24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

we finally have<br />

J ≤ C ∑ α j ≥0<br />

P αj =s<br />

≤<br />

≤<br />

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 73<br />

C ∑ α j ≥0<br />

P αj =s<br />

C ∑ α j ≥0<br />

P αj =s<br />

C α<br />

∫<br />

T<br />

(<br />

∏ n ∫<br />

n∏<br />

k=1<br />

k=1<br />

p ∫<br />

∣ Dα 1<br />

g 1 (|w 1 ||z 1 |ξ 1 )<br />

∣ dξ 1 · · · ×<br />

T<br />

)<br />

dm(ξ k )<br />

|1 − ˜w k | p(α k+1)<br />

1<br />

(1 − |w k ||z k |) p(α k+1)−1 ,<br />

T<br />

p<br />

∣ Dαn g n (|w n ||z n |ξ n )<br />

∣ dξ n<br />

where p > 1/(min k α k + 1), |w k | ∈ (0, 1), |z k | ∈ (0, 1), k = 1, · · · , n, and<br />

D αs g s (z) = ∑ k≥0(k + 1) αs z k , z ∈ U, s = 1, · · · , n.<br />

The case <str<strong>on</strong>g>of</str<strong>on</strong>g> β ∈ (0, ∞) needs small modificati<strong>on</strong> since<br />

1<br />

(1 − z) = ∑ C β β k zk , C β k ≍ (k + 1)β−1 , β > 0.<br />

k≥0<br />

Lemma 2.1 is proved since<br />

∫<br />

∫<br />

|R s f(τξ)| p dm n (ξ) ≤ C | ˜R s f(τξ)| p dm n (ξ),<br />

T n T n<br />

for f(z) = ∏ n 1<br />

k=1 (1−z k<br />

, α > 0, s ≥ 0, p ∈ (0, ∞), which follows from equality<br />

) α s∑<br />

(k 1 + · · · + k n + 1) s = Cs(k j 1 + · · · + k n ) j<br />

and <str<strong>on</strong>g>some</str<strong>on</strong>g> calculati<strong>on</strong>s similar to those that we used above.<br />

j=0<br />

Corollary 2.2. Let 0 < p < ∞, s ∈ N ∪ {0}, l ∈ (0, ∞), γ > 1/p + l, w ∈ U n .<br />

Then<br />

∫<br />

|R s 1<br />

∑ n∏<br />

U (1 − wz) n γ |p (1 − |z|) pl−1 C<br />

dm 2n (z) ≤<br />

(1 − |w k |) .<br />

(α k+γ)p−pl−1<br />

α j ≥0, P α j =s k=1<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The result follows directly from Lemma 2.1 and <strong>the</strong> following estimate (see<br />

[13]),<br />

∫ 1<br />

0<br />

(1 − ρτ) −λ (1 − τ) α dτ ≤ C(1 − ρ) −λ+α+1 , λ > α + 1, α > −1, ρ ∈ (0, 1).(2.3)<br />

Remark 2.3. Our estimates in Lemma 2.1 and Corollary 2.2 coincide with well<br />

known estimates in <strong>the</strong> unit disk for n = 1, <strong>the</strong>y also known in ball, see for<br />

example [8, 17].<br />

For <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> our main results <str<strong>on</strong>g>some</str<strong>on</strong>g> additi<strong>on</strong>al lemmas will be needed.<br />

□<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!