27.04.2014 Views

The Impact of Moisture on Extratropical Cyclone Strength: What to ...

The Impact of Moisture on Extratropical Cyclone Strength: What to ...

The Impact of Moisture on Extratropical Cyclone Strength: What to ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GOES EAST Satellite Water Vapor Imagery. <br />

FEB
11,
2012,
8pm
EST
<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> <strong>on</strong> <strong>Extratropical</strong> Cycl<strong>on</strong>e <strong>Strength</strong>: <br />

<strong>What</strong> <strong>to</strong> Expect Under Global Warming<br />

Jimmy Booth<br />

Shuguang Wang <br />

Lorenzo Polvani<br />

23.01.2012<br />

GLODEC Seminar, LDEO


GOES EAST Satellite Water Vapor Imagery. <br />

FEB
11,
2012,
12am
EST



GOES EAST Satellite Water Vapor Imagery. <br />

FEB
11,
2012,
4am
EST



GOES EAST Satellite Water Vapor Imagery. <br />

FEB
11,
2012,
8am
EST



GOES EAST Satellite Water Vapor Imagery. <br />

FEB
11,
2012,
12pm
EST



GOES EAST Satellite Water Vapor Imagery. <br />

FEB 11, 2012, 4pm EST


GOES EAST Satellite Water Vapor Imagery. <br />

FEB
11,
2012,
8pm
EST



<strong>What</strong> is an extratropical cycl<strong>on</strong>e?<br />

From Pers<strong>on</strong>al Experience:<br />

Wintertime s<strong>to</strong>rms in the Northeast.<br />

Characteristics:<br />

- low pressure center<br />

-warm and cold fr<strong>on</strong>t<br />

-abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> rain and/or snow<br />

Forecast for Dec. 26, 2010<br />

From <str<strong>on</strong>g>The</str<strong>on</strong>g>ory: <br />

Circulati<strong>on</strong> resp<strong>on</strong>se <strong>to</strong> baroclinic<br />

instability (Meridi<strong>on</strong>al Temperature<br />

Gradient).<br />

hence: baroclinic life cycles.<br />

http://www.hpc.ncep.noaa.gov/noaa/noaa_archive.php


Introducti<strong>on</strong>: <strong>Extratropical</strong> Cycl<strong>on</strong>es and Climate<br />

Clima<strong>to</strong>logical S<strong>to</strong>rms Tracks, i.e., Baroclinic Wave Activity<br />

100 m 2<br />

Variance <str<strong>on</strong>g>of</str<strong>on</strong>g> time-filtered 250 hPa Geopotential Height<br />

(time filtered <strong>to</strong> isolate synoptic variability)<br />

S<strong>to</strong>rm Track Analysis examines the cumulative affect <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>to</strong>rms.<br />

Today I will focus <strong>on</strong> the individual s<strong>to</strong>rms.


<strong>What</strong> will happen <strong>to</strong> midlatitude s<strong>to</strong>rms in a warmer world?


How will comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere that influence s<strong>to</strong>rms<br />

change with global warming?<br />

(1) dT SURF /dy decreases :: less low-level baroclinicity.<br />

*Wu et al., 2011: upper-level baroclinicity increases.<br />

(2) Low-level atmospheric water vapor increases.


Using PV thinking <strong>to</strong> understand the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture<br />

( ) ∂θ<br />

(1) PV = −g ζ θ<br />

+ f<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ∂p⎠<br />

Potential Vorticity = (local rotati<strong>on</strong> + global rotati<strong>on</strong>)*(vertical stability)<br />

€<br />

(2) d ( PV )<br />

dt<br />

( ) ∂ ˙<br />

≈ −g ζ θ<br />

+ f<br />

θ<br />

∂p<br />

˙ θ = diabatic heating rate<br />

Potential Vorticity Tendency ≈ (rotati<strong>on</strong>)*(vertical derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> diabatic heating rate)<br />

€<br />

€<br />

PV inversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a useful estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> midlatitude s<strong>to</strong>rm dynamics.<br />

A positive PV anomaly generates cycl<strong>on</strong>ic circulati<strong>on</strong> at all points (lat, l<strong>on</strong>, p).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the circulati<strong>on</strong> induced decreases radially away from <br />

the PV anomaly.


Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> midlatitude s<strong>to</strong>rms<br />

Classic
Dry
Schema:c:
<br />

STEP
1:
upper‐level
trough
induces
a
<br />

circula:<strong>on</strong>:
warm
air
poleward
and
<br />

cold
air
equa<strong>to</strong>rward.
<br />

orange:
circula:<strong>on</strong>
associated
with
<br />

upper
level
PV
<br />

black
lines:
surface
isotherms

<br />

upper
level
trough
<br />

cold
<br />

warm
<br />

STEP
2:
upper‐level
and
surface
PV
<br />

anomalies
interact
<br />

green:
circula:<strong>on</strong>
related
<strong>to</strong>
surface
PV
<br />

created
by
poleward
advec:<strong>on</strong>
<str<strong>on</strong>g>of</str<strong>on</strong>g>
<br />

warm
air.
<br />

cold
<br />

warm
<br />

Adapted from Hoskins et al. 1985


Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> midlatitude s<strong>to</strong>rms<br />

Classic
Dry
Schema:c
+
MOISTURE:
<br />

STEP
1:
upper‐level
trough
induces
a
<br />

circula:<strong>on</strong>:
warm
air
poleward
and
<br />

cold
air
equa<strong>to</strong>rward.
<br />

orange:
circula:<strong>on</strong>
associated
with
<br />

upper
level
PV
<br />

black
lines:
surface
isotherms

<br />

cold
<br />

warm
<br />

STEP
2:
upper‐level
and
surface
PV
<br />

anomalies
interact
<br />

Circula:<strong>on</strong>
strengthened
by
moist
+PV.
<br />

green:
circula:<strong>on</strong>
related
<strong>to</strong>
surface
PV
<br />

created
by
poleward
advec:<strong>on</strong>
<str<strong>on</strong>g>of</str<strong>on</strong>g>
<br />

warm
air.
<br />

purple:
PV
created
by
c<strong>on</strong>densa:<strong>on</strong>al
<br />

hea:ng
and
its
circula:<strong>on</strong>
<br />

Kleinschmidt
1957
<br />

S<strong>to</strong>elinga
1996
<br />

cold
<br />

warm



<str<strong>on</strong>g>Moisture</str<strong>on</strong>g> forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> midlatitude s<strong>to</strong>rms<br />

!"#$%<br />

&'()%<br />

Emanuel et al. 1987<br />

moist processes faster development, scale collapse in semigeostrophic system.<br />

Kuo et al. 1992<br />

numerical weather model case studies: moisture strengthens s<strong>to</strong>rms


Warm C<strong>on</strong>veyor Belt (WCB)<br />

• Filaments <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical and horiz<strong>on</strong>tal<br />

transport within s<strong>to</strong>rms<br />

e.g. Browning 1971.<br />

• <strong>Strength</strong>ens s<strong>to</strong>rm circulati<strong>on</strong>.<br />

Boutle et al. 2011<br />

Changing initial relative humidity in<br />

idealized model<br />

changes in WCB ventilati<strong>on</strong><br />

changes in s<strong>to</strong>rm strength<br />

• SLP: black<br />

• Temperature Fr<strong>on</strong>ts: blue, red<br />

• Blue/White: Warm C<strong>on</strong>veyor Belt<br />

• Purple: +PV from diabatic heating


How will comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere that influence s<strong>to</strong>rms<br />

change with global warming?<br />

(1) dT SURF /dy decreases :: less low-level baroclinicity.<br />

<br />

(2) Low-level atmospheric water vapor increases.<br />

Do climate models capture these changes? YES<br />

Z<strong>on</strong>al mean Temperature, DJF!<br />

20 th Century mean (c<strong>on</strong><strong>to</strong>urs)!<br />

21 st minus 20 th Century (shading)!<br />

Z<strong>on</strong>al mean Specific Humidity, DJF!<br />

20 th Century mean (c<strong>on</strong><strong>to</strong>urs)!<br />

21 st minus 20 th Century (shading)!<br />

Output taken from the IPCC CMIP3 Archive<br />

(Climate Model Intercomparis<strong>on</strong> Project, Phase 3)<br />

*Changes in atmospheric stability might also affect s<strong>to</strong>rms


<strong>What</strong> will happen <strong>to</strong> midlatitude s<strong>to</strong>rms in a warmer world?<br />

Midlatitude S<strong>to</strong>rm Results from the CMIP3 GCM Projecti<strong>on</strong>s<br />

(GCM: Global Circulati<strong>on</strong> Model)<br />

(1) Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> NH s<strong>to</strong>rms decreases – Lambert and Fyfe (2006)<br />

(2) Frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> most violent midlatitude wind s<strong>to</strong>rms increases.<br />

-Gastineau and Soden (2009)<br />

(3) Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 99.9%tile <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy precipitati<strong>on</strong> events per latitude increases in<br />

midlatitudes.<br />

-O’Gorman and Schneider (2009)


