30.04.2014 Views

Chlorine dioxide decay and ClO 2

Chlorine dioxide decay and ClO 2

Chlorine dioxide decay and ClO 2

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Hrvoje JURETIĆ, Ph.D.<br />

University of Zagreb, Faculty of Mechanical<br />

Engineering <strong>and</strong> Naval Architecture<br />

hrvoje.juretic@fsb.hr<br />

Comparison of Disinfection Byproducts<br />

from Using <strong>Chlorine</strong> <strong>and</strong> <strong>Chlorine</strong> Dioxide<br />

in Drinking Water Distribution Systems<br />

Fourth IWA Specialty Conference on Natural Organic Matter: From Source to Tap <strong>and</strong> Beyond<br />

July 27, 2011, Costa Mesa, California<br />

1


Background, aim <strong>and</strong> scope<br />

Microbiological safety of drinking water is generally achieved<br />

by treating the water with a chemical disinfectant such as<br />

chlorine, chlorine <strong>dioxide</strong> <strong>and</strong> ozone.<br />

Despite the well-known problems of undesired DBPs formation,<br />

chlorination is still the most widely used method of disinfection.<br />

n.<br />

Trihalomethanes (THMs)) have been found to be the most<br />

prevalent organic contaminants after drinking water chlorination<br />

<strong>and</strong> typically occur at higher concentrations than other<br />

disinfection by-products.<br />

THMs <strong>and</strong> chlorites are the only regulated DBPs in Croatia. . The<br />

sum of four THMs is limited to a maximum value of 100 µg g L -1 ,<br />

while the MCL for chlorite is set at 400 µg g L -1 .<br />

2


There is a pressing need to examine alternative<br />

disinfectants to chlorine in order to reduce potential<br />

health risks.<br />

<strong>Chlorine</strong> <strong>dioxide</strong> (<strong>ClO</strong> 2 ) is widely used as an<br />

alternative disinfectant because it does not produce<br />

appreciable levels of THMs (some possible<br />

hazardous by-products, including chlorite <strong>and</strong><br />

chlorate are produced).<br />

Information such as reaction rate constants <strong>and</strong> by-<br />

products formation can be used as important factors<br />

in determining whether disinfection with <strong>ClO</strong> 2 are<br />

suitable for the decreasing unwanted by-products.<br />

3


The aim of the study was to evaluate what impact the<br />

switch from chlorine to chlorine <strong>dioxide</strong> would have on<br />

the concentration of the major DBPs in groundwater<br />

samples from the Eastern Slavonia region, Croatia <strong>and</strong><br />

to compare these two disinfectants by performing<br />

mutagenicity testing.<br />

This is the first study of this kind in Croatia <strong>and</strong> is<br />

associated with the development of the Eastern Slavonia<br />

Regional Water Supply System with a design flow rate of<br />

2000 L s -1 .<br />

4


For this purpose we examined:<br />

<br />

<br />

<br />

<br />

THMFP<br />

<strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation during<br />

chlorination<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> formation of<br />

chlorite during the treatment of groundwater<br />

samples with <strong>ClO</strong> 2<br />

Short-term<br />

term mutagenicity test (Comet assay<br />

on isolated human lymphocytes)<br />

5


Materials <strong>and</strong> Methods<br />

Water Samples<br />

Groundwater samples were collected from three locations throughout ut the<br />

Eastern Slavonia region.<br />

Parameter SIK RET OSI<br />

pH 8.28 7.85 7.94<br />

Conductivity (μS cm -1 ) 414 659 751<br />

Alkalinity (mg L -1 as CaCO 3 ) 182 258 330<br />

Hardness (mg L -1 as CaCO 3 ) 196 161 207<br />

UV 254 , cm -1 0.017 0.073 0.104<br />

NPOC (mg L -1 ) 0.27 2.03 3.06<br />

TN (mg L -1 ) 0.12 0.67 1.76<br />

THMFP (µg L -1 as CHCl 3 ) 12.9 78.1 80.4<br />

Bromide (μg L -1 ) 5 36 7.5<br />

Chloride (mg L -1 ) 4.4 21.6 15.5<br />

Sulfate (mg L -1 ) 11.4 10.4 3.94<br />

Phosphate (mg L -1 P) 0.025 0.097<br />

As (μg L -1 ) 2.33 35.7 26.9<br />

Fe (μg L -1 ) 15 4.14 4.2<br />

Mn (μg L -1 ) 37 136 20.9<br />

6


Analytical Methods<br />

A chlorine stock solution was prepared by dissolving chlorine gas into Milli-<br />

