24.04.2014 Views

A remark on exponential dichotomies

A remark on exponential dichotomies

A remark on exponential dichotomies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Revista Colombiana de Matemáticas<br />

Volumen 33 (1999), páginas 9–13<br />

A <str<strong>on</strong>g>remark</str<strong>on</strong>g> <strong>on</strong> exp<strong>on</strong>ential <strong>dichotomies</strong><br />

Raúl Naulin ∗<br />

Universidad de Oriente, Cumaná, Venezuela<br />

Abstract. A proof of the existence of an exp<strong>on</strong>ential dichotomy for the linear<br />

system x ′ (t) = A(t)x(t) is given, based <strong>on</strong> the admissibility of the pair<br />

(B(∞), B A (∞)), where B(∞) is the space of c<strong>on</strong>tinuous functi<strong>on</strong>s <strong>on</strong> the semiaxis<br />

J = [0, ∞), values in C n and having a limit as t → ∞, and B A(∞) is the<br />

space of bounded functi<strong>on</strong>s f <strong>on</strong> J such that A −1 f ∈ B(∞).<br />

Keywords and phrases. Exp<strong>on</strong>ential <strong>dichotomies</strong>, admissibility.<br />

1991 Mathematics Subject Classificati<strong>on</strong>. Primary 34A30.<br />

1. Introducti<strong>on</strong><br />

In this paper we c<strong>on</strong>sider the system of differential equati<strong>on</strong>s<br />

x ′ (t) = A(t)x(t) + f(t), t ∈ J := [0, ∞), (1)<br />

where A(t) is a c<strong>on</strong>tinuous matrix functi<strong>on</strong> with complex entries. The functi<strong>on</strong><br />

f(t) bel<strong>on</strong>gs to a functi<strong>on</strong>al space we will define in the course of the paper.<br />

Definiti<strong>on</strong> 1. Let C and D be functi<strong>on</strong> spaces. We say that the pair (C, D) is<br />

admissible for equati<strong>on</strong> (1) if for each f in the space D there exists a soluti<strong>on</strong><br />

of (1) bel<strong>on</strong>ging to C.<br />

∗ Supported by Proyecto CI-5-025-00730/95<br />

9


10<br />

RAÚL NAULIN<br />

Admissible pairs are important in the theory of differential equati<strong>on</strong>s (see [1],<br />

[2]), as they define the dichotomic behavior of the linear system<br />

x ′ (t) = A(t)x(t). (2)<br />

Definiti<strong>on</strong> 2. We say that equati<strong>on</strong> (2) has an exp<strong>on</strong>ential dichotomy <strong>on</strong> J, if<br />

there exist a fundamental matrix Φ of (2), a projecti<strong>on</strong> matrix P (i.e., P P = P )<br />

and positive c<strong>on</strong>stants K, α such that<br />

|Φ(t)P Φ −1 (s)| ≤ Ke α(s − t) , t ≥ s ≥ 0,<br />

|Φ(t)(I − P )Φ −1 (s)| ≤ Ke α(t−s) , s ≥ t ≥ 0.<br />

(3)<br />

In this paper, we are c<strong>on</strong>cerned with the following classical result [1]:<br />

Theorem A. Equati<strong>on</strong> (2) has an exp<strong>on</strong>ential dichotomy <strong>on</strong> J if for any<br />

bounded and c<strong>on</strong>tinuous functi<strong>on</strong> f(t) <strong>on</strong> J, equati<strong>on</strong> (1) has at least <strong>on</strong>e<br />

bounded soluti<strong>on</strong>.<br />

The aim of this paper is the characterizati<strong>on</strong> of exp<strong>on</strong>ential dichotomy by<br />

means of the admissibility of a pair of spaces of functi<strong>on</strong>s with limit at infinity.<br />

2. Preliminaries<br />

We will make use of the following spaces<br />

B := {f : J → C n : f is bounded and c<strong>on</strong>tinuous} ,<br />

{<br />

}<br />

B(∞) := f ∈ B : lim f(t) exists .<br />

t→∞<br />

We call B(∞) the space of functi<strong>on</strong>s with limit at infinity. These spaces, endowed<br />

with the norm |f| ∞ = sup{|f(t)| : t ∈ J}, become Banach spaces.<br />

Furthermore, if F : J → C n×n and F (t) is invertible for each t ∈ J, we define<br />

