24.04.2014 Views

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

On some properties of a differential operator on the polydisk

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Banach J. Math. Anal. 3 (2009), no. 1, 68–84<br />

Banach Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<strong>the</strong>matical Analysis<br />

ISSN: 1735-8787 (electr<strong>on</strong>ic)<br />

http://www.math-analysis.org<br />

ON SOME PROPERTIES OF A DIFFERENTIAL OPERATOR<br />

ON THE POLYDISK<br />

ROMI SHAMOYAN 1∗ AND SONGXIAO LI 2<br />

Communicated by J. M. Isidro<br />

Abstract. We study <strong>the</strong> acti<strong>on</strong> and <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>differential</str<strong>on</strong>g> <str<strong>on</strong>g>operator</str<strong>on</strong>g> in<br />

<strong>the</strong> <strong>polydisk</strong>, extending <str<strong>on</strong>g>some</str<strong>on</strong>g> classical results from <strong>the</strong> unit disk. Using so<br />

called dyadic decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>polydisk</strong> we find precise c<strong>on</strong>necti<strong>on</strong>s between<br />

quazinorms <str<strong>on</strong>g>of</str<strong>on</strong>g> holomorphic functi<strong>on</strong> in <strong>the</strong> <strong>polydisk</strong> with quazinorms <strong>on</strong> <strong>the</strong><br />

subframe and <strong>the</strong> unit disk. All our results were previously well-known in <strong>the</strong><br />

unit disk.<br />

1. Introducti<strong>on</strong> and preliminaries<br />

Let n ∈ N and C n = {z = (z 1 , ..., z n ) |z k ∈ C, 1 ≤ k ≤ n} be <strong>the</strong> n-dimensi<strong>on</strong>al<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> complex coordinates. We denote <strong>the</strong> unit <strong>polydisk</strong> by<br />

U n = {z ∈ C n : |z k | < 1, 1 ≤ k ≤ n}<br />

and <strong>the</strong> distinguished boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> U n by<br />

T n = {z ∈ C n : |z k | = 1, 1 ≤ k ≤ n}.<br />

We use m 2n to denote <strong>the</strong> volume measure <strong>on</strong> U n and m n to denote <strong>the</strong> normalized<br />

Lebesgue measure <strong>on</strong> T n . Let H(U n ) be <strong>the</strong> space <str<strong>on</strong>g>of</str<strong>on</strong>g> all holomorphic functi<strong>on</strong>s<br />

<strong>on</strong> U n . When n = 1, we simply denote U 1 by U, T 1 by T , m 2n by m 2 , m n by m.<br />

We refer to [15] for fur<strong>the</strong>r details.<br />

Date: Received: 29 July 2008; Accepted: 31 August 2008.<br />

∗ Corresp<strong>on</strong>ding author.<br />

2000 Ma<strong>the</strong>matics Subject Classificati<strong>on</strong>. Primary 32A18; sec<strong>on</strong>dary 32A36.<br />

Key words and phrases. Differentiati<strong>on</strong> <str<strong>on</strong>g>operator</str<strong>on</strong>g>, weighted Bergman space, Hardy space,<br />

<strong>polydisk</strong>.<br />

The sec<strong>on</strong>d author <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is supported by <strong>the</strong> NSF <str<strong>on</strong>g>of</str<strong>on</strong>g> Guangd<strong>on</strong>g Province (No.<br />

7300614).<br />

68


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 69<br />

The Hardy spaces, denoted by H p (U n )(0 < p ≤ ∞), are defined by<br />

H p (U n ) = {f ∈ H(U n ) :<br />

sup M p (f, r) < ∞},<br />

0≤r −1, j = 1, · · · , n, 0 < p < ∞, recall that <strong>the</strong> weighted Bergman<br />

space A p ⃗α (U n ) c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> all holomorphic functi<strong>on</strong>s <strong>on</strong> <strong>the</strong> <strong>polydisk</strong> satisfying <strong>the</strong><br />

c<strong>on</strong>diti<strong>on</strong><br />

∫<br />

∏ n<br />

‖f‖ p = |f(z)| p (1 − |z<br />

A p i | 2 ) α i<br />

dm 2n (z) < ∞.<br />

⃗α<br />

U n<br />

i=1<br />

Throughout this paper, c<strong>on</strong>stants are denoted by C, C α , or C(α), <strong>the</strong>y are<br />

positive and may differ from <strong>on</strong>e occurrence to o<strong>the</strong>r. The notati<strong>on</strong> A ≍ B<br />

means that <strong>the</strong>re is a positive c<strong>on</strong>stant C such that B/C ≤ A ≤ CB.<br />

Let z = (z 1 , . . . , z n ) ∈ U n , f j (z) ∈ H(U n ), j = 1, · · · , n. It is easy to see that<br />

if<br />

f j (z) =<br />

∑<br />

a (j)<br />

k 1 ,...,k n<br />

z k 1<br />

1 · · · zn kn<br />

, j = 1, · · · n<br />

k 1 ,··· ,k n≥0<br />

is a usual Taylor expansi<strong>on</strong> in U n <str<strong>on</strong>g>of</str<strong>on</strong>g> f j , <strong>the</strong>n<br />

S(f 1 , · · · , f n ) = f 1 + · · · f n =<br />

∑ ( n∑ )<br />

a (j)<br />

k 1 ,...,k n<br />

z k 1<br />

1 · · · zn kn<br />

.<br />

We c<strong>on</strong>sider a very particular case when<br />

where a k1 ,...,k n<br />

k 1 ,...,k n≥0<br />

j=1<br />

a (j)<br />

k 1 ,...,k n<br />

= k j a k1 ,...,k n<br />

, j = 1, · · ·, n,<br />

is a certain sequence. We have<br />

S(f 1 , · · · , f n ) =<br />

∑<br />

k 1 ,...,k n≥0<br />

(k 1 + · · · k n )a k1 ,...,k n<br />

z k 1<br />

1 · · · z kn<br />

Motivated by <strong>the</strong> above expressi<strong>on</strong> we define a <str<strong>on</strong>g>operator</str<strong>on</strong>g> in <strong>the</strong> <strong>polydisk</strong> as<br />

follows<br />

Rf =<br />

∑<br />

(k 1 + · · · + k n + 1)a k1 ,...,k n<br />

z k 1<br />

1 · · · z kn<br />

or more general form<br />

R s f =<br />

∑<br />

where<br />

It is easy to see that<br />

k 1 ,...,k n≥0<br />

k 1 ,...,k n≥0<br />

f(z) =<br />

n .<br />

(k 1 + · · · + k n + 1) s a k1 ,...,k n<br />

z k 1<br />

1 · · · zn kn<br />

, s ∈ R,<br />

∑<br />

k 1 ,··· ,k n≥0<br />

Rf = R 1 f = f +<br />

a k1 ,...,k n<br />

z k 1<br />

1 · · · z kn<br />

n ∈ H(U n ).<br />

n∑<br />

j=1<br />

n<br />

z j<br />

∂f<br />

∂z j<br />

. (1.1)


70 R. SHAMOYAN, S. LI<br />

In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> unit ball an analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> is a well known radial<br />

derivative which is well studied (see [17]). We note that in <strong>polydisk</strong> <strong>the</strong> following<br />

fracti<strong>on</strong>al derivative is well studied (see [4, 11]),<br />

(D α f)(z) = ∑<br />

(k 1 + 1) α · · · (k n + 1) α a k1 ,...,k n<br />

z k 1<br />

1 z kn<br />

k 1 ,...,k n≥0<br />

where α ∈ R, f ∈ H(U n ) and D α : H(U n ) → H(U n ). We also note that in<br />

<strong>polydisk</strong> <strong>the</strong> following derivative was studied in [16],<br />

n∏ (<br />

∂<br />

)<br />

D = 2 + z k .<br />

∂z k<br />

k=1<br />

Apparently <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> was studied in [6] for <strong>the</strong> first time. Then in [12],<br />

<strong>the</strong> first author studied <str<strong>on</strong>g>some</str<strong>on</strong>g> <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>operator</str<strong>on</strong>g>. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper<br />

c<strong>on</strong>tinue to study <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>.<br />

