28.04.2014 Views

Cylindrical Coordinates

Cylindrical Coordinates

Cylindrical Coordinates

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Cylindrical</strong> <strong>Coordinates</strong><br />

Transforms<br />

The forward and reverse coordinate transformations are<br />

! = x 2 + y 2<br />

" = arctan( y, x)<br />

z = z<br />

x = ! cos"<br />

y = ! sin "<br />

z = z<br />

z<br />

z<br />

!<br />

r<br />

^<br />

z<br />

^<br />

!<br />

^<br />

"<br />

y<br />

where we formally take advantage of the two argument arctan<br />

function to eliminate quadrant confusion.<br />

x<br />

"<br />

Unit Vectors<br />

The unit vectors in the cylindrical coordinate system are functions of position. It is convenient to express them in terms of<br />

the cylindrical coordinates and the unit vectors of the rectangular coordinate system which are not themselves functions of<br />

position.<br />

ˆ ! =<br />

!<br />

! = x ˆ<br />

x + yˆ y<br />

!<br />

= ˆ x cos" + ˆ y sin "<br />

ˆ " = ˆ z # ˆ ! = $ x ˆ sin " + ˆ y cos "<br />

ˆ z = z ˆ<br />

Variations of unit vectors with the coordinates<br />

Using the expressions obtained above it is easy to derive the following handy relationships:<br />

"<br />

!# = 0<br />

! ˆ "<br />

!" = 0<br />

! ˆ<br />

! ˆ "<br />

!# = $ x ˆ sin # + y ˆ cos# = ˆ #<br />

! ˆ "<br />

!z = 0 ! ˆ "<br />

Path increment<br />

!ˆ<br />

! ˆ "<br />

!" = $ x ˆ cos" $ y ˆ sin " = $ ˆ #<br />

!z = 0<br />

z<br />

!" = 0<br />

!ˆ z<br />

!# = 0<br />

!ˆ z<br />

!z = 0<br />

We will have many uses for the path increment d r ! expressed in cylindrical coordinates:<br />

d r ! = d ! ˆ ! + zˆ z ! d! + !dˆ ! + ˆ z dz + zdˆ z<br />

( ) = ˆ<br />

$<br />

= ˆ ! d! + ! " ˆ ! "ˆ<br />

& d! + !<br />

"! "# d# + " ˆ !<br />

%<br />

"z dz ' $<br />

) + z ˆ dz + z &<br />

"ˆ z<br />

( %"! = ˆ ! d! + ˆ #!d# + z ˆ dz<br />

"ˆ<br />

d! + z<br />

"#<br />

"ˆ<br />

d# + z<br />

"z dz '<br />

)<br />

(


Time derivatives of the unit vectors<br />

We will also have many uses for the time derivatives of the unit vectors expressed in cylindrical coordinates:<br />

ˆ ˙ ! = "ˆ !<br />

"! ˙ ! + " ˆ ! ˙ # + " ˆ !<br />

"# "z z ˙ = ˆ # ˙ #<br />

ˆ ˙<br />

# = " ˆ #<br />

"! ˙ ! + " ˆ #<br />

#<br />

"# ˙ + " ˆ #<br />

z<br />

"z ˙ = $ ˆ ! ˙ #<br />

ˆ ˙ z = "ˆ z<br />

"! ˙ ! + "ˆ z ˙ # + "ˆ z<br />

"# "z z ˙ = 0<br />

Velocity and Acceleration<br />

The velocity and acceleration of a particle may be expressed in cylindrical coordinates by taking into account the associated<br />