Q water <strong>and</strong> st<strong>and</strong>ardized spectrophotometrically by using a molar absorption<br />

coefficient of the triiodide ion, calculated to be 25,024 M -1 cm -1 at 351 nm.<br />

A chlorine <strong>dioxide</strong> stock solution was prepared by adding dilute H 2 SO 4 to a<br />

sodium chlorite solution according to St<strong>and</strong>ard Method 4500-<strong>ClO</strong><br />

2 B (APHA<br />

et al., 1995) <strong>and</strong> st<strong>and</strong>ardized by the direct spectrophotometrical<br />

determination of <strong>ClO</strong> 2 at 360 nm using a calculated absorption coefficient of<br />

1182 M -1 cm -1 .<br />

The bulk chlorine <strong>decay</strong> rates were measured by absorbance measurement<br />

at 351 nm using a Hewlett Packard 8453 UV-visible spectrophotometer.<br />

The bulk chlorine <strong>dioxide</strong> <strong>decay</strong> rates were determined according to US<br />

EPA Method 327.0 Rev. 1.1 by measurement the absorbance difference<br />

between the reagent water blank <strong>and</strong> the samples at 633 nm, which is the<br />

absorbance maximum for Lissamine Green B (LGB) in the citric acid/glycine<br />

buffer.<br />

7


Analytical Methods<br />

The THMs analysis was carried out on HS/GC/MS according to the EPA<br />

Method 8260b .<br />

Chlorite concentrations were calculated after the samples are sparged to<br />

remove chlorine <strong>dioxide</strong> according to US EPA Method 327.0 Rev. 1.1.<br />

THMFP was determined according to St<strong>and</strong>ard Method 5710 B (APHA et<br />

al., 1995).<br />

Alkaline comet assay was carried out according to Singh et al. (1988).<br />

Blood sample was used for the isolation of lymphocytes. Total of 300<br />

comets per sample were measured (100 comets per each of three replicate<br />

slides). As a measure of DNA damage we evaluated the tail intensity<br />

ity<br />

(DNA% in the comet tail).<br />

8


SIK_15<br />

5<br />

<strong>Chlorine</strong>_HD<br />

<strong>Chlorine</strong>_LD<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60 80 100 120<br />

9<br />

Residual chlorine concentration (mg L -1 )<br />

Time (h)<br />

25<br />

20<br />

TTHM (µg L -1 as CHCl3 )<br />

Results <strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation<br />

TTHM_HD<br />

TTHM_LD<br />

15<br />

10<br />

5<br />

0


Results <strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation<br />

5<br />

<strong>Chlorine</strong>_HD<br />

<strong>Chlorine</strong>_LD<br />

4<br />

3<br />

2<br />

1<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

10<br />

Residual chlorine concentration (mg L -1 )<br />

TTHM (µg L -1 as CHCl3 )<br />

SIK_25<br />

20<br />

TTHM_HD<br />

TTHM_LD<br />

0<br />

Time (h)


Results <strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation<br />

5<br />

4<br />

3<br />

2<br />

1<br />

<strong>Chlorine</strong>_HD<br />

<strong>Chlorine</strong>_LD<br />

0<br />

0 5 10 15 20 25<br />

11<br />

Residual chlorine concentration (mg L -1 )<br />

Time (h)<br />

50<br />

40<br />

TTHM (µg L -1 as CHCl3 )<br />

RET_15<br />

TTHM_HD<br />

TTHM_LD<br />

30<br />

20<br />

10<br />

0


Results<br />

<strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation<br />

RET_25<br />

2.5<br />

60<br />

<strong>Chlorine</strong>_HD<br />

<strong>Chlorine</strong>_LD<br />

Residual chlorine concentration (mg L -1 )<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