We need <strong>the</strong> following vital formula which can be checked by easy calculati<strong>on</strong><br />

∫ 1<br />

f(τξ 1 , · · ·, τξ n ) = C s R s f(τξ 1 ρ, · · ·, τξ n ρ)(log 1 ρ )s−1 dρ, (1.2)<br />

0<br />

where s > 0, τ ∈ (0, 1), C s > 0, ξ j ∈ T, j = 1, . . . , n. The integral representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s via <strong>the</strong>se <str<strong>on</strong>g>operator</str<strong>on</strong>g>s will allow us to c<strong>on</strong>sider <strong>the</strong>m in U n in close<br />

c<strong>on</strong>necti<strong>on</strong> with functi<strong>on</strong>al spaces <strong>on</strong> subframe<br />

Ũ n = {z ∈ U n , |z j | = r, r ∈ (0, 1], j = 1, . . . , n}.<br />

The following dyadic decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> subframe and <strong>polydisk</strong> were introduced<br />

in [4] and will be used by us.<br />

Ũ k,l1 ,··· ,l n<br />

= Ũk,l 1<br />

× · · ·Ũk,l n<br />

= { (τξ 1 , . . . , τξ n ) : τ ∈ (1 − 1 2 , 1 − 1 ],<br />

k 2k+1 πl j<br />

k = 0, 1, 2, · · ·;<br />

2 < ξ k j ≤ π(l j + 1)<br />

, l<br />

2 k j = −2 k , · · · , 2 k − 1, j = 1, · · · , n } ,<br />

m(Ĩk,l j<br />

) = m(ξ ∈ T : πl j<br />

2 k < ξ j ≤ π(l j + 1)<br />

2 k ) ≍ 2 −k , m 2n (Ũk,l 1 ,··· ,l n<br />

) ≍ 2 −2kn ,<br />

U k1 ,··· ,k n,l 1 ,··· ,l n<br />

= U k1 ,l 1<br />

× · · ·U kn,l n<br />

= { (τ 1 ξ 1 , · · · , τ n ξ n ),<br />

τ j ∈ (1 − 1<br />

2 , 1 − 1<br />

k j<br />

2 ], k k j+1 j = 0, 1, · · · , j = 1, 2, · · · , n,<br />

ξ j ∈ ( πl j<br />

2 , π(l j + 1)<br />

], l k j<br />

2 k j j = −2 k j<br />

, · · · , 2 k j<br />

− 1, j = 1, · · · , n, } .<br />

The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to extend <str<strong>on</strong>g>some</str<strong>on</strong>g> known asserti<strong>on</strong>s c<strong>on</strong>nected with fracti<strong>on</strong>al<br />

derivative in <strong>the</strong> unit disk to <strong>the</strong> <strong>polydisk</strong> and use <strong>the</strong> diadic decompositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> subframe and <strong>polydisk</strong> to study <strong>the</strong> acti<strong>on</strong> and <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> and<br />

quasinorm c<strong>on</strong>nected with <strong>the</strong>m <strong>on</strong> subframe. In secti<strong>on</strong> 2 we give preliminaries,<br />

several useful inequalities for <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s, and show c<strong>on</strong>necti<strong>on</strong>s<br />

between R s and D s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s in <strong>the</strong> <strong>polydisk</strong>. In secti<strong>on</strong> 3, we using <strong>the</strong> R s<br />

<str<strong>on</strong>g>operator</str<strong>on</strong>g> establish <str<strong>on</strong>g>some</str<strong>on</strong>g> embedding <strong>the</strong>orems extending <str<strong>on</strong>g>some</str<strong>on</strong>g> known embeddings<br />

for Hardy classes and weighted Bergman classes in <strong>the</strong> unit disk. In secti<strong>on</strong> 3 we<br />

n ,


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 71<br />

also establish c<strong>on</strong>necti<strong>on</strong>s between holomorphic spaces with quasinorms in <strong>the</strong><br />

subframe and <strong>polydisk</strong>.<br />

2. Some observati<strong>on</strong>s c<strong>on</strong>cerning R s and D s <str<strong>on</strong>g>differential</str<strong>on</strong>g> <str<strong>on</strong>g>operator</str<strong>on</strong>g>s<br />

and pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> preliminaries<br />

When we look at R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s <strong>the</strong>n we have <strong>the</strong> following natural problem:<br />

Is it possible to reduce <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s to <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> D s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s?<br />

which was studied by many authors (see for example [4] and references <strong>the</strong>re).<br />

Then we will be able to use known <str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> D s to get new results for R s<br />

<str<strong>on</strong>g>operator</str<strong>on</strong>g>s. The <str<strong>on</strong>g>differential</str<strong>on</strong>g> <str<strong>on</strong>g>operator</str<strong>on</strong>g> D s is much more c<strong>on</strong>venient at least because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> following property <str<strong>on</strong>g>of</str<strong>on</strong>g> g functi<strong>on</strong>. Let<br />

We have<br />

and<br />

R s g(z) =<br />

g(z) = 1<br />

1 − z = ∑<br />

∑<br />

k 1 ,··· ,k n≥0<br />

k 1 ,··· ,k n≥0<br />

z k 1<br />

1 · · · z kn<br />

n .<br />

(k 1 + · · · + k n + 1) s z k 1<br />

1 · · · z kn<br />

D s g(z) = ∑ 1 + 1)<br />

k 1 ≥0(k s z k 1<br />

1 · · · ∑<br />

(k n + 1) s z kn<br />

For D s we reduce things to <strong>on</strong>e dimensi<strong>on</strong>al <str<strong>on</strong>g>differential</str<strong>on</strong>g> <str<strong>on</strong>g>operator</str<strong>on</strong>g>s for <strong>on</strong>e functi<strong>on</strong><br />

in <strong>the</strong> unit disk, that why we will find ways to reduce <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> R s to D s .<br />

Let<br />

˜R s f(z) =<br />

∑<br />

k 1 ,··· ,k n≥0<br />

k n≥0<br />

n<br />

n .<br />

(k 1 + · · · + k n ) s a k1 ,··· ,k n<br />

z k 1<br />

1 · · · z kn<br />

The following lemma is playing an important role in <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>. We<br />

use <str<strong>on</strong>g>some</str<strong>on</strong>g> known facts in <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2.1 about acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e dimensi<strong>on</strong>al<br />

D α <str<strong>on</strong>g>operator</str<strong>on</strong>g>, for example <strong>the</strong> following estimate (see [2])<br />

∫<br />

∫<br />

|D α g(τξ)| p dξ ≤ C |D β g(τξ)| p dξ (2.1)<br />

T<br />

which can be transferred by inducti<strong>on</strong> to <strong>polydisk</strong>.<br />

T<br />

n .<br />

(τ ∈ (0, 1), 0 < p < ∞, α ≤ β, g ∈ H(U))<br />

Lemma 2.1. Let w = |w|ξ, w, z, ∈ U n , 1 − wz = ∏ n<br />

k=1 (1 − w kz k ), s ∈ {0} ∪ N,<br />

β > 0, p ∈ (0, ∞). Then we have<br />

∫ ∣ ∣∣R s 1<br />

∣ ∣∣<br />

p<br />

dmn (ξ)<br />

T (1 − ξ|w|z) n β<br />

≤<br />

C ∑ α j ≥0<br />

P αj =s<br />

( n<br />

∏<br />

k=1<br />

1<br />

(1 − |w k ||z k |) p(α k+β)−1<br />

)<br />

, p ><br />

1<br />

min k α k + β .