<strong>What</strong> will happen <strong>to</strong> midlatitude s<strong>to</strong>rms in a warmer world?<br />

Results from higher resoluti<strong>on</strong> GCM forecasts<br />

Bengtss<strong>on</strong> et al., 2009<br />

No increase in occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gest s<strong>to</strong>rms <br />

(850 hPa relative vorticity)<br />

<br />

- Used GCM with ~60km resoluti<strong>on</strong>, ECCHAM<br />

- CMIP3 models resoluti<strong>on</strong>s range: 80-200km<br />

Cat<strong>to</strong> et al. 2011, Champi<strong>on</strong> et al. 2012: <br />

Same results as Bengtss<strong>on</strong>. <br />

(using ~60km resoluti<strong>on</strong> Hadley Center model)


<strong>What</strong> will happen <strong>to</strong> midlatitude s<strong>to</strong>rms in a warmer world?<br />

Results from higher resoluti<strong>on</strong> GCM forecasts<br />

Bengtss<strong>on</strong> et al., 2009<br />

No increase in occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gest s<strong>to</strong>rms <br />

(850 hPa relative vorticity) <br />

- Used GCM with ~60km resoluti<strong>on</strong>, ECCHAM<br />

- CMIP3 models resoluti<strong>on</strong>s range: 80-200km<br />

Cat<strong>to</strong> et al. 2011, Champi<strong>on</strong> et al. 2012: <br />

Same results as Bengtss<strong>on</strong>. <br />

(using ~60km resoluti<strong>on</strong> Hadley Center model)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>ir logic: <br />

decreased dT SURF /dy <br />

balances<br />

strength increase<br />

associated with increase<br />

moisture.<br />

Given the CMIP3 results & idealized models & weather case-studies<br />

Perhaps moisture forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>to</strong>rm strength deserves further study?


<strong>What</strong> will happen <strong>to</strong> midlatitude s<strong>to</strong>rms in a warmer world?<br />

Can we approach the original questi<strong>on</strong>, in a simpler manner?<br />

Idealized life cycle experiments!<br />

• Changing moisture in initial c<strong>on</strong>diti<strong>on</strong>s leads <strong>to</strong>:<br />

• weak change in s<strong>to</strong>rm (Pavan et al. 1999) <br />

• str<strong>on</strong>g change in s<strong>to</strong>rm (Boutle et al. 2011)<br />

Our questi<strong>on</strong>: <br />

<strong>What</strong> is the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> idealized midlatitude s<strong>to</strong>rms<br />

<strong>to</strong> changes in moisture?


Experiment and Methods<br />

Method: integrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a baroclinic wave in a channel.<br />

Model: WRF: Weather Research and Forecasting Model<br />

-Domain: 80° <str<strong>on</strong>g>of</str<strong>on</strong>g> latitude centered at 45° N<br />

50° <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitude, periodic in z<strong>on</strong>al directi<strong>on</strong><br />

- f-plane<br />

-Horiz<strong>on</strong>tal grid spacing: 50 km.<br />

Parameterizati<strong>on</strong>s:<br />

-c<strong>on</strong>vecti<strong>on</strong> <br />

-turbulent mixing within the planetary boundary layer<br />

-bulk microphysics<br />

*No radiati<strong>on</strong> in the integrati<strong>on</strong>s<br />

Surface Boundary: SST = T SURF -.5 C<br />

i.e., there is a moisture source at the surface.


Initial C<strong>on</strong>diti<strong>on</strong>s<br />

Z<strong>on</strong>al Wind (shading)<br />

and <br />

Potential Temperature (c<strong>on</strong><strong>to</strong>urs)<br />

Relative Humidity (shading)<br />

and <br />

Specific Humidity (c<strong>on</strong><strong>to</strong>urs)<br />

T at 45° = 280K<br />

Analytic, balanced initial c<strong>on</strong>diti<strong>on</strong>s for T,U<br />

from Polvani and Esler 2007


Results <str<strong>on</strong>g>of</str<strong>on</strong>g> the Integrati<strong>on</strong>: A Midlatitude S<strong>to</strong>rm<br />

Snapshots <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>to</strong>rm Evoluti<strong>on</strong> for C<strong>on</strong>trol Integrati<strong>on</strong>!<br />

Snapshots <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>to</strong>rm Evoluti<strong>on</strong> for C<strong>on</strong>trol Integrati<strong>on</strong>!<br />

