24.04.2014 Views

Polarized K3 surfaces of genus 18 and 20 - Research Institute for ...

Polarized K3 surfaces of genus 18 and 20 - Research Institute for ...

Polarized K3 surfaces of genus 18 and 20 - Research Institute for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MUKAI: <strong>Polarized</strong> <strong>K3</strong> <strong>surfaces</strong> <strong>of</strong> <strong>genus</strong> <strong>18</strong> <strong>and</strong> <strong>20</strong> 270<br />

Lemma 3.3 Λ i ≃ Λ 10−i ⊗ O X (i − 5).<br />

Pro<strong>of</strong>. By (1.6), Λ i is isomorphic to (Λ 10−i ) ∨ ⊗ O X (5). Since F is <strong>of</strong> rank 2, F ∨ is<br />

isomorphic to F ⊗ O X (−1), which shows the lemma.<br />

q.e.d.<br />

We need the decomposition <strong>of</strong> Λ i into irreducible homogeneous vector bundles. Λ i =<br />

∧ i<br />

(F ⊕5 ), i ≤ 5, has the following vector bundles as its irreducible factors:<br />

(3.4)<br />

Λ 0<br />

Λ 1<br />

O<br />

F<br />

Λ 2<br />

Λ 3<br />

S 2 F, O(1)<br />

S 3 F, F(1)<br />

Λ 4<br />

Λ 5<br />

S 4 F, S 2 F(1), O(2)<br />

S 5 F, S 3 F(1), F(2)<br />

Proposition 3.5 If [N] ∈ Ξ SCI , then S N is a <strong>K3</strong> surface.<br />

Pro<strong>of</strong>. By Proposition 2.4 <strong>and</strong> (2.6), the vector bundle F ⊕5 <strong>and</strong> the tangent bundle<br />

T X have the same determinant bundle. Hence S N has a trivial canonical bundle. By<br />

Proposition 1.4 <strong>and</strong> Lemma 1.6, we have the exact sequence 0 −→ K • −→ O SN −→ 0<br />

<strong>and</strong> the isomorphism K • ≃ Λ • ⊗ O(−5). By (1) <strong>of</strong> Proposition 2.8 <strong>and</strong> the Serre duality<br />

H i (K 10 ) ≃ H 12−i (O X ) ∨ , we have<br />

<strong>and</strong><br />

H 1 (K 1 ) = H 2 (K 2 ) = · · · = H 10 (K 10 ) = 0<br />

H 1 (K 0 ) = H 2 (K 1 ) = · · · = H 10 (K 9 ) = H 11 (K 10 ) = 0.<br />

There<strong>for</strong>e, the restriction map H 0 (O X ) −→ H 0 (O SN ) is surjective <strong>and</strong> H 1 (O SN ) vanishes.<br />

Hence S N is connected <strong>and</strong> regular.<br />

q.e.d.<br />

Let F N be the restriction <strong>of</strong> F to S N . The complex K • ⊗ F gives a resolution <strong>of</strong> F N .<br />

Since S n F ⊗ F ≃ S n+1 F ⊕ S n−1 F(1), we have the following 4 series <strong>of</strong> vanishings by (1)<br />

<strong>of</strong> Proposition 2.8:<br />

(a) H 1 (F ⊗ K 2 ) = H 2 (F ⊗ K 3 ) = · · · = H 9 (F ⊗ K 10 ) = 0,<br />

(b) H 1 (F ⊗ K 1 ) = H 2 (F ⊗ K 2 ) = · · · = H 9 (F ⊗ K 9 ) = H 10 (F ⊗ K 10 ) = 0,<br />

(c) H 1 (F) = H 2 (F ⊗ K 1 ) = · · · = H 10 (F ⊗ K 9 ) = H 11 (F ⊗ K 10 ) = 0<br />

<strong>and</strong><br />

(d) H 2 (F) = H 3 (F ⊗ K 1 ) = · · · = H 11 (F ⊗ K 9 ) = H 12 (F ⊗ K 10 ) = 0.<br />

By (c) <strong>and</strong> (d), both H 1 (F N ) <strong>and</strong> H 2 (F N ) vanish. By (a) <strong>and</strong> (b), the sequence<br />

is exact. So we have proved<br />

0 −→ H 0 (F ⊗ K 1 ) −→ H 0 (F) −→ H 0 (F N ) −→ 0<br />

Proposition 3.6 If dim S N = 2, then we have<br />

1) H 1 (S N , F N ) = H 2 (S N , F N ) = 0, <strong>and</strong><br />

2) the restriction map H 0 (X, F) −→ H 0 (S N , F N ) is surjective <strong>and</strong> its kernel coincides<br />

with N.<br />

Let E N be the restriction <strong>of</strong> E to S N . Arguing similarly <strong>for</strong> the complexes K • ⊗E, K • ⊗S 2 E<br />

<strong>and</strong> K • ⊗ sl(E), we have<br />

Proposition 3.7 If dim S N = 2, then we have<br />

(1) all the higher cohomology groups <strong>of</strong> E N <strong>and</strong> S 2 E N vanish,<br />

(2) the restriction maps H 0 (X, E) −→ H 0 (S N , E N ) <strong>and</strong> H 0 (X, S 2 E) −→ H 0 (S N , S 2 E N )<br />

are bijective, <strong>and</strong><br />

(3) all the cohomology groups <strong>of</strong> sl(E N ) vanish.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!