72 R. SHAMOYAN, S. LI<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let first β = 1. Since<br />

(k 1 + · · · k n ) s = ∑ α j ≥0<br />

P αj =s<br />

C α k α 1<br />

1 · · · k αn<br />

n , k i ∈ N, i = 1, · · · , n,<br />

and<br />

n<br />

1<br />

1 − w = ∏ 1<br />

,<br />

1 − w k<br />

k=1<br />

k α i<br />

i = (k i + 1 − 1) α i<br />

=<br />

1<br />

1 − w = ∑ k i ≥0<br />

i=1,··· ,n<br />

∑α i<br />

l=0<br />

where C α = C(α 1 , · · · α n ) = s!<br />

α 1 !···α n!<br />

, we have<br />

˜R s 1<br />

1 − w = ∑ k i ≥0<br />

(k 1 + · · · + k n ) s w k<br />

i=1,··· ,n<br />

= ∑ k i ≥0<br />

(k 1 + · · · + k n ) s w k 1<br />

1 · · · wn<br />

kn<br />

i=1,··· ,n<br />

= ∑ k i ≥0<br />

i=1,··· ,n<br />

= ∑ k i ≥0<br />

i=1,··· ,n<br />

∑<br />

α j ≥0<br />

P αj =s<br />

∑<br />

α j ≥0<br />

P αj =s<br />

C α k α 1<br />

1 · · · kn αn<br />

w k 1<br />

1 · · · wn<br />

kn<br />

C α<br />

∏ n<br />

∑α t<br />

t=1<br />

l=0<br />

C l α i<br />

(k i + 1) l (−1) α i−l ,<br />

w k 1<br />

1 · · · w kn<br />

n , |w j | < 1, k j ∈ N, j = 1, · · · , n,<br />

C l α t<br />

(k t + 1) l (−1) αt−l w k 1<br />

1 · · · w kn<br />

n , |w j | < 1, j = 1, · · · , n.<br />

Therefore using <strong>polydisk</strong> versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2.1) we have<br />

∫ ∣ ∣∣ 1<br />

J = ˜Rs ∣ p dm n (ξ)<br />

T (1 − ξ|w|z)<br />

n<br />

≤ C ∑ ∫ ∣ ∣ ∣∣∣ ∑<br />

C α (k 1 + 1) α1 · · · (k n + 1) αn k1 k ˜w 1 · · · ˜w<br />

n<br />

∣∣∣<br />

n<br />

pdm n (ξ)<br />

α j ≥0 T<br />

P n k i ≥0<br />

αj =s<br />

i=1,··· ,n<br />

∫<br />

∣ ∑<br />

≤ C α<br />

∣ (k 1 + 1) α1 k<br />

˜w 1<br />

∣∣∣<br />

1<br />

pdm(ξ 1 ) · · ·<br />

C ∑ α j ≥0<br />

P αj =s<br />

T<br />

∣<br />

k 1 ≥0<br />

∫<br />

×<br />

T<br />

∑<br />

∣ ∣ (k n + 1) αn k ˜w<br />

n<br />

∣∣∣<br />

n<br />

pdm(ξ n ),<br />

where ˜w j = ξ j |w j ||z j |, j = 1, · · · , n. Hence by <strong>the</strong> estimate<br />

∫<br />

dm(η)<br />

|1 − τη| ≤ C(γ) , γ > 1, τ ∈ (0, 1), (2.2)<br />

γ (1 − τ)<br />

γ−1<br />

T<br />

k n≥0


we finally have<br />

J ≤ C ∑ α j ≥0<br />

P αj =s<br />

≤<br />

≤<br />

PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 73<br />

C ∑ α j ≥0<br />

P αj =s<br />

C ∑ α j ≥0<br />

P αj =s<br />

C α<br />

∫<br />

T<br />

(<br />

∏ n ∫<br />

n∏<br />

k=1<br />

k=1<br />

p ∫<br />

∣ Dα 1<br />

g 1 (|w 1 ||z 1 |ξ 1 )<br />

∣ dξ 1 · · · ×<br />

T<br />

)<br />

dm(ξ k )<br />

|1 − ˜w k | p(α k+1)<br />

1<br />

(1 − |w k ||z k |) p(α k+1)−1 ,<br />

T<br />

p<br />

∣ Dαn g n (|w n ||z n |ξ n )<br />

∣ dξ n<br />

where p > 1/(min k α k + 1), |w k | ∈ (0, 1), |z k | ∈ (0, 1), k = 1, · · · , n, and<br />

D αs g s (z) = ∑ k≥0(k + 1) αs z k , z ∈ U, s = 1, · · · , n.<br />

The case <str<strong>on</strong>g>of</str<strong>on</strong>g> β ∈ (0, ∞) needs small modificati<strong>on</strong> since<br />

1<br />

(1 − z) = ∑ C β β k zk , C β k ≍ (k + 1)β−1 , β > 0.<br />

k≥0<br />

Lemma 2.1 is proved since<br />

∫<br />

∫<br />

|R s f(τξ)| p dm n (ξ) ≤ C | ˜R s f(τξ)| p dm n (ξ),<br />

T n T n<br />

for f(z) = ∏ n 1<br />

k=1 (1−z k<br />

, α > 0, s ≥ 0, p ∈ (0, ∞), which follows from equality<br />

) α s∑<br />

(k 1 + · · · + k n + 1) s = Cs(k j 1 + · · · + k n ) j<br />

and <str<strong>on</strong>g>some</str<strong>on</strong>g> calculati<strong>on</strong>s similar to those that we used above.<br />

j=0<br />

Corollary 2.2. Let 0 < p < ∞, s ∈ N ∪ {0}, l ∈ (0, ∞), γ > 1/p + l, w ∈ U n .<br />

Then<br />

∫<br />

|R s 1<br />

∑ n∏<br />

U (1 − wz) n γ |p (1 − |z|) pl−1 C<br />

dm 2n (z) ≤<br />

(1 − |w k |) .<br />

(α k+γ)p−pl−1<br />

α j ≥0, P α j =s k=1<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The result follows directly from Lemma 2.1 and <strong>the</strong> following estimate (see<br />

[13]),<br />

∫ 1<br />

0<br />

(1 − ρτ) −λ (1 − τ) α dτ ≤ C(1 − ρ) −λ+α+1 , λ > α + 1, α > −1, ρ ∈ (0, 1).(2.3)<br />

Remark 2.3. Our estimates in Lemma 2.1 and Corollary 2.2 coincide with well<br />

known estimates in <strong>the</strong> unit disk for n = 1, <strong>the</strong>y also known in ball, see for<br />

example [8, 17].<br />

For <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> our main results <str<strong>on</strong>g>some</str<strong>on</strong>g> additi<strong>on</strong>al lemmas will be needed.<br />

□<br />


74 R. SHAMOYAN, S. LI<br />

Lemma 2.4. Let 1 ≤ p ≤ q ≤ ∞, p ′ =<br />

<strong>on</strong> (0, 1). Then<br />

(<br />

∫ 1<br />

0<br />

( ∫ t ) ) qdt 1/q ( ∫ 1<br />

u(t) ϕ(r)dr ≤ K 1<br />

for <str<strong>on</strong>g>some</str<strong>on</strong>g> c<strong>on</strong>stant K 1 if and <strong>on</strong>ly if<br />

sup(<br />

t<br />

0<br />

∫ 1<br />

t<br />

u(τ)dτ) p/q (<br />

∫ t<br />

p , u(t), v(t), ϕ(t) are positive functi<strong>on</strong>s<br />

p−1<br />

0<br />

0<br />

) 1/p<br />

ϕ p (t)v(t)dt<br />

v(τ) 1−p′ dτ) p−1 < ∞.<br />

Remark 2.5. These are well known so-called Hardy-type inequalities, see [9].<br />

Lemma 2.6. Let γ > 1. Then<br />

∫<br />

T n 1<br />

|1 − wz| γ dm n(ξ) ≤<br />

C γ<br />

(1 − |w||z|) γ−1 ,<br />

where w = ξ|w|, z, w ∈ U n , 1 − wz = ∏ n<br />

k=1 (1 − w kz k ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> easily follows by (2.2), we omit <strong>the</strong> details.<br />

□<br />

We want to get <strong>the</strong> analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> Bergman representati<strong>on</strong> formula for <strong>the</strong> R s<br />