(a) EKE " max, Day 6.5! (b) EKE # max, Day 8! (c) EKE max, Day 9.5!<br />

(a) EKE " max, Day 6.5! (b) EKE # max, Day 8! (c) EKE max, Day 9.5!<br />

Snapshots <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>to</strong>rm Evoluti<strong>on</strong> for C<strong>on</strong>trol Integrati<strong>on</strong>!<br />

(a) EKE " max, Day 6.5! (b) EKE # max, Day 8! (c) EKE max, Day 9.5!<br />

Resolved ! Cumulus !<br />

Resolved ! Cumulus !<br />

Time<br />

SLP c<strong>on</strong><strong>to</strong>urs (Thickest: 1000hPa. c<strong>on</strong><strong>to</strong>ur interval:10 hPa)<br />

Precipitati<strong>on</strong> Rates (mm/day), yellow-red: resolved, blue-purple: cumulus
<br />

Resolved !


Experiment # 1<br />

Experiment #1: DRY-TO-OBSERVED Initial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Relative Humidity (RH)<br />

Replicating Boutle et al. (2011)<br />

⎧<br />

(<br />

RH = RH 0<br />

*<br />

1− 0.85 * Z Z T ) 1.25 for Z ≤ Z<br />

⎨<br />

T<br />

⎩ 0.12 for Z > Z T<br />

€<br />

-Six integrati<strong>on</strong>s with 6 different values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> RH0: 0, 0.2, 0.4, 0.6, 0.8, 0.95<br />

Model Initial C<strong>on</strong>diti<strong>on</strong>s<br />

RH and q VAPOR<br />

RH 0 = 0.8 creates c<strong>on</strong>diti<strong>on</strong>s closest <strong>to</strong><br />

observati<strong>on</strong>s<br />

height (km)<br />

Surface Boundary: SST = T SURF -.5 C<br />

i.e., there is a moisture source at the surface.


Results: RH 0 Set <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Eddy Kinetic Energy:: EKE<br />

∫<br />

EKE = ρ ∗1 2 (u * ) 2 + (v * ) 2<br />

VOL<br />

[ ]<br />

u * = u − u<br />

[⋅] ≡ z<strong>on</strong>al mean<br />

( )<br />

Time-evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EKE for RH0 Experiments<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> s<strong>to</strong>rm eddy kinetic energy increases<br />

m<strong>on</strong>ot<strong>on</strong>ically with RH 0 .<br />

• S<strong>to</strong>rm growth rate increases.<br />

• EKE increase for RH 0 = 0.0 vs. 0.8 : ~ 100%.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> increase for RH 0 = 0.8 <strong>to</strong> 1 is the smallest.


Results: RH 0 Set <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Alternate S<strong>to</strong>rm <strong>Strength</strong> Metrics<br />

CTR-PRES MIN for RH 0 Experiment
<br />

S<strong>to</strong>rm Central Pressure Minimum ::<br />

CTR-PRES MIN<br />

-objectively identify minimum SLP at each<br />

time step<br />

CTR-PRES MIN (hPA)<br />

Str<strong>on</strong>gest winds:: WIND99<br />

-str<strong>on</strong>gest 99 th percentile for surface wind<br />

speed.<br />

WIND99 for RH 0 Experiment
<br />

CTR-PRES MIN and WIND99 resp<strong>on</strong>se:<br />

larger initial RH creates a str<strong>on</strong>ger s<strong>to</strong>rm


Results: RH 0 Set <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

S<strong>to</strong>rm Precipitati<strong>on</strong> Extremes<br />

(a) Resolved Rain Rate, ΔRH 0 <br />

(a) Str<strong>on</strong>gest 99 th percentile precipitati<strong>on</strong><br />

rate for precipitati<strong>on</strong> created at the resolved<br />

scale (mm/hour).<br />

(b) Str<strong>on</strong>gest 99 th percentile precipitati<strong>on</strong><br />

rate precipitati<strong>on</strong> rate for precipitati<strong>on</strong><br />

created by the cumulus* scheme (mm/hour).<br />

(b) Cumulus Rain Rate, ΔRH 0 <br />

Extreme Rain rates resp<strong>on</strong>d <strong>to</strong> changes in RH 0<br />

in the same manner as EKE.<br />

*<strong>What</strong> is cumulus precipitati<strong>on</strong>?: rain formed<br />

by the vertical mixing parameterized by the<br />

cumulus scheme.


Results: RH 0 Set <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments, vs. grid-spacing<br />

Increase in strength with RH0 is robust across various horiz<strong>on</strong>tal grid-spacing.<br />

Results for RH0 experiments using: <br />

25 km (red), 50 km (green), 100 km (black) and 200 km (blue).<br />

Solid lines show RH 0 = 0.8<br />

Dashed lines show RH 0 = 0.<br />

Eddy Kinetic Energy<br />

WIND99<br />

KEY: Increase in s<strong>to</strong>rm strength with DX is primarily caused by a decrease in the<br />

numerical diffusi<strong>on</strong>.