TTHM_HD<br />

TTHM_LD<br />

50<br />

40<br />

30<br />

20<br />

10<br />

TTHM (µg L -1 as CHCl 3<br />

)<br />

0<br />

0 5 10 15 20 25<br />

Time (h)<br />

12


Results <strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation<br />

OSI_15<br />

4<br />

3<br />

2<br />

1<br />

<strong>Chlorine</strong>_HD<br />

<strong>Chlorine</strong>_LD<br />

0<br />

0 20 40 60 80 100 120<br />

13<br />

Residual chlorine concentration (mg L -1 )<br />

TTHM (µg L -1 as CHCl3 )<br />

50<br />

40<br />

TTHM_HD<br />

TTHM_LD<br />

30<br />

20<br />

10<br />

0<br />

Time (h)


Results <strong>Chlorine</strong> <strong>decay</strong> <strong>and</strong> THMs formation<br />

OSI_25<br />

4<br />

3<br />

2<br />

1<br />

<strong>Chlorine</strong>_HD<br />

<strong>Chlorine</strong>_LD<br />

0<br />

0 20 40 60 80 100 120<br />

14<br />

Residual chlorine concentration (mg L -1 )<br />

TTHM (µg L -1 as CHCl3 )<br />

50<br />

TTHM_HD<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Time (h)


Results<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> <strong>ClO</strong> 2- formation<br />

SIK_15<br />

3.0<br />

1.0<br />

Residual chlorine <strong>dioxide</strong> concentration (mg L -1 )<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_HD<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_LD<br />

Chlorite_HD<br />

Chlorite_LD<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Chlorite concentration (mg L -1 )<br />

0.0<br />

0 20 40 60 80 100 120<br />

0.0<br />

Time (h)<br />

15


Results<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> <strong>ClO</strong> 2- formation<br />

SIK_25<br />

Residual chlorine <strong>dioxide</strong> concentration (mg L -1 )<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_HD<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_LD<br />

Chlorite_HD<br />

Chlorite_LD<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Chlorite concentration (mg L -1 )<br />

0.0<br />

0 20 40 60 80 100 120<br />

0.0<br />

Time (h)<br />

16


Results<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> <strong>ClO</strong> 2- formation<br />

RET_15<br />

Residual chlorine <strong>dioxide</strong> concentration (mg L -1 )<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_HD<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_LD<br />

Chlorite_HD<br />

Chlorite_LD<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Chlorite concentration (mg L -1 )<br />

0 20 40 60 80 100 120<br />

Time (h)<br />

0.0<br />

17


Results<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> <strong>ClO</strong> 2- formation<br />

RET_25<br />

Residual chlorine <strong>dioxide</strong> concentration (mg L -1 )<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_HD<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_LD<br />

Chlorite_HD<br />

Chlorite_LD<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Chlorite concentration (mg L -1 )<br />

-0.2<br />

0 10 20 30 40 50<br />

Time (h)<br />

0.0<br />

18


Results<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> <strong>ClO</strong> 2- formation<br />

OSI_15<br />

1.2<br />

2.0<br />

Residual chlorine <strong>dioxide</strong> concentration (mg L -1 )<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_HD<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_LD<br />

Chlorite_HD<br />

Chlorite_LD<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Chlorite concentration (mg L -1 )<br />

-0.2<br />

0 10 20 30 40 50<br />

0.0<br />

Time (h)<br />

19


Results<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> <strong>and</strong> <strong>ClO</strong> 2- formation<br />

OSI_25<br />

2.0<br />

Residual chlorine <strong>dioxide</strong> concentration (mg L -1 )<br />

0.8 <strong>Chlorine</strong> <strong>dioxide</strong>_HD<br />

<strong>Chlorine</strong> <strong>dioxide</strong>_LD<br />

Chlorite_HD<br />

Chlorite_LD<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Chlorite concentration (mg L -1 )<br />

