24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 75<br />

Theorem 2.7. Let 0 < p < ∞, α > −1, s ∈ N, f ∈ H(U n ). If γ > α+2 − 1 for<br />

p<br />

p ≤ 1 and γ > α+1 + 1 (1 − 1 ) for p > 1, v = sp + αn − γpn + n − 1, <strong>the</strong>n<br />

p n p<br />

∫<br />

|D γ f(z)| p (1 − |z| 2 ) α dm 2n (z)<br />

U<br />

∫ n 1 ∫<br />

≤ C |R s f(w)| p (1 − |w| 2 ) v dm n (ξ)d|w| ,<br />

0 T n<br />

where w = |w|ξ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let f ∈ H(U n ), p ≤ 1. Then (see [14])<br />

M 1 (f, τ 2 ) ≤ C(1 − τ) n(1−1/p) M p (f, τ), τ ∈ (0, 1). (2.6)<br />

Using (2.6) and <strong>the</strong> fact that M p (f, r) is increasing as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> r (see [5]) we<br />

easily get<br />

( ∫ 1<br />

) p<br />

|f(w)|(1 − |w|)<br />

∫T t dm n (ξ)d|w|<br />

n<br />

≤ C<br />

0<br />

∫ 1 ∫T n<br />

0<br />

|f(w)| p (1 − |w|) tp+(n+1)(p−1) dm n (ξ)d|w|, (2.7)<br />

where t > n(1−p) − 1, f ∈ H(U n ), p ≤ 1. By <strong>the</strong> Cauchy formula,<br />

p<br />

∫<br />

∣ |D γ f ρ (z 1 , · · · , z n )| p ≤ C<br />

f ρ (ξ 1 , · · · , ξ n )dm n (ξ) ∣∣∣<br />

p<br />

∣<br />

, ρ ∈ (0, 1).<br />

T n (1 − ξz) γ+1<br />

Using (1.2) or (2.4), (2.5) for large s and (2.7) we obtain<br />

∫<br />

∣ f ρ (ξ 1 , · · · , ξ n )dm n (ξ) ∣∣∣<br />

p<br />

∣ ∏ n<br />

T n k=1 (1 − ξ kz k ) γ+1<br />

( ∫ 1 ∫<br />

)<br />

|R s f ρ (w)|(1 − |w|) s−1 p<br />

dm n (ξ)d|w|<br />

≤ C<br />

0 T |1 − wz| n γ+1<br />

∫ 1<br />

|R<br />

≤ C<br />

∫T s f ρ (w)| p (1 − |w|) (s−1)p (1 − |w|) (n+1)(p−1)<br />

dm<br />

|1 − wz| n (γ+1)p n (ξ)d|w|. (2.8)<br />

0<br />

Therefore, from (2.6)-(2.8) and using Fubini’s <strong>the</strong>orem we have<br />

∫<br />

|D γ f ρ (z)| p (1 − |z| 2 ) α dm 2n (z)<br />

U n ∫ 1 ∫<br />

|R<br />

≤ C<br />

∫U s f ρ (w)| p (1 − |w|) sp+n(p−1)−1 dm n (ξ)d|w|<br />

(1 − |z| 2 ) α dm n 0 T |1 − wz| n (γ+1)p 2n (z)<br />

∫ 1 ∫<br />

(1 − |z|<br />

≤ C<br />

0<br />

∫T 2 ) α dm 2n (z)<br />

|R s f n U |1 − wz| n (γ+1)p ρ (w)| p (1 − |w|) sp+n(p−1)−1 dm n (ξ)d|w|.<br />

Using <strong>the</strong> following estimate<br />

∫<br />

(1 − |z|) t dm 2n (z)<br />

∏ n<br />

k=1 |1 − z kw k | ≤ C<br />

∏ t 1 n<br />

k=1 (1 − |w k|) , t > −1, t t 1 > t + 2,<br />

1−t−2<br />

U n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!