24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 79<br />

For any functi<strong>on</strong>s f(z) and g(z) measurable in <strong>the</strong> unit disk<br />

∫<br />

∫<br />

|f(z)||g(z)|<br />

dm 2 (z) ≤ C A p (f)(ξ)C p ′(g)(ξ)dm(ξ), 1 < p ≤ ∞, 1 1 − |z|<br />

p + 1 = 1.(3.1)<br />

p ′<br />

U<br />

T<br />

The above result can be easily by iterati<strong>on</strong> extended to <strong>polydisk</strong>.<br />

Using <strong>the</strong> <strong>polydisk</strong> versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.1), by Cauchy formula in <strong>polydisk</strong>, Littlewood-<br />

Paley inequality (see [1]) and 2.1 we have for any holomorphic functi<strong>on</strong> f in <strong>the</strong><br />

<strong>polydisk</strong>,<br />

∫<br />

|R s f ρ (ϕτ 2 )| = C∣<br />

f(τξ)R s 1<br />

T n 1 − τρξϕ dm n(ξ) ∣<br />

∫<br />

≤ C |D α R s 1<br />

U 1 − wϕρ |f(w)|(1 − |w|)α−1 dm 2n (w)<br />

n<br />

≤<br />

≤<br />

∫<br />

C<br />

∫<br />

C<br />

T n<br />

T n<br />

sup |D α R s 1<br />

w∈Γ t(ξ) 1 − wϕρ (1 − |w|)α dm n (ξ) × ‖C 1 (f)‖ L ∞<br />

sup |R s 1<br />

w∈Γ t(ξ) 1 − wϕρ |dm n(ξ) × ‖C 1 (f)‖ L ∞.<br />

Here α > 0, ϕ, ξ ∈ T n , ρ ∈ [0, 1] n , ϕτ 2 = (ϕ 1 τ1 2 , · · ·, ϕ n τn), 2 τ j ∈ (1/2, 1), j =<br />

1, · · · , n. We used in <strong>the</strong> last inequality a maximal <strong>the</strong>orem for D s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s, see<br />

[7]. Therefore<br />

( ∑ n∏<br />

−1<br />

|R s f(ρϕ)| × (1 − ρ k ) k) −α ≤ C‖C1 (f)‖ L ∞<br />

α j ≥0<br />

P αj =s<br />

k=1<br />

and<br />

( ∑<br />

sup M ∞ (D −1 R s f, ρ)| ×<br />

ρ∈[0,1] n<br />

α j ≥0<br />

P αj =s<br />

n∏<br />

(1 − ρ k ) −α k<br />

k=1<br />

) −1<br />

where<br />

≤ C‖C 1 (f × (1 − |z|))‖ L ∞, (3.2)<br />

C 1 (f × (1 − |z|))(ξ 1 , · · · , ξ n ) = sup<br />

ξ 1 ∈I<br />

∫<br />

1<br />

· · · sup<br />

|I| S(I) ξ n∈I<br />

∫<br />

1<br />

|f(z)|dm 2n (z).<br />

|I| S(I)<br />

Remark 3.3. Estimates (3.2) extends known <strong>on</strong>e dimensi<strong>on</strong>al inequality which<br />

can be found in [10]. We just give <strong>on</strong>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2.1. Various o<strong>the</strong>r<br />

generalizati<strong>on</strong>s can be obtained with <strong>the</strong> help <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2.1. Estimate (3.2) is<br />

just an example.<br />

We see that <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> are c<strong>on</strong>nected with <strong>the</strong> quasinorms <strong>on</strong> subframe<br />

via integral representati<strong>on</strong>s (2.4) and (2.5). So it is natural to find new estimates<br />

for quasinorms <strong>on</strong> subframe. In <strong>the</strong> <strong>polydisk</strong> we c<strong>on</strong>sider <strong>the</strong> following three<br />

expressi<strong>on</strong>s<br />

∫ 1 ∫<br />

|f(rξ 1 , · · · , rξ n )| p (1 − r) α rdrdm n (ξ), 0 < p < ∞, α > −1;<br />

0 T n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!