<str<strong>on</strong>g>operator</str<strong>on</strong>g> (see [4]). Using (1.2) we get<br />

f(τz 1 , · · · , τz n ) = f τ (z 1 , · · · , z n )<br />

∫<br />

f τ (ξ 1 , · · · , ξ n )<br />

= C<br />

T n (1 − ξ 1 z 1 ) · · · (1 − ξ n z n ) dm n(ξ)<br />

∫ ∫ 1<br />

= C s R s f(τξ 1 ρ, · · · , τξ n ρ)(log 1 dm n (ξ)<br />

T n 0<br />

ρ )s−1 dρ<br />

(1 − ξ 1 z 1 ) · · · (1 − ξ n z n )<br />

∫<br />

= C s f(τξ 1 ρ, · · · , τξ n ρ)(log 1 (<br />

∏ n )<br />

ρ )s−1 R s 1<br />

dρdm n (ξ),<br />

(1 − ξ k z k )<br />

∫ 1<br />

T n 0<br />

where τ ∈ (0, 1). Let τ → 1. Then<br />

∫<br />

f(z 1 , · · · , z n ) = C s<br />

∫ 1<br />

T n 0<br />

k=1<br />

f(ρξ)(log 1 ρ )s−1 R s 1<br />

(1 − ξϕ˜ρ) dρdm n(ξ), (2.4)<br />

for f ∈ H(U n ), s > 0, z ∈ U n , z = ˜ρϕ.<br />

Note for n = 1, we get <strong>the</strong> well known representati<strong>on</strong> formula (see [4, 17]) after<br />

small modificati<strong>on</strong>s. The last estimate is equivalent to<br />

∫<br />

(R −s f)(z) = C s<br />

∫ 1<br />

T n 0<br />

where R −s R s f = f, s > 0, z ∈ U n , f ∈ H(U n ).<br />

The following <strong>the</strong>orem c<strong>on</strong>nect D s and R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s.<br />

f(ρξ)(log 1 ρ )s−1 1<br />

(1 − ξz) dρdm n(ξ), (2.5)


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 75<br />

Theorem 2.7. Let 0 < p < ∞, α > −1, s ∈ N, f ∈ H(U n ). If γ > α+2 − 1 for<br />

p<br />

p ≤ 1 and γ > α+1 + 1 (1 − 1 ) for p > 1, v = sp + αn − γpn + n − 1, <strong>the</strong>n<br />

p n p<br />

∫<br />

|D γ f(z)| p (1 − |z| 2 ) α dm 2n (z)<br />

U<br />

∫ n 1 ∫<br />

≤ C |R s f(w)| p (1 − |w| 2 ) v dm n (ξ)d|w| ,<br />

0 T n<br />

where w = |w|ξ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let f ∈ H(U n ), p ≤ 1. Then (see [14])<br />

M 1 (f, τ 2 ) ≤ C(1 − τ) n(1−1/p) M p (f, τ), τ ∈ (0, 1). (2.6)<br />

Using (2.6) and <strong>the</strong> fact that M p (f, r) is increasing as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> r (see [5]) we<br />

easily get<br />

( ∫ 1<br />

) p<br />

|f(w)|(1 − |w|)<br />

∫T t dm n (ξ)d|w|<br />

n<br />

≤ C<br />

0<br />

∫ 1 ∫T n<br />

0<br />

|f(w)| p (1 − |w|) tp+(n+1)(p−1) dm n (ξ)d|w|, (2.7)<br />

where t > n(1−p) − 1, f ∈ H(U n ), p ≤ 1. By <strong>the</strong> Cauchy formula,<br />

p<br />

∫<br />

∣ |D γ f ρ (z 1 , · · · , z n )| p ≤ C<br />

f ρ (ξ 1 , · · · , ξ n )dm n (ξ) ∣∣∣<br />

p<br />

∣<br />

, ρ ∈ (0, 1).<br />

T n (1 − ξz) γ+1<br />

Using (1.2) or (2.4), (2.5) for large s and (2.7) we obtain<br />

∫<br />

∣ f ρ (ξ 1 , · · · , ξ n )dm n (ξ) ∣∣∣<br />

p<br />

∣ ∏ n<br />

T n k=1 (1 − ξ kz k ) γ+1<br />

( ∫ 1 ∫<br />

)<br />

|R s f ρ (w)|(1 − |w|) s−1 p<br />

dm n (ξ)d|w|<br />

≤ C<br />

0 T |1 − wz| n γ+1<br />

∫ 1<br />

|R<br />

≤ C<br />

∫T s f ρ (w)| p (1 − |w|) (s−1)p (1 − |w|) (n+1)(p−1)<br />

dm<br />

|1 − wz| n (γ+1)p n (ξ)d|w|. (2.8)<br />

0<br />

Therefore, from (2.6)-(2.8) and using Fubini’s <strong>the</strong>orem we have<br />

∫<br />

|D γ f ρ (z)| p (1 − |z| 2 ) α dm 2n (z)<br />

U n ∫ 1 ∫<br />

|R<br />

≤ C<br />

∫U s f ρ (w)| p (1 − |w|) sp+n(p−1)−1 dm n (ξ)d|w|<br />

(1 − |z| 2 ) α dm n 0 T |1 − wz| n (γ+1)p 2n (z)<br />

∫ 1 ∫<br />

(1 − |z|<br />

≤ C<br />

0<br />

∫T 2 ) α dm 2n (z)<br />

|R s f n U |1 − wz| n (γ+1)p ρ (w)| p (1 − |w|) sp+n(p−1)−1 dm n (ξ)d|w|.<br />

Using <strong>the</strong> following estimate<br />

∫<br />

(1 − |z|) t dm 2n (z)<br />

∏ n<br />

k=1 |1 − z kw k | ≤ C<br />

∏ t 1 n<br />

k=1 (1 − |w k|) , t > −1, t t 1 > t + 2,<br />

1−t−2<br />

U n


76 R. SHAMOYAN, S. LI<br />

we get<br />

∫<br />

U n (1 − |z| 2 ) α dm 2n (z)<br />

|1 − wz| (γ+1)p ≤ C(1 − |w|) (2+α−pγ−p)n<br />

(<br />

γ > α + 2<br />

p<br />

)<br />

− 1, α > −1, |w| ∈ (0, 1) .<br />

Using limit argument we can get <strong>the</strong> desired result.<br />

C<strong>on</strong>sider now <strong>the</strong> case p > 1. The arguments are partially <strong>the</strong> same as in <strong>the</strong><br />

case p ≤ 1. Let ɛ be positive and small enough. Using (1.2), Cauchy formula,<br />

Hölder inequality we have<br />

≤<br />

( ∫ 1 ∫<br />

|D γ f(z)| p ≤<br />

C<br />

∫ 1<br />

0<br />

∫<br />

= CM 1 M p/p′<br />

2 .<br />

0<br />

)<br />

|R s f(w)|(1 − |w|) s−1 p<br />

dm n (ξ)d|w|<br />

T |1 − wz| n γ+1<br />

(<br />

|R s f(w)| p (1 − |w|) (s−1)p ∫<br />

dm n (w)d|w|<br />

T |1 − wz| n (γ−1)p+2+pɛ<br />

Fur<strong>the</strong>rmore by Lemma 2.6,<br />

M 2 ≤<br />

∫ 1<br />

0<br />

dR<br />

∏ n<br />

k=1 (1 − R|z k|) 1−ɛp′<br />

( ∫ R0<br />

≤<br />

where R 0 = max 1≤k≤n |z k |. In additi<strong>on</strong>,<br />

Using (2.3),<br />

∫ 1<br />

=<br />

≤<br />

R 0<br />

0<br />

∫ 1<br />

+<br />

R 0<br />

)<br />

∫ 1<br />

T n 0<br />

dR<br />

∏ n<br />

k=1 (1 − R|z k|) 1−ɛp′ ≤ (1 − R 0) 1/n+···1/n<br />

∏ n<br />

k=1 (1 − |z k|) 1−ɛp′<br />

∫ R0<br />

0<br />

∫ R0<br />

C<br />

0<br />

∫ R0<br />

0<br />

≤<br />

dR<br />

∏ n<br />

k=1 (1 − R|z k|) 1−ɛp′<br />

(1 − R) 1 n −1 × (1 − R) n−1<br />

n dR<br />

∏ n<br />

k=1 (1 − R|z k|) 1−ɛp′<br />

) p/p ′<br />

dm n (ξ)d|w|<br />

|1 − wz| 2−p′ ɛ<br />

dR<br />

∏ n<br />

k=1 (1 − R|z , (2.9)<br />

k|) 1−ɛp′<br />

C<br />

∏ n<br />

k=1 (1 − |z k|) 1−ɛp′ − 1 n<br />

(1 − R|z 1 |) 1/n · · · (1 − R|z n−1 |) 1/n<br />

(1 − R) 1/n−1 dR<br />

(1 − R|z 1 |) 1−ɛp′ · · · (1 − R|z n |) 1−ɛp′<br />

∫ R0<br />

= ˜M. (2.10)<br />

C<br />

(1 − R) 1/n−1 dR<br />

≤ ∏ n−1<br />

k=1 (1 − |z ≤ C<br />

k|) 1−ɛp′ − 1 n 0 (1 − R|z n |) ˜M. (2.11)<br />

1−ɛp′<br />

Combing (2.9) with (2.10), (2.11) and repeating <strong>the</strong> arguments that we used for<br />

