24.04.2014 Views

Inter-universal Teichmuller Theory I: Construction of Hodge Theaters

Inter-universal Teichmuller Theory I: Construction of Hodge Theaters

Inter-universal Teichmuller Theory I: Construction of Hodge Theaters

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

84 SHINICHI MOCHIZUKI<br />

the l-torsion points <strong>of</strong> E F<br />

[i.e., on Δ ab<br />

X ⊗ F l], we obtain a natural homomorphism<br />

Out(Π CK ) → Aut(Δ ab<br />

X ⊗ F l)/{±1}. Thus, relative to a suitable inclusion<br />

Aut(Δ ab<br />

X ⊗ F l)/{±1} ↩→ GL 2 (F l )/{±1}, the images <strong>of</strong> the groups Aut ɛ (C K ),<br />

Aut(C K ) may be identified with subgroups <strong>of</strong> the form<br />

{( )} {( )}<br />

∗ ∗<br />

∗ ∗<br />

⊆<br />

⊆ GL 2 (F l )/{±1}<br />

0 ±1<br />

0 ∗<br />

— i.e., “semi-unipotent, up to ±1” and Borel subgroups — <strong>of</strong> GL 2 (F l )/{±1}. Write<br />

V ±un def<br />

=Aut ɛ (C K ) · V ⊆ V Bor def<br />

=Aut(C K ) · V ⊆ V(K)<br />

for the resulting subsets <strong>of</strong> V(K). Thus, one verifies immediately that the subgroup<br />

Aut ɛ (C K ) ⊆ Aut(C K )isnormal, and that we have a natural isomorphism<br />

Aut(C K )/Aut ɛ (C K ) ∼ → F l<br />

—sowemaythink<strong>of</strong>V Bor as the F l -orbit <strong>of</strong> V±un . Also, we observe that [in light<br />

<strong>of</strong> the above discussion] it follows immediately that there exists a group-theoretic<br />

algorithm for reconstructing, from π 1 (D ⊚ ) [i.e., an isomorph <strong>of</strong> Π CK ] the subgroup<br />

determined by Aut ɛ (C K ).<br />

Aut ɛ (D ⊚ ) ⊆ Aut(D ⊚ )<br />

(ii) Let v ∈ V non . Then the natural restriction functor on finite étale coverings<br />

arising from the natural composite morphism X −→v → C v → C K if v ∈ V good<br />

(respectively, X v<br />

→ C v → C K if v ∈ V bad ) determines [cf. Examples 3.2, (i);<br />

3.3, (i)] a natural morphism φ•,v NF : D v →D ⊚ [cf. §0 for the definition <strong>of</strong> the term<br />

“morphism”]. Write<br />

: D v →D ⊚<br />

φ NF<br />

v<br />

for the poly-morphism given by the collection <strong>of</strong> morphisms D v →D ⊚ <strong>of</strong> the form<br />

β ◦ φ NF<br />

•,v ◦ α<br />

—whereα ∈ Aut(D v ) ∼ = Aut(X −→v ) (respectively, α ∈ Aut(D v ) ∼ = Aut(X v<br />

)); β ∈<br />

Aut ɛ (D ⊚ ) ∼ = Aut ɛ (C K ) [cf., e.g., [AbsTopIII], Theorem 1.9].<br />

(iii) Let v ∈ V arc . Thus, [cf. Example 3.4, (i)] we have a tautological morphism<br />

∼<br />

D v = −→v X → C v → C(D ⊚ ,v), hence a morphism φ NF<br />

•,v : D v →D ⊚ [cf. Definition<br />

4.1, (v)]. Write<br />

: D v →D ⊚<br />

φ NF<br />

v<br />

for the poly-morphism given by the collection <strong>of</strong> morphisms D v →D ⊚ <strong>of</strong> the form<br />

β ◦ φ NF<br />

•,v ◦ α

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!