B F (∞) := { f ∈ B : F −1 f ∈ B(∞) } .<br />

To this space we give the norm |f| F = |F −1 f| ∞ . Provided that F is bounded <strong>on</strong><br />

J, also B F (∞) is a Banach space. If equati<strong>on</strong> (2) has an exp<strong>on</strong>ential dichotomy,<br />

then for any f ∈ B, equati<strong>on</strong> (1) has the following bounded soluti<strong>on</strong>:<br />

x f (t) =<br />

∫ t<br />

0<br />

Φ(t)P Φ(s)f(s) ds −<br />

∫ ∞<br />

t<br />

Φ(t)(I − P )Φ −1 (s)f(s) ds.<br />

Let us introduce the following Green functi<strong>on</strong>:<br />

{<br />

Φ(t)P Φ(s), t ≥ s,<br />

G(t, s) =<br />

−Φ(t)(I − P )Φ −1 (s), s > t.<br />

(4)


A REMARK ON EXPONENTIAL DICHOTOMIES 11<br />

By means of this functi<strong>on</strong> we can write the soluti<strong>on</strong> x f in the form:<br />

∫<br />

x f (t) = G(t, s)f(s)ds. (5)<br />

J<br />

If A(t) is a bounded functi<strong>on</strong>, we will use the following identity:<br />

∫<br />

Φ(t)P Φ −1 (0) − I = G(t, s)A(s)ds. (6)<br />

J<br />

3. The main result<br />

Theorem 1. If the functi<strong>on</strong> A(t) is bounded <strong>on</strong> J and the matrix A(t) is<br />

invertible for each t ∈ J, then the following asserti<strong>on</strong>s are equivalent:<br />

(A) The pair (B, B) is admissible.<br />

(B) The pair (B(∞), B A (∞)) is admissible.<br />

(C) Equati<strong>on</strong> (2) has an exp<strong>on</strong>ential dichotomy <strong>on</strong> J.<br />

Proof.<br />

(A) ⇔ (C). This follows from Theorem A. We observe that this equivalence<br />

holds without the requirements of invertibility of the matrices A(t) or the<br />

boundedness of the functi<strong>on</strong> A(t).<br />

(A) ⇒ (B). Let f ∈ B A (∞). Since f ∈ B A , formula (5) makes sense. Therefore<br />

x f defines a soluti<strong>on</strong> of (1) bel<strong>on</strong>ging to B(∞). We have to prove that<br />

lim t→∞ x f exists. Using (6) we may write<br />

where<br />

x f (t) = −A −1 (t)f(t) + Φ(t)P Φ −1 (0)A −1 (t)f(t) + I 1 (t) + I 2 (t), (7)<br />

I 1 (t) :=<br />

I 2 (t) :=<br />

∫ t<br />

0<br />

∫ ∞<br />

t<br />

G(t, s)A(s) [ A −1 (s)f(s) − A −1 (t)f(t) ] ds,<br />

G(t, s)A(s) [ A −1 (s)f(s) − A −1 (t)f(t) ] ds.<br />

Taking into account (3), we can estimate I i , i = 1, 2. We have<br />

|I 1 (t)| ≤<br />

≤<br />

∫ t<br />

0<br />

∫ t/2<br />

0<br />

|Φ(t)P Φ −1 (s)||A(s)||A −1 (s)f(s) − A −1 (t)f(t)| ds<br />

∫ t<br />

· · · + · · ·<br />

t/2<br />

≤ 2K|A| ∞ α −1 e − α 2 t |A −1 f| ∞<br />

+ α −1 K sup |A −1 (s)f(s) − A −1 (t)f(t)|<br />

s∈[t/2, t]<br />

(8)


12<br />

RAÚL NAULIN<br />

and<br />

∫ ∞<br />

|I 2 (t)| ≤ |A| ∞ e α(t−s) |A −1 (s)f(s) − A −1 (t)f(t)|ds<br />

≤ 2α −1 |A| ∞ K<br />

t<br />

sup<br />

s∈[t, ∞)<br />

|A −1 (s)f(s) − A −1 (t)f(t)|.<br />

Since f ∈ B A (∞), it is clear from (8) and (9) that lim t→∞ I i (t) = 0. From<br />

(7) we obtain that lim t→∞ x f (t) = −(A −1 f)(∞). Therefore, the functi<strong>on</strong> pair<br />