Results: RH 0 Set <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments, vs. grid-spacing<br />

Increase in strength with RH0 is robust across various horiz<strong>on</strong>tal grid-spacing.<br />

SLP c<strong>on</strong><strong>to</strong>urs (Thickest: 1000hPa. c<strong>on</strong><strong>to</strong>ur interval:10 hPa)<br />

Precipitati<strong>on</strong> Rates (mm/day), yellow-red: resolved, blue-purple: cumulus
<br />

Precipitati<strong>on</strong> Rates and SLP for different DX!<br />

(a) dx = 25 km! (b) dx = 50 km! (c) dx = 100 km! (d) dx = 200 km!<br />

Resolved ! Cumulus !<br />

SLP patterns and precipitati<strong>on</strong> rates also show a c<strong>on</strong>vergence with respect <strong>to</strong> grid-spacing.<br />

**<str<strong>on</strong>g>The</str<strong>on</strong>g> s<strong>to</strong>rm resp<strong>on</strong>se <strong>to</strong> RH 0 is also robust <strong>to</strong> changes in the cumulus and microphysics<br />

parameterizati<strong>on</strong>s schemes.


Changing <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> C<strong>on</strong>tent: Method #2<br />

Are the RH 0 experiments the best method for understanding moisture changes with global<br />

warming?<br />

• With global warming, changes in RH are expected <strong>to</strong> be small, e.g. Sherwood et al. 2010.<br />

• Changing temperature would increase moisture, but where should we warm?


Changing <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> C<strong>on</strong>tent: Method #2<br />

Are the RH 0 experiments the best method for understanding moisture changes with global<br />

warming?<br />

• With global warming, changes in RH are expected <strong>to</strong> be small, e.g. Sherwood et al. 2010.<br />

• Changing temperature would increase moisture, but where should we warm?<br />

Method 2 for changing moisture, add a coefficient in<strong>to</strong> Clausius-Clapeyr<strong>on</strong> Equati<strong>on</strong><br />

inspired by Friers<strong>on</strong> et al. 2008<br />

⎛ L v<br />

⎛ 1<br />

*<br />

R v 273 − 1 ⎞ ⎞<br />

⎜ ⎜ ⎟ ⎟<br />

⎝ ⎝ T⎠<br />

⎠<br />

q SAT<br />

= C SVP<br />

* 6.11* e<br />

C SVP :: coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> vapor pressure<br />

C SVP = 1 creates observed initial c<strong>on</strong>diti<strong>on</strong>s<br />


Experiment #2<br />

Experiment #2: DRY-TO-OBSERVED by changing saturati<strong>on</strong> vapor pressure.<br />

We start with an analog <strong>to</strong> the RH 0 experiment.<br />

Run 6 integrati<strong>on</strong>s, with C SVP ranging from 0 1 with intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2<br />

q SAT<br />

= C SVP<br />

* 6.11* e<br />

⎛ L v<br />

⎛ 1<br />

*<br />

R v 273 − 1 ⎞ ⎞<br />

⎜ ⎜ ⎟ ⎟<br />

⎝ ⎝ T⎠<br />

⎠<br />


Results: ΔC SVP DRY-TO-OBSERVED<br />

Eddy Kinetic Energy ::<br />

EKE<br />

∫<br />

( )<br />

EKE = ρ ∗1 2 (u * ) 2 + (v * ) 2<br />

VOL<br />

Set 2: !C SVP 0-<strong>to</strong>-1!<br />

(a) EKE!<br />

(b) CTR_PRES!<br />

Results:<br />

S<strong>to</strong>rm strength<br />

increases with<br />

increasing moisture<br />

c<strong>on</strong>tent: c<strong>on</strong>sistent with<br />

the RH 0 experiment.<br />

S<strong>to</strong>rm Central Pressure Minimum ::<br />

CTR-PRES MIN<br />

Str<strong>on</strong>gest winds::<br />

WIND99<br />

-value <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>gest 99 th percentile for<br />

surface wind speed.<br />

(c) WIND99!