p ≤ 1, we can get <strong>the</strong> desired result at <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> p > 1.<br />

□<br />

Remark 2.8. As we see from Theorem 2.7, <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> are closely c<strong>on</strong>nected<br />

with quasinorms defined <strong>on</strong> subframe. Theorem 2.7 is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> result <strong>on</strong><br />

<strong>the</strong> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>al derivatives <strong>on</strong> weighted Bergman spaces in <strong>the</strong> unit disk,<br />

see [2].


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 77<br />

3. Embedding <strong>the</strong>orems for <str<strong>on</strong>g>some</str<strong>on</strong>g> analytic spaces c<strong>on</strong>nected with<br />

R s <str<strong>on</strong>g>operator</str<strong>on</strong>g><br />

In this secti<strong>on</strong> we state <str<strong>on</strong>g>some</str<strong>on</strong>g> new embedding <strong>the</strong>orems for various quasinorms<br />

where <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> is participating, note that practically all results are well<br />

known or obvious in <strong>the</strong> unit disk. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our results are heavily based <strong>on</strong><br />

definiti<strong>on</strong>s and preliminaries from previous secti<strong>on</strong>s.<br />

Theorem 3.1. i) Let 0 < q < ∞, α ∈ [0, ∞), s ∈ N, 1 < p < ∞, f ∈ H(U n ).<br />

Then<br />

( ∫ 1<br />

q/p<br />

(1 − |z|)<br />

∫T α |f(z)| p |z| d|z|) sp dm n (ξ)<br />

n<br />

≤<br />

0<br />

( ∫ 1<br />

q/p<br />

C |R<br />

∫T s f(uξ)| p (1 − u) du) sp+α dm n (ξ).<br />

n<br />

0<br />

ii) Let 0 < q < ∞, α ∈ [0, ∞), s ∈ N, 1 < p < ∞, γ ∈ (−1/p, 1/p ′ ), 1/p ′ + 1/p =<br />

1, f ∈ H(U n ). Then<br />

≤<br />

( ∫ 1<br />

q/p<br />

(1 − r)<br />

∫T γ |f(rξ)| p r dr) p dm n (ξ)<br />

n<br />

0<br />

( ∫ 1<br />

q/p<br />

C |R<br />

∫T s f(rξ)| p (1 − r) dr) sp+γ dm n (ξ) .<br />

n<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using (1.2) we have<br />

( ∫ 1<br />

M = (1 − |z|) α |f(z)| p |z| sp d|z|<br />

≤<br />

= C<br />

0<br />

( ∫ 1 ( ∫ 1<br />

C<br />

0<br />

∫ 1 ∫ 1<br />

0<br />

where ψ(|z|) ∈ L p′ (d|z|), 1/p ′ + 1/p = 1.<br />

Changing <strong>the</strong> variables we have<br />

∫ 1<br />

0<br />

0<br />

0<br />

0<br />

) 1/p<br />

) p(1 1/p<br />

|R s f(ρz)|(1 − ρ) dρ) s−1 − |z|) α |z| sp d|z|<br />

|R s f(ρz)|(1 − ρ) s−1 (1 − |z|) α/p ψ(|z|)|z| s d|z|dρ ,<br />

|R s f(ρz)|(1 − ρ) s−1 dρ ≤<br />

∫ |z|<br />

Using <strong>the</strong> last inequality and Hölder inequality, we get<br />

M ≤ C<br />

≤<br />

C<br />

∫ 1 ∫ |z|<br />

0<br />

∫ 1<br />

0<br />

( ∫ 1<br />

0<br />

0<br />

|R s s−1 du<br />

f(uξ)|(1 − u)<br />

|z| . s<br />

|R s f(uξ)|(1 − u) s−1 (1 − |z|) α/p ψ(|z|)d|z|du<br />

|R s f(vξ)|(1 − v) s<br />

1 − v<br />

∫ 1<br />

v<br />

) p ′<br />

(1 − |z|) α/p ψ(|z|)d|z|dv<br />

( ∫ 1 1<br />

) 1/p ′( ∫ 1<br />

1/p<br />

≤ C<br />

ψ(|z|)d|z| dv |R s f(uξ)| p (1 − u) du) α+ps .<br />

0 1 − v v<br />

0<br />

From <strong>the</strong> last inequality and Lemma 2.4 we easily get <strong>the</strong> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>orem.


78 R. SHAMOYAN, S. LI<br />

Now we prove <strong>the</strong> sec<strong>on</strong>d part. From (1.2) and changing <strong>the</strong> variables we have<br />

f(τξ) = f(τξ 1 , · · · , τξ n ) =<br />

=<br />

≤<br />

∫ τ<br />

C<br />

0<br />

∫ τ<br />

∫ 1<br />

R s f(uξ 1 , · · · , uξ n )(log τ du<br />

)s−1<br />

u τ<br />

0<br />

R s f(uξ 1 , · · · , uξ n ) ×<br />

0<br />

R s f(τξ 1 ρ, · · · , τξ n ρ)(log 1 ρ )s−1 dρ<br />

(1 − uτ)−1<br />

(1 − u 2 ) s dτ, s ≥ 1 .<br />

τ<br />

Using duality argument, (2.3) and Hölder inequality we have<br />

( ∫ 1<br />

) 1/p<br />

f(τξ) p τ p (1 − τ) γ dτ<br />

≤<br />

= C<br />

≤<br />

≤<br />

0<br />

( ∫ 1 ( ∫ 1<br />

C<br />

0<br />

∫ 1 ∫ 1<br />

0<br />

( ∫ 1<br />

C<br />

0<br />

0<br />

0<br />

∫ 1<br />

) p(1 1/p<br />

|R s f(uξ)|(1 − u) s (1 − τu) du) −1 − τ) γ dτ<br />

|R s f(uξ)|(1 − u) s (1 − τu) −1 (1 − τ) γ ψ(τ)( 1 − u<br />

1 − τ ) −1<br />

pp ′ ( 1 − u<br />

1 − τ ) 1<br />

pp ′ dudτ<br />

0<br />

∫ 1<br />

ψ p′ (τ)(1 − τu) −1 ( 1 − u<br />

1 − τ<br />

) −<br />

1<br />

p<br />

(1 − τ) γ dudτ<br />

) 1/p ′<br />

( ∫ 1<br />

( 1 − u<br />

) )<br />

1<br />

1/p<br />

× (1 − u) sp |R s f(uξ)| p p ′ (1 − τ) γ (1 − τu) −1 dudτ<br />

0 0<br />

1 − τ<br />

( ∫ 1<br />

) 1/p ′( ∫ 1<br />

1/p<br />

C ψ p′ (τ)(1 − τ) γ dτ (1 − u) sp+γ |R s f(uξ)| du) p ,<br />

0<br />

0<br />

where ψ ∈ L p′ ((1 − τ) γ dτ), 1/p + 1/p ′ = 1. We can get <strong>the</strong> desired inequality by<br />

integrating both sides <strong>on</strong> T n . The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