0 5 10 15 20 25<br />

0.0<br />

Time (h)<br />

20


<strong>Chlorine</strong> <strong>decay</strong> parameters<br />

Water<br />

samples<br />

SIK_15<br />

SIK_25<br />

RET_15<br />

RET_25<br />

OSI_15<br />

OSI_25<br />

<strong>Chlorine</strong><br />

dose<br />

a (mgL -1 ) b (mgL -1 ) k (h -1 ) r 2<br />

HD 3.874 0.4745 0.0375 0.96<br />

LD 1.681 0.3695 0.0740 0.88<br />

HD 3.436 0.4641 0.0371 0.97<br />

LD 1.447 0.3835 0.0391 0.96<br />

HD 2.499 1.2176 0.2145 0.96<br />

LD 0.725 0.8683 0.3681 0.95<br />

HD 0.178 1.1294 0.2762 0.89<br />

LD 0.440 0.3535 0.2650 0.99<br />

HD 0.414 2.0086 0.0475 0.96<br />

LD 0.177 1.2077 0.5256 0.98<br />

HD 0 1.8581 0.0491 0.99<br />

LD 0 0.7345 0.1405 0.80<br />

C t = a + b × exp(-kt)<br />

21


Water<br />

samples<br />

SIK_15<br />

SIK_25<br />

RET_15<br />

RET_25<br />

OSI_15<br />

OSI_25<br />

<strong>Chlorine</strong> <strong>dioxide</strong> <strong>decay</strong> parameters<br />

<strong>Chlorine</strong><br />

<strong>dioxide</strong> a (mgL -1 ) b (mgL -1 ) k (h -1 ) r 2<br />

dose<br />

HD 2.031 0.4336 0.0250 0.97<br />

LD 1.041 0.1448 0.0187 0.91<br />

HD 1.683 0.6260 0.0178 0.96<br />

LD 0.885 0.2424 0.0262 0.90<br />

HD 0 1.6549 0.0583 0.98<br />

LD 0 0.4858 0.4999 0.99<br />

HD 0 1.5335 0.1444 0.99<br />

LD 0 0.7006 3.9047 0.99<br />

HD 0 1.0084 0.3398 0.99<br />

LD 0 0.0872 3.7007 0.99<br />

HD 0 0.7644 0.6229 0.98<br />

LD 0.019 0.0123 0.1076 0.99<br />

C t = a + b × exp(-kt)<br />

22


THMFP<br />

Trihalomethane Formation Potential<br />

100<br />

THM (µg L -1 as CHCl3)<br />

80<br />

60<br />

40<br />

20<br />

Tribromomethane<br />

Dibromochloromethane<br />

Bromodichloromethane<br />

Trichloromethane<br />

0<br />

SIK OSI RET<br />

Test water<br />

23


Results<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Genotoxicity<br />

Control Raw water <strong>ClO</strong>2 Cl2<br />

Sik<br />

Ret<br />

Osi<br />

24


Conclusions<br />

In all of the treated water samples the TTHM concentration never<br />

exceed the maximum permissible value of 100 µg L -1 , while for some<br />

waters the observed chlorite concentrations exceeded the MCL.<br />

Different chlorine dem<strong>and</strong> may be attributed to different content<br />

<strong>and</strong> nature of dissolved organic matter in water samples used in this<br />

study. The experimental kinetic data could be used to predict the<br />

chlorine/chlorine <strong>dioxide</strong> dem<strong>and</strong> <strong>and</strong> TTHM formation at any time in a<br />

distribution system.<br />

It should be noted that the chlorine/chlorine <strong>dioxide</strong> dem<strong>and</strong> of<br />

water samples measured in the laboratory differ from the actual<br />

disinfectant dem<strong>and</strong> in a distribution system. Factors such as<br />

reactions of chlorine/chlorine <strong>dioxide</strong> with biofilms <strong>and</strong> with pipe walls<br />

have not been investigated in our laboratory experiments.<br />

25


Conclusions<br />

Relatively low bromide level in all water samples is the reason for<br />

typically very low concentration of brominated THMs .<br />

Other classes of DBPs have not been investigated – further<br />

research is needed!<br />

Low genotoxic potency of all water samples was observed (no prior<br />

extraction)<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!