24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 81<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>orem is completed.<br />

Remark 3.5. It is easy to see that <strong>the</strong> asserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.4 is true for n = 1.<br />

The following <strong>the</strong>orem can be obtained using <strong>the</strong> same ideas by small modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> methods that we used above.<br />

Theorem 3.6. Let f ∈ H(U n ). Then <strong>the</strong> following asserti<strong>on</strong>s are true.<br />

i) Let p ∈ (0, ∞), α j > −1, j − 1, · · · , n, n ∈ N. Then<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) P n<br />

j=1 αj+n−1 dm 2 (z)<br />

≤<br />

U<br />

∫<br />

C<br />

T<br />

∫<br />

∏ n<br />

|f(|z 1 |ξ, · · · , |z n |ξ)| p (1 − |z k | 2 ) α k<br />

d|z 1 | · · · d|z n |dm(ξ).<br />

[0,1] n<br />

k=1<br />

ii) Let 0 < p < ∞, α > −1. Then we have<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

≤<br />

C<br />

U<br />

∫ 1 ∫T n<br />

0<br />

|f(|z|ξ 1 , · · · , |z|ξ n )| p (1 − |z| 2 ) α dm n (ξ)d|z|.<br />

iii) Let p ∈ (0, ∞), α j > −1, j − 1, · · · , n, n ∈ N. Then<br />

∫ ∫<br />

∏ n<br />

|f(|z 1 |ξ, · · · , |z n |ξ)| p (1 − |z k |) α k+ n−1<br />

n d|z1 | · · · d|z n |dm(ξ)<br />

T [0,1] n k=1<br />

∫<br />

∏ n<br />

≤ C |f(z)| p (1 − |z k | 2 ) α k<br />

dm 2n (z).<br />

U n<br />

k=1<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We prove <strong>on</strong>ly <strong>the</strong> sec<strong>on</strong>d inequality. We use diadic decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U<br />

and subframe and <strong>the</strong> same ideas that we used in <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.4. We<br />

have<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

U<br />

= ∑ ∑<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

k≥0 j U j,k<br />

≤ C ∑ ∑<br />

max |f(z, · · · , z)| p 2 −2k 2 −k(α+n−1)<br />

U j,k<br />

k≥0 j<br />

≤ C ∑ ∑<br />

max |f(z, · · · , z)| p 2 −k(α+n+1)<br />

z∈U k,j1 ,··· ,jn<br />

k≥0 j 1 ,···j n<br />

≤ C ∑ ∑<br />

2 2kn M2 −k(α+n+1) ,<br />

k≥0 j 1 ,···j n<br />

where<br />

M =<br />

∫<br />

eU ∗ k,j 1 ,··· ,jn<br />

|f(z 1 , · · · , z n )| p dm 2n (z),<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!