24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 83<br />

Corollary 3.9. Let u ∈ H(U n ), q ∈ (0, ∞), α j > 0, j = 1, · · · , n, n ∈ N. Then<br />

∫<br />

|u(z, · · · , z)| q (1 − |z| 2 ) P n<br />

j=1 αj−1 dm 2 (z)<br />

≤<br />

U<br />

∫<br />

C<br />

T<br />

∫<br />

Γ t(ξ)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Fix ξ ∈ T , <strong>the</strong>n (see [3])<br />

∫<br />

· · · |u(z 1 , · · · , z n )| q<br />

Γ t(ξ)<br />

∫ 1<br />

0<br />

n<br />

∏<br />

k=1<br />

|ũ(ρξ)| q<br />

1 − ρ<br />

∫Γ dρ ≤ C |ũ(z)| q dm 2 (z)<br />

.<br />

t(ξ) (1 − |z| 2 ) 2<br />

(1 − |z k | 2 ) α k−2 dm 2n (z)dm(ξ).<br />

Choosing ũ = u(ρξ)(1 − ρ) α/q , u ∈ H(U), α, q ∈ (0, ∞), we have<br />

∫ 1<br />

∫<br />

|u(ρξ)| q (1 − ρ) α−1 dρ ≤ C |u(z)| q (1 − |z| 2 ) α−2 dm 2 (z).<br />

0<br />

Γ t(ξ)<br />

Using <strong>the</strong> last inequality, by each variable we get <strong>the</strong> following<br />

≤<br />

∫ 1<br />

0<br />

∫<br />

C<br />

· · ·<br />

Γ t(ξ)<br />

∫ 1<br />

0<br />

∫<br />

· · ·<br />

|u(ρ 1 ξ, · · · , ρ n ξ)| q<br />

Γ t(ξ)<br />

|u(z)| q<br />

n<br />

∏<br />

k=1<br />

n<br />

∏<br />

k=1<br />

(1 − ρ k ) α k−1 dρ 1 · · · dρ n<br />

(1 − |z k | 2 ) α k−2 dm 2n (z).<br />

Integrating both sides by T and using i) <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.6, we have<br />

∫<br />

|u(z, · · · , z)| q (1 − |z| 2 ) P n<br />

j=1 αj−1 dm 2 (z)<br />

≤<br />

≤<br />

U<br />

∫<br />

C<br />

∫<br />

C<br />

T<br />

T<br />

∫ 1<br />

∫<br />

0<br />

· · ·<br />

Γ t(ξ)<br />

∫ 1<br />

0<br />

∫<br />

· · ·<br />

|u(ρ 1 ξ, · · · , ρ n ξ)| q<br />

Γ t(ξ)<br />

|u(z 1 , · · · , z n )| q<br />

This completes <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 3.9.<br />

n<br />

∏<br />

k=1<br />

∏ n<br />

(1 − ρ k ) α k−1 dρ 1 · · · dρ n dm(ξ)<br />

k=1<br />

(1 − |z k | 2 ) α k−2 dm 2n dm(ξ).<br />

Remark 3.10. For n = 1, <strong>the</strong> asserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 3.9 is c<strong>on</strong>tained in [3, 18].<br />

References<br />

1. K. L. Avetisyan and R. F. Shamoyan, Some generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Littlewood-Paley inequality<br />

in <strong>the</strong> <strong>polydisk</strong>, Matematicki Vesnik, 58 (3-4) (2006), 97–110.<br />

2. S. M. Buckley, P. Koskela and D. Vukotic, Fracti<strong>on</strong>al integrati<strong>on</strong>, differentiati<strong>on</strong>, and<br />

weighted Bergman spaces, Math. Proc. Cambridge Phil. Soc., 126 (1999), 369–385.<br />

3. W. Cohn, Weighted Bergman projecti<strong>on</strong>s and tangential area integrals, Studia Math., 106<br />

(1993), 59–76.<br />

4. A. E. Djrbashian and F. A. Shamoian, Topics in <strong>the</strong> Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> A p α Spaces, Leipzig, Teubner,<br />

1988.<br />

5. P. L. Duren, Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> H p Spaces, Academic Press, New York, 1970.<br />

6. V. S. Guliev and P. I. Lizorkin, Spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> holomorphic functins and harm<strong>on</strong>ic functi<strong>on</strong>s in<br />

<strong>the</strong> <strong>polydisk</strong> and <strong>the</strong>ir c<strong>on</strong>necti<strong>on</strong>s with boundary values, Trudy Mat. Inst. Steklov RAN,<br />

204 (1993), 137–159.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!