rates of change in the unit vectors:<br />

!<br />

v = r ! ˙ = ˆ ˙<br />

!! + ˆ ! ˙ ! + ˆ ˙ z z + z ˆ z ˙ = ˆ ! ˙ ! + " ˆ ! ˙ " + z ˆ z ˙<br />

!<br />

v = ˆ ! ˙ ! + ˆ "! ˙ " + z ˆ z ˙<br />

!<br />

a = v ! ˙<br />

= ˆ ˙<br />

! ˙ ! + ˆ ! ˙ ! + ˆ ˙<br />

"! ˙ " + ˆ " ˙ ! ˙ " + ˆ "! ˙ " + z ˆ ˙<br />

z ˙ + z ˆ ˙ z<br />

= ˆ " ˙ " ˙ ! + ˆ ! ˙ ! # ˆ !! ˙ " 2 + " ˆ ˙ ! ˙ " + ˆ "! ˙ " + ˆ z ˙ z<br />

!<br />

a =<br />

( # 2<br />

) + ˆ<br />

ˆ ! ˙ ! " ! ˙<br />

( ) + ˆ<br />

# ! ˙ # + 2 ˙ ! ˙ #<br />

z ˙ z<br />

The del operator from the definition of the gradient<br />

Any (static) scalar field u may be considered to be a function of the cylindrical coordinates ! , ! , and z. The value of u<br />

changes by an infinitesimal amount du when the point of observation is changed by d r ! . That change may be determined<br />

from the partial derivatives as<br />

du = !u !u !u<br />

d" + d# +<br />

!" !# !z dz .<br />

But we also define the gradient in such a way as to obtain the result<br />

!<br />

du = ! u " d ! r<br />

Therefore,<br />

!u !u !u<br />

d" + d# +<br />

!" !# !z dz = !<br />

$ u% d r<br />

!<br />

or, in cylindrical coordinates,<br />

!u !u !u<br />

d" + d# +<br />

!" !# !z dz = $ !<br />

u<br />

( ) d" + $ !<br />

u<br />

"<br />

( ) "d# + $ !<br />

u<br />

#<br />

( ) dz<br />

z<br />

and we demand that this hold for any choice of d! , d! and dz. Thus,<br />

!<br />

(! u) = #u<br />

"<br />

from which we find<br />

#" , !<br />

! u<br />

( ) $<br />

= 1 "<br />

!<br />

! = ˆ<br />

#<br />

"<br />

#" + ˆ $ #<br />

" #$ + ˆ z # #z<br />

#u<br />

#$ , !<br />

! u<br />

( ) z<br />

= #u<br />

#z ,


Divergence<br />

!<br />

The divergence ! " A !<br />

is carried out taking into account, once again, that the unit vectors themselves are functions of the<br />