Remark 3.2. Our Theorem 3.1 extends <strong>the</strong> well-known Hardy-Littlwood <strong>the</strong>orems(case<br />

n = 1 and p = q) with fracti<strong>on</strong>al derivative (see [2, 5]) to <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mixed norm spaces with R s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s.<br />

Next we give an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2.1. For measurable functi<strong>on</strong> f in <strong>the</strong><br />

disk we define<br />

( ∫ |f(z)| p ) 1/p,<br />

A p (f)(ξ) =<br />

Γ δ (ξ) (1 − |z|) dm 2(z) p < ∞;<br />

2<br />

A ∞ (f)(ξ) = sup{|f(z)| : z ∈ Γ δ (ξ)}, ξ ∈ T, δ > 1;<br />

( ∫ 1 |f(z)| p ) 1/p,<br />

C p (f)(ξ) = sup<br />

ξ∈I |I| S(I) 1 − |z| dm 2(z) p < ∞, ξ ∈ T,<br />

where S(I) = {z ∈ U, z<br />

|z|<br />

1<br />

∈ I, 1 − |z| ≤ |I|}, I ⊂ T,<br />

2π<br />

Γ δ (ξ) = {z ∈ U : |1 − ξz| < δ(1 − |z|), δ > 1}.<br />

The following result can be found in [1] or [10]:


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 79<br />

For any functi<strong>on</strong>s f(z) and g(z) measurable in <strong>the</strong> unit disk<br />

∫<br />

∫<br />

|f(z)||g(z)|<br />

dm 2 (z) ≤ C A p (f)(ξ)C p ′(g)(ξ)dm(ξ), 1 < p ≤ ∞, 1 1 − |z|<br />

p + 1 = 1.(3.1)<br />

p ′<br />

U<br />

T<br />

The above result can be easily by iterati<strong>on</strong> extended to <strong>polydisk</strong>.<br />

Using <strong>the</strong> <strong>polydisk</strong> versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.1), by Cauchy formula in <strong>polydisk</strong>, Littlewood-<br />

Paley inequality (see [1]) and 2.1 we have for any holomorphic functi<strong>on</strong> f in <strong>the</strong><br />

<strong>polydisk</strong>,<br />

∫<br />

|R s f ρ (ϕτ 2 )| = C∣<br />

f(τξ)R s 1<br />

T n 1 − τρξϕ dm n(ξ) ∣<br />

∫<br />

≤ C |D α R s 1<br />

U 1 − wϕρ |f(w)|(1 − |w|)α−1 dm 2n (w)<br />

n<br />

≤<br />

≤<br />

∫<br />

C<br />

∫<br />

C<br />

T n<br />

T n<br />

sup |D α R s 1<br />

w∈Γ t(ξ) 1 − wϕρ (1 − |w|)α dm n (ξ) × ‖C 1 (f)‖ L ∞<br />

sup |R s 1<br />

w∈Γ t(ξ) 1 − wϕρ |dm n(ξ) × ‖C 1 (f)‖ L ∞.<br />

Here α > 0, ϕ, ξ ∈ T n , ρ ∈ [0, 1] n , ϕτ 2 = (ϕ 1 τ1 2 , · · ·, ϕ n τn), 2 τ j ∈ (1/2, 1), j =<br />

1, · · · , n. We used in <strong>the</strong> last inequality a maximal <strong>the</strong>orem for D s <str<strong>on</strong>g>operator</str<strong>on</strong>g>s, see<br />

[7]. Therefore<br />

( ∑ n∏<br />

−1<br />

|R s f(ρϕ)| × (1 − ρ k ) k) −α ≤ C‖C1 (f)‖ L ∞<br />

α j ≥0<br />

P αj =s<br />

k=1<br />

and<br />

( ∑<br />

sup M ∞ (D −1 R s f, ρ)| ×<br />

ρ∈[0,1] n<br />

α j ≥0<br />

P αj =s<br />

n∏<br />

(1 − ρ k ) −α k<br />

k=1<br />

) −1<br />

where<br />

≤ C‖C 1 (f × (1 − |z|))‖ L ∞, (3.2)<br />

C 1 (f × (1 − |z|))(ξ 1 , · · · , ξ n ) = sup<br />

ξ 1 ∈I<br />

∫<br />

1<br />

· · · sup<br />

|I| S(I) ξ n∈I<br />

∫<br />

1<br />

|f(z)|dm 2n (z).<br />

|I| S(I)<br />

Remark 3.3. Estimates (3.2) extends known <strong>on</strong>e dimensi<strong>on</strong>al inequality which<br />

can be found in [10]. We just give <strong>on</strong>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2.1. Various o<strong>the</strong>r<br />

generalizati<strong>on</strong>s can be obtained with <strong>the</strong> help <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2.1. Estimate (3.2) is<br />

just an example.<br />

We see that <strong>the</strong> R s <str<strong>on</strong>g>operator</str<strong>on</strong>g> are c<strong>on</strong>nected with <strong>the</strong> quasinorms <strong>on</strong> subframe<br />

via integral representati<strong>on</strong>s (2.4) and (2.5). So it is natural to find new estimates<br />

for quasinorms <strong>on</strong> subframe. In <strong>the</strong> <strong>polydisk</strong> we c<strong>on</strong>sider <strong>the</strong> following three<br />

expressi<strong>on</strong>s<br />

∫ 1 ∫<br />

|f(rξ 1 , · · · , rξ n )| p (1 − r) α rdrdm n (ξ), 0 < p < ∞, α > −1;<br />

0 T n


80 R. SHAMOYAN, S. LI<br />

∫T n ∫<br />

∏ n<br />

|f(τ 1 ξ 1 , · · · , τ n ξ n )| p (1 − τ k ) α k<br />

τ 1 · · · τ n dτ 1 · · · dτ n dm n (ξ);<br />

[0,1] n<br />

k=1<br />

and ∫ ∫<br />

|f(τ 1 ξ, · · · , τ n ξ)| p (1 − τ 1 ) α1 · · · (1 − τ n ) αn τ 1 · · · τ n dτ 1 · · · dτ n dm(ξ),<br />

T [0,1] n<br />

where 0 < p < ∞, α j > −1, j = 1, · · · , n, f ∈ H(U n ). Our intensi<strong>on</strong> is to show<br />

<str<strong>on</strong>g>some</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong>se quasinorms using so-called dyadic decompositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>polydisk</strong> and subframe, see [4]. First, we have <strong>the</strong> following result.<br />

Theorem 3.4. Let f ∈ H(U n ), 0 < p < ∞, α > −1, n ∈ N. Then<br />

∫ 1 ∫<br />

|f(z)| p (1 − |z| 2 ) α dm n (ξ)d|z|<br />

0 T<br />

∫<br />

n<br />

≤ C |f(z)| p (1 − |z 1 | 2 ) α n −1+ 1 n · · · (1 − |zn | 2 ) α n −1+ 1 n dm2n (z) .<br />

U n<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using diadic decompositi<strong>on</strong> that were introduced in introducti<strong>on</strong> and <strong>the</strong><br />

subharm<strong>on</strong>icity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> |f(z)| p (0 < p < ∞) functi<strong>on</strong>, we have<br />

∫ 1 ∫<br />

|f(z)| p (1 − |z| 2 ) α dm n (ξ)d|z|<br />

0 T n<br />

= ∑ ∫ 1−2 −k−1<br />

∑<br />

∫ ∫<br />

· · · |f(z)| p (1 − |z| 2 ) α dm n (ξ)d|z|<br />

k≥0<br />

1−2 −k l 1 ,··· ,l<br />

I n k,l1 I k,ln<br />

≤ C ∑ ∑<br />

max |f(z)| p · 2 −k · 2 −kα · (2 −k · · · 2 −k )<br />

eU<br />

k≥0 l 1 ,··· ,l k,l1 ,··· n<br />

,ln<br />

≤ C ∑ · · · ∑ ∑<br />

n∏ n∏ n∏<br />

max |f(z)| p · 2 − k i<br />

n · 2 − k i α<br />

n 2 −k i<br />

U k1 ,··· ,kn,l<br />

k 1 ≥0 k n≥0 l 1 ,··· ,l 1 ,··· ,ln<br />

n<br />

i=1 i=1 i=1<br />

∫<br />

≤ C |f(z)| p (1 − |z 1 | 2 ) α n −1+ 1 n · · · (1 − |zn | 2 ) α n −1+ 1 n dm2n (z).<br />