Experiment #3<br />

Experiment #3: OBSERVED-TO-2X-OBS by changing saturati<strong>on</strong> vapor pressure.<br />

C SVP :: coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> vapor pressure<br />

C SVP = 1 creates observed initial c<strong>on</strong>diti<strong>on</strong>s<br />

€<br />

q SAT<br />

= C SVP<br />

* 6.11* e<br />

⎛ L v<br />

⎛ 1<br />

*<br />

R v 273 − 1 ⎞ ⎞<br />

⎜ ⎜ ⎟ ⎟<br />

⎝ ⎝ T⎠<br />

⎠<br />

Run 6 integrati<strong>on</strong>s, with C SVP ranging<br />

from 1 2 with intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2<br />

i.e., synthetically increase moisture<br />

c<strong>on</strong>tent bey<strong>on</strong>d observed values.


Results: <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> c<strong>on</strong>tent greater than observed<br />

Eddy Kinetic Energy ::<br />

EKE<br />

∫<br />

( )<br />

EKE = ρ ∗1 2 (u * ) 2 + (v * ) 2<br />

VOL<br />

S<strong>to</strong>rm Central Pressure Minimum ::<br />

CTR-PRES MIN<br />

-objectively identify minimum in sea level<br />

pressure following the s<strong>to</strong>rm. <br />

Str<strong>on</strong>gest winds::<br />

WIND99<br />

-value <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>gest 99 th percentile for<br />

surface wind speed.<br />

Set 3: !C SVP 1-<strong>to</strong>-2!<br />

(a) EKE!<br />

(b) CTR_PRES!<br />

(c) WIND99!<br />

Results:<br />

EKE:<br />

-maximum changes<br />

n<strong>on</strong>-m<strong>on</strong>ot<strong>on</strong>ically.<br />

Growth rate<br />

increases with<br />

moisture.<br />

CTR-PRES MIN<br />

deepens with<br />

increased moisture.<br />

WIND99 increases.


Results: <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> c<strong>on</strong>tent greater than observed<br />

Eddy Kinetic Energy ::<br />

EKE<br />

∫<br />

( )<br />

EKE = ρ ∗1 2 (u * ) 2 + (v * ) 2<br />

VOL<br />

S<strong>to</strong>rm Central Pressure Minimum ::<br />

CTR-PRES MIN<br />

-objectively identify minimum in sea level<br />

pressure following the s<strong>to</strong>rm. <br />

Str<strong>on</strong>gest winds::<br />

WIND99<br />

-value <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>gest 99 th percentile for<br />

surface wind speed.<br />

Set 3: !C SVP 1-<strong>to</strong>-2!<br />

(a) EKE!<br />

(b) CTR_PRES!<br />

(c) WIND99!<br />

Results:<br />

PURPLE CURVE<br />

C SVP = 1.2<br />

corresp<strong>on</strong>ds <strong>to</strong> a<br />

moisture increase<br />

with the magnitude<br />

predicted by GCMs<br />

for 2100.<br />

For all 3 metrics: <br />

C SVP = 1.2 does not<br />

create a substantial<br />

change.


Results: ΔC SVP greater than observed<br />

S<strong>to</strong>rm Precipitati<strong>on</strong> Extremes<br />

Set 3: !C SVP from 1 <strong>to</strong> 2!<br />

(a) PRCP99 RES!<br />

(a) PRCP99 RES ::Str<strong>on</strong>gest 99 th percentile<br />

precipitati<strong>on</strong> rate for precipitati<strong>on</strong> created at<br />

the resolved scale (mm/hour).<br />

(b) PRCP99 CU ::Str<strong>on</strong>gest 99 th percentile<br />

precipitati<strong>on</strong> rate precipitati<strong>on</strong> rate for<br />

precipitati<strong>on</strong> created by the cumulus*<br />

scheme (mm/hour).<br />

(b) PRCP99 CU !<br />

Extreme Rain rates: <br />

-no change in maxima at resolved scale. <br />

-increase in maxima for cumulus.<br />

Total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall increased<br />

m<strong>on</strong>ot<strong>on</strong>ically.<br />

C SVP = 1.2 does not create a large change.


Can we explain the EKE behavior for C SVP > 1?<br />

Experiment 3: Increasing CSVP from 1 2.<br />

EKE<br />

Total Kinetic Energy<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> TKE a m<strong>on</strong>ot<strong>on</strong>ic increase with moisture; <br />

i.e, the same as SLP MIN and WIND99


Explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>to</strong>rm resp<strong>on</strong>se<br />

Thickest C<strong>on</strong><strong>to</strong>ur: 1000 hPa. C<strong>on</strong><strong>to</strong>ur Interval: 10 hPa. <br />

Precipitati<strong>on</strong>: Cumulus precip. is multiplied by (-1)<br />

Precipitati<strong>on</strong> and SLP versus C SVP !<br />

(a) C svp = 1.0! (b) C svp = 2.0!<br />

Resolved ! Cumulus !<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> meridi<strong>on</strong>al extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<strong>to</strong>rm decreases as moisture increases.