coordinates. Thus, we have<br />

!<br />

! " !<br />

A =<br />

&<br />

ˆ<br />

$<br />

#<br />

$# + % ˆ $<br />

# $% + z ˆ $ )<br />

(<br />

+ " A<br />

'<br />

$z # ˆ # + A ˆ<br />

%<br />

*<br />

% + A z ˆ z<br />

( )<br />

where the derivatives must be taken before the dot product so that<br />

!<br />

! " A ! &<br />

= ˆ<br />

$<br />

#<br />

$# + % ˆ $<br />

# $% + z ˆ $ )<br />

(<br />

+ " A<br />

!<br />

'<br />

$z*<br />

= ˆ # " $ A<br />

!<br />

$# + ˆ %<br />

# " $! A<br />

$% + z ˆ " $ A<br />

!<br />

$z<br />

&<br />

= ˆ # "(<br />

'<br />

$A #<br />

$# ˆ # + $A %<br />

$#<br />

ˆ % + $A z<br />

$# ˆ z + A $ ˆ #<br />

#<br />

$# + A $ ˆ %<br />

%<br />

$# + A $ˆ z )<br />

z +<br />

$# *<br />

+ ˆ %<br />

# " & $A #<br />

$% ˆ # + $A %<br />

$% ˆ % + $A z<br />

$% z ˆ + A $ˆ #<br />

#<br />

$% + A $ ˆ %<br />

%<br />

$% + A $ˆ z )<br />

(<br />

z<br />

'<br />

$%<br />

+<br />

*<br />

&<br />

+ z ˆ " (<br />

'<br />

$A #<br />

$z<br />

ˆ # + $A %<br />

$z<br />

ˆ % + $A z<br />

$z ˆ z + A #<br />

$ ˆ #<br />

$z + A %<br />

$ ˆ %<br />

$z + A z<br />

With the help of the partial derivatives previously obtained, we find<br />

!<br />

! " A !<br />

=<br />

& $A<br />

ˆ # " #<br />

$# ˆ # + $A % ˆ % + $A z<br />

(<br />

' $# $# ˆ z + 0 + 0 + 0 )<br />

+<br />

*<br />

ˆ %<br />

+<br />

# " & $A #<br />

$% ˆ # + $A % ˆ % + $A z<br />

z<br />

$% $% ˆ + A # % ˆ<br />

)<br />

(<br />

, A % ˆ # + 0+<br />

'<br />

*<br />

&<br />

+ z ˆ "(<br />

'<br />

$A #<br />

$z<br />

ˆ # + $A %<br />

$z<br />

ˆ % + $A z<br />

z<br />

$z ˆ + 0 + 0 + 0<br />

&<br />

= $A # ) &<br />

( + + 1 $A %<br />

' $# * # $% + A # ) &<br />

(<br />

+ + $A z )<br />

( +<br />

' # * ' $z *<br />

&<br />

= $A #<br />

$# + A # )<br />

(<br />

' #<br />

+ + 1 $A %<br />

* # $% + $A z<br />

$z<br />

!<br />

! " A !<br />

= 1 $<br />

# $# A ##<br />

( ) + 1 #<br />

$A %<br />

$% + $A z<br />

$z<br />

)<br />

+<br />

*<br />

$ˆ z )<br />

+<br />

$z*


Curl<br />

!<br />

The curl ! " A !<br />

is also carried out taking into account that the unit vectors themselves are functions of the coordinates.<br />