U n<br />

In <strong>the</strong> last inequality we used two facts. The first is that we used <strong>the</strong> following<br />

inequality<br />

∫<br />

max |f(z)| p ≤ C2 2(k 1+···+k n)<br />

|f(z)| p dm 2n (z) ,<br />

z∈U k1 ,··· ,kn,l 1 ,··· ,ln<br />

U ∗ k 1 ,··· ,kn,l 1 ,··· ,ln<br />

which follows from <strong>the</strong> subharm<strong>on</strong>icity <str<strong>on</strong>g>of</str<strong>on</strong>g> |f(z)| p (0 < p < ∞, f ∈ H(U n ) (see<br />

[4]). Here Uk ∗ 1 ,··· ,k n,l 1 ,··· ,l n<br />

= Uk ∗ 1 ,l 1<br />

× · · · × Uk ∗ n,l n<br />

is a family <str<strong>on</strong>g>of</str<strong>on</strong>g> enlarged dyadic<br />

cubes, see [4]. The sec<strong>on</strong>d is that <strong>the</strong> family <str<strong>on</strong>g>of</str<strong>on</strong>g> enlarged dyadic cubes is a finite<br />

covering <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>polydisk</strong> (see [4])<br />

( ∑ )( ∑<br />

|f(z)| p (1 − |z| 2 ) γ dm 2n (z)<br />

≤<br />

) ∫<br />

k 1 ,··· ,k n≥0 l 1 ,··· ,l<br />

U ∗ n≥0 k 1 ,··· ,kn,l 1 ,··· ,ln<br />

∫<br />

C |f(z)| p (1 − |z| 2 ) γ dm 2n (z), 0 < p < ∞, γ > −1.<br />

U n


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 81<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>orem is completed.<br />

Remark 3.5. It is easy to see that <strong>the</strong> asserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.4 is true for n = 1.<br />

The following <strong>the</strong>orem can be obtained using <strong>the</strong> same ideas by small modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> methods that we used above.<br />

Theorem 3.6. Let f ∈ H(U n ). Then <strong>the</strong> following asserti<strong>on</strong>s are true.<br />

i) Let p ∈ (0, ∞), α j > −1, j − 1, · · · , n, n ∈ N. Then<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) P n<br />

j=1 αj+n−1 dm 2 (z)<br />

≤<br />

U<br />

∫<br />

C<br />

T<br />

∫<br />

∏ n<br />

|f(|z 1 |ξ, · · · , |z n |ξ)| p (1 − |z k | 2 ) α k<br />

d|z 1 | · · · d|z n |dm(ξ).<br />

[0,1] n<br />

k=1<br />

ii) Let 0 < p < ∞, α > −1. Then we have<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

≤<br />

C<br />

U<br />

∫ 1 ∫T n<br />

0<br />

|f(|z|ξ 1 , · · · , |z|ξ n )| p (1 − |z| 2 ) α dm n (ξ)d|z|.<br />

iii) Let p ∈ (0, ∞), α j > −1, j − 1, · · · , n, n ∈ N. Then<br />

∫ ∫<br />

∏ n<br />

|f(|z 1 |ξ, · · · , |z n |ξ)| p (1 − |z k |) α k+ n−1<br />

n d|z1 | · · · d|z n |dm(ξ)<br />

T [0,1] n k=1<br />

∫<br />

∏ n<br />

≤ C |f(z)| p (1 − |z k | 2 ) α k<br />

dm 2n (z).<br />

U n<br />

k=1<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We prove <strong>on</strong>ly <strong>the</strong> sec<strong>on</strong>d inequality. We use diadic decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U<br />

and subframe and <strong>the</strong> same ideas that we used in <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.4. We<br />

have<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

U<br />

= ∑ ∑<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

k≥0 j U j,k<br />

≤ C ∑ ∑<br />

max |f(z, · · · , z)| p 2 −2k 2 −k(α+n−1)<br />

U j,k<br />

k≥0 j<br />

≤ C ∑ ∑<br />

max |f(z, · · · , z)| p 2 −k(α+n+1)<br />

z∈U k,j1 ,··· ,jn<br />

k≥0 j 1 ,···j n<br />

≤ C ∑ ∑<br />

2 2kn M2 −k(α+n+1) ,<br />

k≥0 j 1 ,···j n<br />

where<br />

M =<br />

∫<br />

eU ∗ k,j 1 ,··· ,jn<br />

|f(z 1 , · · · , z n )| p dm 2n (z),<br />


82 R. SHAMOYAN, S. LI<br />

Ũk,j ∗ 1 ,··· ,j n<br />

is a enlarged versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dyadic cube <strong>on</strong> dyadic decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> subframe<br />

(see [4])<br />

{<br />

Ũk,j ∗ 1 ,··· ,j n<br />

= Ũ k,j ∗ 1<br />

× · · · × Ũ k,j ∗ n<br />

= (τξ 1 , · · · , τξ n ), τ ∈ Ĩk = (1 − 1<br />

2 , 1 − 1 ],<br />

k−1 2k+2 ξ i ∈ Ĩk,j i<br />

= [ π(j i − 1/2)<br />

, π(j i + 1/2)<br />

}<br />

) .<br />

2 k 2 k<br />

We have<br />

( ∫ 1−2 −k−2 ∫ ) ( ∫ 1−2 −k−2 ∫ )<br />

M =<br />

· · ·<br />

|f(z 1 , · · · , z n )| p dm 2n (z)<br />

1−2 −k+1 eI k,j1 1−2 −k+1 eI k,jn<br />

∫<br />

≤ C2 −k · · · 2<br />

∫e −k · · · |f( ˜τ 1 ξ 1 , · · · , ˜τ n ξ n )| p dm n (ξ),<br />

Ik,j1 eI k,jn<br />

where |f( ˜τ 1 ξ 1 , · · · , ˜τ n ξ n )| = max τj ∈e Ik ,j=1,··· ,n. |f(τ 1ξ 1 , · · · , τ n ξ n )|. Therefore,<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

Since<br />

≤<br />

U<br />

C ∑ k≥0<br />

2 ∑ ∫ ∫<br />

∫ 1−2 −k−3<br />

−kα · · · |f( ˜τ 1 ξ 1 , · · · , ˜τ n ξ n )| p dm n (ξ) dτ.<br />

j 1 ,···,j<br />

eI n k,j1<br />

eI k,jn 1−2 −k−2<br />

∫ ∫<br />

|f( ˜τ 1 ξ 1 , · · · , ˜τ n ξ n )| p dm n (ξ) ≤ |f(τξ 1 , · · · , τξ n )| p dm n (ξ),<br />

T n T n<br />

for 0 < p < ∞, τ j ∈ [1 − 2 −k−2 , 1 − 2 −k−3 ), j = 1, · · · , n, we obtain<br />

∫<br />

|f(z, · · · , z)| p (1 − |z| 2 ) α+n−1 dm 2 (z)<br />

≤<br />

≤<br />

U<br />

C ∑ k≥0<br />

C<br />

∫ 1−2 −k−3 ∫<br />

2 −kα<br />

∫T n ∫ 1<br />

0<br />

1−2 −k−2<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>the</strong>orem is finished.<br />

T n |f(τξ 1 , · · · , τξ n )| p dm n (ξ)dτ<br />

|f(|z|ξ 1 , · · · , |z|ξ n )| p (1 − |z| 2 ) α dm n (ξ)d|z|.<br />

Remark 3.7. The asserti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.6 are obvious for n = 1.<br />

From Theorem 3.6, we easily get <strong>the</strong> following result, which was proved in [4].<br />

