24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 77<br />

3. Embedding <strong>the</strong>orems for <str<strong>on</strong>g>some</str<strong>on</strong>g> analytic spaces c<strong>on</strong>nected with<br />

R s <str<strong>on</strong>g>operator</str<strong>on</strong>g><br />

In this secti<strong>on</strong> we state <str<strong>on</strong>g>some</str<strong>on</strong>g> new embedding <strong>the</strong>orems for various quasinorms<br />

where <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> is participating, note that practically all results are well<br />

known or obvious in <strong>the</strong> unit disk. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our results are heavily based <strong>on</strong><br />

definiti<strong>on</strong>s and preliminaries from previous secti<strong>on</strong>s.<br />

Theorem 3.1. i) Let 0 < q < ∞, α ∈ [0, ∞), s ∈ N, 1 < p < ∞, f ∈ H(U n ).<br />

Then<br />

( ∫ 1<br />

q/p<br />

(1 − |z|)<br />

∫T α |f(z)| p |z| d|z|) sp dm n (ξ)<br />

n<br />

≤<br />

0<br />

( ∫ 1<br />

q/p<br />

C |R<br />

∫T s f(uξ)| p (1 − u) du) sp+α dm n (ξ).<br />

n<br />

0<br />

ii) Let 0 < q < ∞, α ∈ [0, ∞), s ∈ N, 1 < p < ∞, γ ∈ (−1/p, 1/p ′ ), 1/p ′ + 1/p =<br />

1, f ∈ H(U n ). Then<br />

≤<br />

( ∫ 1<br />

q/p<br />

(1 − r)<br />

∫T γ |f(rξ)| p r dr) p dm n (ξ)<br />

n<br />

0<br />

( ∫ 1<br />

q/p<br />

C |R<br />

∫T s f(rξ)| p (1 − r) dr) sp+γ dm n (ξ) .<br />

n<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using (1.2) we have<br />

( ∫ 1<br />

M = (1 − |z|) α |f(z)| p |z| sp d|z|<br />

≤<br />

= C<br />

0<br />

( ∫ 1 ( ∫ 1<br />

C<br />

0<br />

∫ 1 ∫ 1<br />

0<br />

where ψ(|z|) ∈ L p′ (d|z|), 1/p ′ + 1/p = 1.<br />

Changing <strong>the</strong> variables we have<br />

∫ 1<br />

0<br />

0<br />

0<br />

0<br />

) 1/p<br />

) p(1 1/p<br />

|R s f(ρz)|(1 − ρ) dρ) s−1 − |z|) α |z| sp d|z|<br />

|R s f(ρz)|(1 − ρ) s−1 (1 − |z|) α/p ψ(|z|)|z| s d|z|dρ ,<br />

|R s f(ρz)|(1 − ρ) s−1 dρ ≤<br />

∫ |z|<br />

Using <strong>the</strong> last inequality and Hölder inequality, we get<br />

M ≤ C<br />

≤<br />

C<br />

∫ 1 ∫ |z|<br />

0<br />

∫ 1<br />

0<br />

( ∫ 1<br />

0<br />

0<br />

|R s s−1 du<br />

f(uξ)|(1 − u)<br />

|z| . s<br />

|R s f(uξ)|(1 − u) s−1 (1 − |z|) α/p ψ(|z|)d|z|du<br />

|R s f(vξ)|(1 − v) s<br />

1 − v<br />

∫ 1<br />

v<br />

) p ′<br />

(1 − |z|) α/p ψ(|z|)d|z|dv<br />

( ∫ 1 1<br />

) 1/p ′( ∫ 1<br />

1/p<br />

≤ C<br />

ψ(|z|)d|z| dv |R s f(uξ)| p (1 − u) du) α+ps .<br />

0 1 − v v<br />

0<br />

From <strong>the</strong> last inequality and Lemma 2.4 we easily get <strong>the</strong> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>orem.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!