Experiment #3: Explanati<strong>on</strong> for s<strong>to</strong>rm resp<strong>on</strong>se<br />

Mechanism affecting both s<strong>to</strong>rms:<br />

Increase in c<strong>on</strong>diti<strong>on</strong>al instability <br />

increased verticality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

warm c<strong>on</strong>veyor belt.<br />

99 th percentile for str<strong>on</strong>gest wind speed<br />

at each model level,<br />

at time <str<strong>on</strong>g>of</str<strong>on</strong>g> EKE = ½ maximum<br />

Wind speed versus height also shows the increased verticality <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<strong>to</strong>rms.<br />

Interesting?: <br />

• Horiz<strong>on</strong>tal scale decreases with moisture increase, c<strong>on</strong>sistent Emanuel et al. 1987. <br />

• Vertical scale increases with moisture increase


Summary & C<strong>on</strong>clusi<strong>on</strong>s<br />

Increasing moisture from dry <strong>to</strong> observed: <br />

<strong>Strength</strong>ens the s<strong>to</strong>rm EKE, CTR-PRES MIN , WIND99 and precipitati<strong>on</strong><br />

Cause: positive-PV anomaly generated by latent heat release within warm<br />

c<strong>on</strong>veyor belt (WCB).<br />

S<strong>to</strong>rm develops faster.<br />

<br />

For moisture increased above observed values:<br />

Increased vertical moti<strong>on</strong> within the WCB affects s<strong>to</strong>rm resp<strong>on</strong>se: EKE<br />

decreases, while str<strong>on</strong>gest surface winds and precipitati<strong>on</strong> increase.<br />

S<strong>to</strong>rm develops faster.<br />

IMPLICATIONS<br />

<str<strong>on</strong>g>Moisture</str<strong>on</strong>g> increase will not lead <strong>to</strong> str<strong>on</strong>ger magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme s<strong>to</strong>rms.<br />

However:<br />

-s<strong>to</strong>rm growth rates could increase<br />

-the number <str<strong>on</strong>g>of</str<strong>on</strong>g> moderate s<strong>to</strong>rms could increase.<br />

Booth et al. Climate Dynamics (early <strong>on</strong>line release)<br />

Thank you


Can we explain the increase in<br />

strength?


Snapshots <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>to</strong>rm Evoluti<strong>on</strong> for C<strong>on</strong>trol Integrati<strong>on</strong>!<br />

Snapshots <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>to</strong>rm Evoluti<strong>on</strong> for C<strong>on</strong>trol Integrati<strong>on</strong>!<br />

(a) EKE " max, Day 6.5! (b) EKE # max, Day 8! (c) EKE max, Day 9.5!<br />

(a) EKE " max, Day 6.5! (b) EKE # max, Day 8! (c) EKE max, Day 9.5!<br />

Snapshots <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>to</strong>rm Evoluti<strong>on</strong> for C<strong>on</strong>trol Integrati<strong>on</strong>!<br />

(a) EKE " max, Day 6.5! (b) EKE # max, Day 8! (c) EKE max, Day 9.5!<br />

Resolved ! Cumulus !<br />

Resolved ! Cumulus !<br />

Time<br />

SLP c<strong>on</strong><strong>to</strong>urs (Thickest: 1000hPa. c<strong>on</strong><strong>to</strong>ur interval:10 hPa)<br />

Precipitati<strong>on</strong> Rates (mm/day), yellow-red: resolved, blue-purple: cumulus
<br />

Resolved !


Can we explain the increase in<br />

strength?<br />

Cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2PVU Surface at Warm C<strong>on</strong>veyor Belt<br />

RH 0 Experiments. Colors: blue = dry, green = c<strong>on</strong>trol, red = moist<br />

Cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2PVU at midpoint<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>to</strong>rm shows: warm<br />

c<strong>on</strong>veyor belt has is more upright<br />

and larger for higher RH 0 .<br />

TIME:<br />

1/3 <str<strong>on</strong>g>of</str<strong>on</strong>g> EKE<br />

maxima<br />

(1 PVU = 10 -6 K kg -1 m 2 s -1 )<br />

At full EKE, height maximum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

warm c<strong>on</strong>veyor belt is larger for<br />

larger RH 0<br />

TIME:<br />

1/2 <str<strong>on</strong>g>of</str<strong>on</strong>g> EKE<br />

maxima<br />

TIME:<br />

EKE<br />

maxima


Results: RH 0 experiments, 50 km<br />

Final RH c<strong>on</strong>diti<strong>on</strong>s help <strong>to</strong> show the warm c<strong>on</strong>veyor belt.<br />