Corollary 3.8. Let p ∈ (0, ∞), α > −1, n ∈ N, f ∈ H(U n ). Then<br />

∫<br />

|f(z, · · · , z)| p (1 − |z|) αn+2n−2 dm 2 (z)<br />

U∫<br />

≤ C |f(z 1 , · · · , z n )| p (1 − |z 1 |) α · · · (1 − |z n |) α dm 2n (z).<br />

U n<br />


PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 83<br />

Corollary 3.9. Let u ∈ H(U n ), q ∈ (0, ∞), α j > 0, j = 1, · · · , n, n ∈ N. Then<br />

∫<br />

|u(z, · · · , z)| q (1 − |z| 2 ) P n<br />

j=1 αj−1 dm 2 (z)<br />

≤<br />

U<br />

∫<br />

C<br />

T<br />

∫<br />

Γ t(ξ)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Fix ξ ∈ T , <strong>the</strong>n (see [3])<br />

∫<br />

· · · |u(z 1 , · · · , z n )| q<br />

Γ t(ξ)<br />

∫ 1<br />

0<br />

n<br />

∏<br />

k=1<br />

|ũ(ρξ)| q<br />

1 − ρ<br />

∫Γ dρ ≤ C |ũ(z)| q dm 2 (z)<br />

.<br />

t(ξ) (1 − |z| 2 ) 2<br />

(1 − |z k | 2 ) α k−2 dm 2n (z)dm(ξ).<br />

Choosing ũ = u(ρξ)(1 − ρ) α/q , u ∈ H(U), α, q ∈ (0, ∞), we have<br />

∫ 1<br />

∫<br />

|u(ρξ)| q (1 − ρ) α−1 dρ ≤ C |u(z)| q (1 − |z| 2 ) α−2 dm 2 (z).<br />

0<br />

Γ t(ξ)<br />

Using <strong>the</strong> last inequality, by each variable we get <strong>the</strong> following<br />

≤<br />

∫ 1<br />

0<br />

∫<br />

C<br />

· · ·<br />

Γ t(ξ)<br />

∫ 1<br />

0<br />

∫<br />

· · ·<br />

|u(ρ 1 ξ, · · · , ρ n ξ)| q<br />

Γ t(ξ)<br />

|u(z)| q<br />

n<br />

∏<br />

k=1<br />

n<br />

∏<br />

k=1<br />

(1 − ρ k ) α k−1 dρ 1 · · · dρ n<br />

(1 − |z k | 2 ) α k−2 dm 2n (z).<br />

Integrating both sides by T and using i) <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.6, we have<br />

∫<br />

|u(z, · · · , z)| q (1 − |z| 2 ) P n<br />

j=1 αj−1 dm 2 (z)<br />

≤<br />

≤<br />

U<br />

∫<br />

C<br />

∫<br />

C<br />

T<br />

T<br />

∫ 1<br />

∫<br />

0<br />

· · ·<br />

Γ t(ξ)<br />

∫ 1<br />

0<br />

∫<br />

· · ·<br />

|u(ρ 1 ξ, · · · , ρ n ξ)| q<br />

Γ t(ξ)<br />

|u(z 1 , · · · , z n )| q<br />

This completes <strong>the</strong> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 3.9.<br />

n<br />

∏<br />

k=1<br />

∏ n<br />

(1 − ρ k ) α k−1 dρ 1 · · · dρ n dm(ξ)<br />

k=1<br />

(1 − |z k | 2 ) α k−2 dm 2n dm(ξ).<br />

Remark 3.10. For n = 1, <strong>the</strong> asserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 3.9 is c<strong>on</strong>tained in [3, 18].<br />

References<br />

1. K. L. Avetisyan and R. F. Shamoyan, Some generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Littlewood-Paley inequality<br />

in <strong>the</strong> <strong>polydisk</strong>, Matematicki Vesnik, 58 (3-4) (2006), 97–110.<br />

2. S. M. Buckley, P. Koskela and D. Vukotic, Fracti<strong>on</strong>al integrati<strong>on</strong>, differentiati<strong>on</strong>, and<br />

weighted Bergman spaces, Math. Proc. Cambridge Phil. Soc., 126 (1999), 369–385.<br />

3. W. Cohn, Weighted Bergman projecti<strong>on</strong>s and tangential area integrals, Studia Math., 106<br />

(1993), 59–76.<br />

4. A. E. Djrbashian and F. A. Shamoian, Topics in <strong>the</strong> Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> A p α Spaces, Leipzig, Teubner,<br />

1988.<br />

5. P. L. Duren, Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> H p Spaces, Academic Press, New York, 1970.<br />

6. V. S. Guliev and P. I. Lizorkin, Spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> holomorphic functins and harm<strong>on</strong>ic functi<strong>on</strong>s in<br />

<strong>the</strong> <strong>polydisk</strong> and <strong>the</strong>ir c<strong>on</strong>necti<strong>on</strong>s with boundary values, Trudy Mat. Inst. Steklov RAN,<br />

204 (1993), 137–159.<br />


84 R. SHAMOYAN, S. LI<br />

7. M. I. Gvaradze, Multipliers <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> analytic functi<strong>on</strong>s defined <strong>on</strong> a polydisc, Akad.<br />

Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze, 66 (1980), 15–21.<br />

8. H. Hedenmalm, B. Korenblum and K. Zhu, Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Bergman Spaces, Graduate Texts in<br />

Ma<strong>the</strong>matics, 199, Springer, New York, 2000.<br />

9. V. G. Mazya, Sobolev Spaces, Springer-Verlag, Berlin, 1985.<br />

10. J. M. Ortega and J. Fàbrega, Hardy’s inequality and embeddings in holomorphic Triebel-<br />

Lizorkin spaces, Illinois J. Math., 43 (1999), 733–751.<br />

11. R. F. Shamoyan, <str<strong>on</strong>g>On</str<strong>on</strong>g> multipliers from spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> Bergman type to Hardy spaces in <strong>polydisk</strong>,<br />

Ukrainian Math. J., 52 (10)(2000), 1606–1617.<br />

12. R. F. Shamoyan, <str<strong>on</strong>g>On</str<strong>on</strong>g> quasinorms <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s from holomorphic Lizorkin Triebel type spaces<br />

<strong>on</strong> subframe and <strong>polydisk</strong>, Sympozium Fourier series and applicati<strong>on</strong>, C<strong>on</strong>ference materials,<br />

Rostov Na D<strong>on</strong>u, in Russian, 2002, 54-55.<br />

13. A. L. Shields and D. L. Williams, Bounded projecti<strong>on</strong>s, duality, and multipliers in spaces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> analytic functi<strong>on</strong>s, Trans. Amer. Math. Soc., 162 (1971), 287–302.<br />

14. R. M. Trigub, Multipliers in <strong>the</strong> Hardy spaces H p (D m ) with p ∈ (0, 1] and approxiamati<strong>on</strong><br />

<str<strong>on</strong>g>properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> summability methods for power series, Mat. Sb., 188 (4) (1997), 145–160.<br />

15. W. Rudin, Functi<strong>on</strong> Theory in <strong>the</strong> Polydisk, Benjamin, New York, 1969.<br />

16. K. Zhu, Weighted Bergman projecti<strong>on</strong>s <strong>on</strong> <strong>the</strong> <strong>polydisk</strong>, Houst<strong>on</strong> J. Math., 20 (2) (1994),<br />

275–292.<br />

17. K. Zhu, Spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> Holomorphic Functi<strong>on</strong>s in <strong>the</strong> Unit Ball, New York, 2005.<br />

18. A. Zygmund, Trig<strong>on</strong>ometric Series, (2nd.ed.), Vol.2, Cambridge Univ. Press, Cambridge,<br />

1959.<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<strong>the</strong>matics, Bryansk State Pedagogical University, Russian<br />

E-mail address: rsham@mail.ru<br />

2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<strong>the</strong>matics, JiaYing University, 514015, Meizhou, Guang-<br />

D<strong>on</strong>g, China<br />

E-mail address: jyulsx@163.com; lsx@mail.zjxu.edu.cn

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!