24.04.2014 Views

Inter-universal Teichmuller Theory I: Construction of Hodge Theaters

Inter-universal Teichmuller Theory I: Construction of Hodge Theaters

Inter-universal Teichmuller Theory I: Construction of Hodge Theaters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

132 SHINICHI MOCHIZUKI<br />

[cf. the discussion <strong>of</strong> Definition 6.1, (v)], which we shall use to identify the group<br />

Aut ± (D ⊚± )/Aut csp (D ⊚± ) with the group F ⋊±<br />

l<br />

. If v ∈ V good ⋂ V non (respectively,<br />

v ∈ V bad ), then the natural restriction functor on finite étale coverings arising from<br />

the natural composite morphism −→v X → X v → X K (respectively, X v<br />

→ X v →<br />

X K ) determines [cf. Examples 3.2, (i); 3.3, (i)] a natural morphism φ Θell<br />

•,v : D v →<br />

D ⊚± [cf. the discussion <strong>of</strong> Example 4.3, (ii)]. If v ∈ V arc , then [cf. Example 3.4, (i)]<br />

∼<br />

we have a tautological morphism D v = −→v X → X v → X(D ⊚± ,v), hence a morphism<br />

φ Θell<br />

•,v : D v →D ⊚± [cf. the discussion <strong>of</strong> Example 4.3, (iii)]. For arbitrary v ∈ V,<br />

write<br />

φ Θell<br />

v 0<br />

: D v0 →D ⊚±<br />

for the poly-morphism given by the collection <strong>of</strong> morphisms D v0<br />

β ◦ φ Θell<br />

•,v<br />

◦ α<br />

→D ⊚± <strong>of</strong> the form<br />

—whereα ∈ Aut + (D v0 ); β ∈ Aut csp (D ⊚± ); we apply the tautological identification<br />

<strong>of</strong> D v with D v0 [cf. the discussion <strong>of</strong> Example 4.3, (ii), (iii), (iv)]. Write<br />

φ Θell<br />

0 : D 0 →D ⊚±<br />

for the poly-morphism determined by the collection {φ Θell<br />

v 0<br />

: D v0 →D ⊚± } v∈V [cf.<br />

the discussion <strong>of</strong> Example 4.3, (iv)]. Note that the existence <strong>of</strong> “β” in the definition<br />

<strong>of</strong> φ Θell<br />

v 0<br />

implies that it makes sense to post-compose φ Θell<br />

0 with an element <strong>of</strong><br />

Aut ± (D ⊚± )/Aut csp (D ⊚± ) → ∼ F ⋊±<br />

l<br />

.Thus,foranyt ∈ F l ⊆ F ⋊±<br />

l<br />

,letuswrite<br />

φ Θell<br />

t : D t →D ⊚±<br />

for the result <strong>of</strong> post-composing φ Θell<br />

0 with the “poly-action” [i.e., action via polyautomorphisms]<br />

<strong>of</strong> t on D ⊚± [and pre-composing with the tautological identification<br />

<strong>of</strong> D 0 with D t ]and<br />

φ Θell<br />

± : D ± →D ⊚±<br />

for the collection <strong>of</strong> arrows {φ Θell<br />

t } t∈Fl .<br />

(ii) Let γ ∈ F ⋊±<br />

l<br />

. Then γ determines a natural poly-automorphism γ ± <strong>of</strong> D ±<br />

as follows: the automorphism γ ± acts on F l via the usual action <strong>of</strong> F ⋊±<br />

l<br />

on F l and,<br />

∼<br />

for t ∈ F l , induces the +-full poly-isomorphism D t → Dγ(t) whose sign at every<br />

v ∈ V is equal to the sign <strong>of</strong> γ [cf. the construction <strong>of</strong> Example 6.2, (ii)]. Thus, we<br />

obtain a natural poly-action <strong>of</strong> F ⋊±<br />

l<br />

on D ± . On the other hand, the isomorphism<br />

Aut ± (D ⊚± )/Aut csp (D ⊚± ) → ∼ F ⋊±<br />

l<br />

<strong>of</strong> (i) determines a natural poly-action <strong>of</strong> F ⋊±<br />

l<br />

on D ⊚± . Moreover, one verifies immediately that φ Θell<br />

± is equivariant with respect<br />

to these poly-actions <strong>of</strong> F ⋊±<br />

l<br />

on D ± and D ⊚± ; in particular, we obtain a natural<br />

poly-action<br />

F ⋊±<br />

l<br />

(D ± , D ⊚± ,φ Θell<br />

± )<br />

<strong>of</strong> F ⋊±<br />

l<br />

on the collection <strong>of</strong> data (D ± , D ⊚± ,φ Θell<br />

± ) [cf. the discussion <strong>of</strong> Example<br />

4.3, (iv)].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!