Cross Secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> RH at time <str<strong>on</strong>g>of</str<strong>on</strong>g> EKEmax<br />

INITIAL CONDITIONS<br />

DAY 9.5 (EKE = max)<br />

height (km)<br />

height (km)<br />

equivalent latitude<br />

equivalent latitude


<str<strong>on</strong>g>The</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture <strong>on</strong> extratropical cycl<strong>on</strong>e circulati<strong>on</strong><br />

Two
ways
<strong>to</strong>
think
about
the
impact
<str<strong>on</strong>g>of</str<strong>on</strong>g>
latent
heat
release
during
stable
moist
ascent:
<br />

the
external
approach:
<br />

latent
heat
release
is
regarded
as
an
external
forcing
mechanism
that
...
drives
or
helps
<strong>to</strong>
<br />

drive
the
ver:cal
circula:<strong>on</strong>
(fits
with
poten:al
vor:city
view).
<br />

the
stra4fica4<strong>on</strong>
approach:
<br />

the
latent
heat
release
...
is
manifested
as
a
modifica:<strong>on</strong>
<strong>to</strong>
the
stra:fica:<strong>on</strong>
in
the
ver:cal
<br />

advec:<strong>on</strong>
term
<str<strong>on</strong>g>of</str<strong>on</strong>g>
the
thermodynamic
equa:<strong>on</strong>:
<br />

∂θ<br />

⎡<br />

∂t + u∇ Hθ + ω⎢<br />

∂θ<br />

∂p − ∂θ<br />

⎣ ⎢ ∂p θ esat<br />

⎤<br />

⎥<br />

⎦ ⎥ = 0<br />

€<br />

Niels<strong>on</strong>-Gamm<strong>on</strong> and Keyser, MWR,2000


NEXT: z<strong>on</strong>al mean @ green line + 5° <str<strong>on</strong>g>of</str<strong>on</strong>g> latitude.<br />

Precipitati<strong>on</strong> and SLP versus C SVP !<br />

(a) C svp = 1.0! (b) C svp = 2.0!<br />

Resolved ! Cumulus !


Explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

s<strong>to</strong>rm resp<strong>on</strong>se<br />

Mechanism affecting s<strong>to</strong>rms:<br />

2PVU Cross-secti<strong>on</strong> at time <str<strong>on</strong>g>of</str<strong>on</strong>g> EKE max!<br />

Increase in moisture<br />

more latent release and<br />

increase in c<strong>on</strong>diti<strong>on</strong>al<br />

instability.<br />

increased verticality and<br />

decrease in meridi<strong>on</strong>al<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> warm c<strong>on</strong>veyor<br />

belt.<br />

green: C SVP = 1, red: C SVP =2


Explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

s<strong>to</strong>rm resp<strong>on</strong>se<br />

Mechanism affecting s<strong>to</strong>rms:<br />

2PVU Cross-secti<strong>on</strong> at time <str<strong>on</strong>g>of</str<strong>on</strong>g> EKE max!<br />

Increase in moisture<br />

more latent release and<br />

increase in c<strong>on</strong>diti<strong>on</strong>al<br />

instability.<br />

increased verticality and<br />

decrease in meridi<strong>on</strong>al<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> warm c<strong>on</strong>veyor<br />

belt.<br />

green: C SVP = 1, red: C SVP =2<br />

?


T at 45°=275K<br />

T at 45°=285K


T at 45°=275K<br />

T at 45°=285K


REVISIT: Dry (C SVP =0) vs. Moist (C SVP =1)<br />

700 hPa Vertical Velocity<br />

COLORS: ω (Pa/sec)<br />

SHADING: sea level pressure<br />

adding moisture leads <strong>to</strong> scale collapse at the fr<strong>on</strong>ts (~Emanuel et al. 1987)<br />

Scale changes for s<strong>to</strong>rm as a whole ? Needs more work.


λ ≡ ω ′ ω↑ '<br />

ω ′<br />

2<br />

Relates <strong>to</strong> asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> impact that moisture<br />

has <strong>on</strong> vertical moti<strong>on</strong>.<br />

€<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all vertical velocities<br />

at 1 – 8 km range<br />

from init. until EKE MAX<br />

<str<strong>on</strong>g>Moisture</str<strong>on</strong>g><br />

increases the<br />

asymmetry<br />

between<br />

upward and<br />

downward<br />

moti<strong>on</strong>s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!