(B(∞), B A (∞)) is admissible.<br />

(B) ⇒ (A). Let S be the subspace of C n of values of initial c<strong>on</strong>diti<strong>on</strong>s of<br />

soluti<strong>on</strong>s of equati<strong>on</strong> (2) bel<strong>on</strong>ging to B(∞), and let U be a supplementary<br />

subspace of S. We have the direct sum C n = S ⊕ U. Then it is easy to prove<br />

that equati<strong>on</strong> (1) has, for any f ∈ B A (∞), a unique soluti<strong>on</strong>, which we denote<br />

by T (f), that bel<strong>on</strong>gs to B(∞) and is such that the initial c<strong>on</strong>diti<strong>on</strong> satisfies<br />

T (f)(0) ∈ U. It is also easy to verify that this corresp<strong>on</strong>dence is linear. Thus,<br />

we define this way a linear map T : B A (∞) → B(∞) such that T (f) satisfies<br />

(1) and T (f)(0) ∈ U. This map has a closed graph (the proof of this asserti<strong>on</strong><br />

is exactly the same as that of Propositi<strong>on</strong> 3.4 in [1]). Therefore, it is bounded,<br />

i.e., there exists a c<strong>on</strong>stant M, such that<br />

(9)<br />

|T (f)| ≤ M|f| A . (10)<br />

Let f ∈ B and for each n = 1, 2, ..., let θ n (t) be a c<strong>on</strong>tinuous functi<strong>on</strong> such that<br />

|θ n | ∞ = 1, θ n (t) = 1 if t ∈ [0, n] and θ n (t) = 0 if t ≥ n + 1. Let {f n } be the<br />

sequence in B A defined by<br />

f n (t) = θ n (t)f(t). (11)<br />

For each functi<strong>on</strong> f n , we c<strong>on</strong>sider the soluti<strong>on</strong> x n = T (f n ) of the equati<strong>on</strong><br />

According to (10), for any index n we have<br />

x ′ (t) = A(t)x(t) + f n (t). (12)<br />

|x n | ∞ ≤ M|f n | A ≤ M|f| A . (13)<br />

From (12) and (13) we obtain that the sequences {x n } and {x ′ n} are bounded<br />

<strong>on</strong> any compact subinterval of J. From the Ascoli-Arzelá theorem, there exists<br />

then a subsequence {x 1 n} of {x n } uniformly c<strong>on</strong>vergent <strong>on</strong> [0, 1] to a c<strong>on</strong>tinuous<br />

functi<strong>on</strong> u 1 <strong>on</strong> the interval [0, 1]. By the same argument, there exists a subsequence<br />

{x 2 n} of {x 1 n} c<strong>on</strong>verging uniformly <strong>on</strong> the interval [0, 2] to a c<strong>on</strong>tinuous<br />

functi<strong>on</strong> u 2 such that u 1 = u 2 <strong>on</strong> [0, 1]. Carrying out this process iteratively,<br />

we obtain, for any natural number N, a subsequence {x N n } of {x N−1<br />

n }, c<strong>on</strong>verging<br />

uniformly to a c<strong>on</strong>tinuous functi<strong>on</strong> u N <strong>on</strong> the interval [0, N], and such that<br />

u N = u N−1 <strong>on</strong> [0, N −1]. Defining u(t) = u N (t) if t ∈ [0, N], we obtain that the<br />

diag<strong>on</strong>al sequence {x n n} c<strong>on</strong>verges uniformly to u <strong>on</strong> each compact subinterval


A REMARK ON EXPONENTIAL DICHOTOMIES 13<br />

of J. From (13), we obtain that u ∈ B. From (11) and (12) it follows that u<br />

satisfies u ′ = A(t)u + f. This means that u is a soluti<strong>on</strong> of (1) in the space B.<br />

□̌<br />

References<br />

[1] W. A. Coppel, Dichotomies in Stability Theory, Lectures Notes in Mathematics, 629,<br />

Springer-Verlag, Berlin, 1978.<br />

[2] J. L. Massera, J. J. Schäffer, Linear Differential Equati<strong>on</strong>s and Functi<strong>on</strong> Spaces, Academic<br />

Press, 1966.<br />

Departamento de Matemáticas<br />

Universidad de Oriente<br />

Cumaná 6101 A-285, Venezuela

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!