to RPV. The vessel cooling system is modelled setting a RPV surface temperature in this model. PPWC<br />

consists <strong>of</strong> helium flow (B32), pressurised water flow (P102) and heat transfer tube (HS50). The IHX<br />

consists <strong>of</strong> primary side (P18), secondary side (P62) and heat transfer tube (HS40). The steam generator<br />

is a thermo-siphon type and classified into: an upper plenum (SV260, 270 and B250), heat exchange<br />

sections (SV220, 222, 230, 232, 240 and 242), a lower plenum (B210), a downcomer (P300), helium flow<br />

(P66) and heat transfer tubes (HS220, 230, 240). A mechanical-draft type air cooler is modelled<br />

considering the elevation from the steam generator and consists <strong>of</strong> a water-steam mixture flow (P360),<br />

air flow (TV401-425) and heat transfer tubes (HS360). The air flow rate is set as a boundary condition.<br />

Primary gas circulators (Pump 20, 36, 42 and 82), a secondary gas circulator (Pump 74) and pressurised<br />

water pumps (Pumps 124 and 128) are modelled and their rotational speed is controlled by primary,<br />

secondary and pressurised water flow rate control system, respectively. The primary and secondary<br />

helium storage and supply systems are modelled by storages tanks (TV178, 183, 184, 186 and 190),<br />

supply and recovery valves (V179 and 182, TJ185, 187 and 189), and actuated by pressure control<br />

systems. Containment isolation valves (V77 and 91) are modelled as motor valves and actuate by a CV<br />

isolation signal produced by a trip system.<br />

In the following calculation, a deterministic approach would be applied in order to evaluate<br />

reactor safety conservatively. Steady-state conditions were initialised based on values used in the<br />

HTTR safety review (Saito, 1994).<br />

NUCLEAR PRODUCTION OF HYDROGEN – © OECD/NEA 2010 391

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!