Thus, we have<br />

!<br />

! " A ! &<br />

= ˆ<br />

$<br />

#<br />

$# + ˆ % $<br />

# $% + ˆ z $ )<br />

(<br />

+ " A<br />

'<br />

$z # ˆ # + A ˆ<br />

%<br />

*<br />

% + A z ˆ z<br />

( )<br />

where the derivatives must be taken before the cross product so that<br />

!<br />

! " A ! &<br />

= ˆ<br />

$<br />

#<br />

$# + ˆ % $<br />

# $% + ˆ z $ )<br />

(<br />

+ " A<br />

!<br />

'<br />

$z*<br />

= ˆ # " $! A<br />

$# + ˆ %<br />

# " $! A<br />

$% + z ˆ " $! A<br />

$z<br />

&<br />

= ˆ # " $A #<br />

$# ˆ # + $A %<br />

% ˆ + $A z<br />

(<br />

$# $# z ˆ + A #<br />

'<br />

+ ˆ %<br />

# " & $A #<br />

$% ˆ # + $A %<br />

$% ˆ % + $A z<br />

(<br />

$% ˆ<br />

'<br />

&<br />

+ ˆ z " $A #<br />

(<br />

' $z<br />

ˆ # + $A %<br />

$z<br />

ˆ % + $A z<br />

$z ˆ z + A #<br />

$ˆ #<br />

$# + A %<br />

z + A $ˆ #<br />

#<br />

$% + A %<br />

$ ˆ #<br />

$z + A %<br />

$ ˆ %<br />

$# + A z<br />

$ˆ z )<br />

+<br />

$# *<br />

$ ˆ %<br />

$% + A z<br />

$ ˆ %<br />

$z + A z<br />

With the help of the partial derivatives previously obtained, we find<br />

!<br />

! " A ! &<br />

= ˆ # " $A #<br />

$# ˆ # + $A %<br />

% ˆ + $A z<br />

(<br />

' $# $# z ˆ + 0 + 0 + 0 )<br />

+<br />

*<br />

+ ˆ %<br />

# " & $A #<br />

(<br />

' $% ˆ<br />

&<br />

+ ˆ z " $A #<br />

(<br />

' $z<br />

# + $A %<br />

$%<br />

ˆ # + $A %<br />

$z<br />

ˆ % + $A z<br />

$% z ˆ + A ˆ<br />

#% , A % ˆ<br />

ˆ % + $A z<br />

$z ˆ z + 0 + 0 + 0<br />

)<br />

+<br />

*<br />

)<br />

# + 0+<br />

*<br />

&<br />

= $A %<br />

$# ˆ z , $A z ˆ ) &<br />

(<br />

% + + , 1 $A #<br />

' $# * # $% z ˆ + 1 $A z<br />

# $% ˆ # + A %<br />

(<br />

'<br />

# z ˆ )<br />

+<br />

*<br />

&<br />

+ $A #<br />

ˆ % , $A %<br />

(<br />

' $z $z ˆ # )<br />

+<br />

*<br />

$ˆ z )<br />

$%<br />

+<br />

*<br />

$ˆ z )<br />

+<br />

$z*<br />

& 1 $A<br />

= ˆ # z<br />

# $% , $A % )<br />

(<br />

+ + ˆ & $A #<br />

%<br />

' $z * $z , $A ) &<br />

z<br />

( + + z ˆ<br />

$A %<br />

' $# * $# + A %<br />

# , 1 $A # )<br />

(<br />

+<br />

'<br />

# $% *<br />

!<br />

! " A ! '<br />

= ˆ<br />

1 $A<br />

# z<br />

# $% & $A % *<br />

)<br />

( $z<br />

, + ˆ ' $A #<br />

%<br />

+ $z & $A * '<br />

z<br />

)<br />

( $#<br />

, + z ˆ<br />

1 $<br />

)<br />

+ # $# A % #<br />

(<br />

( ) & 1 #<br />

$A # *<br />

$%<br />

,<br />

+


Laplacian<br />

The Laplacian is a scalar operator that can be determined from its definition as<br />

!<br />

! 2 u = ! "<br />

!<br />

! u<br />

&<br />

( ) = (<br />

ˆ<br />

$<br />

#<br />

$# + % ˆ $<br />

# $% + z ˆ<br />

$ ) &<br />

'<br />

$z<br />

+ " ˆ # $u<br />

* $# + % ˆ $u<br />

# $% + z ˆ<br />

$u )<br />

(<br />

'<br />

$z<br />

+<br />

*<br />

= ˆ # " $ &<br />

$# ˆ # $u<br />

$# + ˆ % $u<br />

# $% + z ˆ<br />

$u )<br />

(<br />

+<br />

'<br />

$z *<br />

%<br />

+ ˆ<br />

# " $ &<br />

$% ˆ # $u<br />

$# + ˆ % $u<br />

# $% + z ˆ<br />

$u )<br />

(<br />

+<br />

'<br />

$z *<br />

+ z ˆ " $ $z<br />

&<br />

ˆ # $u<br />

$# + ˆ % $u<br />

# $% + z ˆ $u )<br />

(<br />

+<br />

'<br />

$z*<br />

With the help of the partial derivatives previously obtained, we find<br />

'<br />

! 2 u = ˆ " # ˆ " $ 2 u<br />

$" 2 % ˆ & $u<br />

" 2 $& +<br />

ˆ & $ 2 u<br />

" $&$" + z ˆ<br />

$ 2 u *<br />

)<br />

,<br />

(<br />

$z$" +<br />

&<br />

+ ˆ<br />

" # '<br />

ˆ $u<br />

&<br />

$" + ˆ<br />

$ 2 u<br />

"<br />

$"$& % ˆ " $u<br />

" $& +<br />

ˆ & $ 2 u<br />

" $& 2 + z ˆ $ 2 u *<br />

)<br />

,<br />

(<br />

$z$& +<br />

'<br />

+ z ˆ # ˆ<br />

$ 2 u ˆ<br />

"<br />

$"$z + & $ 2 u<br />

" $&$z + z ˆ<br />

$ 2 u*<br />

)<br />

(<br />

$z 2 ,<br />

+<br />

= $ 2 u<br />

$" 2 + 1 $u<br />

" $" + 1 $ 2 u<br />

" 2 $& 2 + $ 2 u<br />

$z 2<br />

= 1 $ '<br />

" $" " $u *<br />

) , + 1 $ 2 u<br />

( $" + " 2 $& 2 + $ 2 u<br />

$z 2<br />

Thus, the Laplacian operator can be written as<br />

! 2 = 1 # $<br />

" #" " # '<br />

& ) + 1 # 2<br />

% #" ( " 2 #* 2 + # 2<br />

#z 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!