The galitskii-Migdal-koltun sum

The galitskii-Migdal-koltun sum The galitskii-Migdal-koltun sum

personal.ph.surrey.ac.uk
from personal.ph.surrey.ac.uk More from this publisher
20.04.2014 Views

The galitskii-Migdal-koltun sum Arianna Carbone Monday Morning Meeting, Dept. of Physics, Univ. of Surrey 26 th March 2012

<strong>The</strong> <strong>galitskii</strong>-<strong>Migdal</strong>-<strong>koltun</strong> <strong>sum</strong><br />

Arianna Carbone<br />

Monday Morning Meeting,<br />

Dept. of Physics, Univ. of Surrey<br />

26 th March 2012


Outline<br />

2


Outline<br />

What are we talking about?<br />

2


Outline<br />

What are we talking about?<br />

Which tools do we need?<br />

2


Outline<br />

What are we talking about?<br />

Which tools do we need?<br />

the Green functions<br />

2


Outline<br />

What are we talking about?<br />

Which tools do we need?<br />

the Green functions<br />

<strong>The</strong> GMK <strong>sum</strong> rule<br />

2


Outline<br />

What are we talking about?<br />

Which tools do we need?<br />

the Green functions<br />

<strong>The</strong> GMK <strong>sum</strong> rule<br />

2- and 3-body interactions<br />

2


What are we talking about?<br />

Objective: study the properties of many-body systems..............<br />

≥ than 3 bodies is already many!!!<br />

3


What are we talking about?<br />

Objective: study the properties of many-body systems..............<br />

≥ than 3 bodies is already many!!!<br />

3


What are we talking about?<br />

Calculate the energy of a nuclear many-body system:<br />

Finite systems: nuclei<br />

Infinite systems: neutron stars<br />

September 24, 1997<br />

HUBBLE SEES A NEUTRON STAR ALONE IN SPACE<br />

4


Which tools do we need?<br />

Many-body theory: formalism of Green functions<br />

5


Which tools do we need?<br />

Many-body theory: formalism of Green functions<br />

It’s a very useful mathematical tool to describe the propagation<br />

of an interacting particle with the rest of the system<br />

5


Which tools do we need?<br />

Many-body theory: formalism of Green functions<br />

It’s a very useful mathematical tool to describe the propagation<br />

of an interacting particle with the rest of the system<br />

H|α, t = i ∂ ∂t<br />

|α, t |α,<br />

t 0 ; t = e − i H(t−t 0) |α, t 0 <br />

5


Which tools do we need?<br />

Many-body theory: formalism of Green functions<br />

It’s a very useful mathematical tool to describe the propagation<br />

of an interacting particle with the rest of the system<br />

H|α, t = i ∂ ∂t<br />

|α, t |α,<br />

t 0 ; t = e − i H(t−t 0) |α, t 0 <br />

ψ(r,t)=r|α, t 0 ; t = r|e − i H(t−t0) |α, t 0 <br />

<br />

= dr r|e − i H(t−t0) |r r |α, t 0 <br />

<br />

= i dr G(r, r ; t − t 0 )ψ(r ,t 0 )<br />

5


Which tools do we need?<br />

Many-body theory: formalism of Green functions<br />

It’s a very useful mathematical tool to describe the propagation<br />

of an interacting particle with the rest of the system<br />

H|α, t = i ∂ ∂t<br />

|α, t |α,<br />

t 0 ; t = e − i H(t−t 0) |α, t 0 <br />

ψ(r,t)=r|α, t 0 ; t = r|e − i H(t−t0) |α, t 0 <br />

<br />

= dr r|e − i H(t−t0) |r r |α, t 0 <br />

<br />

= i dr G(r, r ; t − t 0 )ψ(r ,t 0 )<br />

5<br />

named after George Green (~1830)


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t 0) |r = 0|a r e − i H(t−t 0) a † r |0<br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t0) |r = 0|a r e − i H(t−t0) a † r |0<br />

To a many-body system<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t0) |r = 0|a r e − i H(t−t0) a † r |0<br />

To a many-body system<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t0) |r = 0|a r e − i H(t−t0) a † r |0<br />

To a many-body system<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t 0) |r = 0|a r e − i H(t−t 0) a † r |0<br />

To a many-body system<br />

G(α, α ; E) = m<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

Energy formulation for the propagator:<br />

Ψ N 0 |a α |Ψ N+1<br />

m Ψ N+1<br />

m<br />

|a † α |Ψ N 0 <br />

E − (E N+1 m − E N 0 )+iη + n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

E − (E 0 − E N−1 n<br />

Ψ N−1<br />

n |a α |Ψ N 0 <br />

) − iη<br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t 0) |r = 0|a r e − i H(t−t 0) a † r |0<br />

To a many-body system<br />

G(α, α ; E) = m<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

Energy formulation for the propagator:<br />

Ψ N 0 |a α |Ψ N+1<br />

m Ψ N+1<br />

m<br />

|a † α |Ψ N 0 <br />

E − (E N+1 m − E N 0 )+iη + n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

E − (E 0 − E N−1 n<br />

Ψ N−1<br />

n |a α |Ψ N 0 <br />

) − iη<br />

1<br />

E ± iη = P 1 E ∓ iπδ(E)<br />

Plemelj Formula<br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t 0) |r = 0|a r e − i H(t−t 0) a † r |0<br />

To a many-body system<br />

G(α, α ; E) = m<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

Energy formulation for the propagator:<br />

Ψ N 0 |a α |Ψ N+1<br />

m Ψ N+1<br />

m<br />

|a † α |Ψ N 0 <br />

E − (E N+1 m − E N 0 )+iη + n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

E − (E 0 − E N−1 n<br />

Ψ N−1<br />

n |a α |Ψ N 0 <br />

) − iη<br />

1<br />

E ± iη = P 1 E ∓ iπδ(E)<br />

Plemelj Formula<br />

1<br />

π ImG(α, α; E) = n<br />

|Ψ N−1<br />

n |a α |Ψ N 0 | 2 δ(E − (E N 0 − E N−1<br />

n ))<br />

6


<strong>The</strong> Green Function:<br />

From a one-body system......<br />

i G(r, r ; t − t 0 )=r|e − i H(t−t 0) |r = 0|a r e − i H(t−t 0) a † r |0<br />

To a many-body system<br />

G(α, α ; E) = m<br />

i G(αt α ,α t α)=Ψ N 0 |T [a α (t α )a † α (t α )]|Ψ N 0 <br />

Energy formulation for the propagator:<br />

Ψ N 0 |a α |Ψ N+1<br />

m Ψ N+1<br />

m<br />

|a † α |Ψ N 0 <br />

E − (E N+1 m − E N 0 )+iη + n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

E − (E 0 − E N−1 n<br />

Ψ N−1<br />

n |a α |Ψ N 0 <br />

) − iη<br />

1<br />

E ± iη = P 1 E ∓ iπδ(E)<br />

Plemelj Formula<br />

1<br />

π ImG(α, α; E) = n<br />

|Ψ N−1<br />

n |a α |Ψ N 0 | 2 δ(E − (E N 0 − E N−1<br />

n ))<br />

6<br />

Hole spectral function


What exactly is the hole spectral function?<br />

S h (α, E) = 1 π ImG(α, α; E) = n<br />

|Ψ N−1<br />

n |a α |Ψ N 0 | 2 δ(E − (E N 0 − E N−1<br />

n ))<br />

7


the gmK <strong>sum</strong> rule<br />

1<br />

π ImG(α, α; E)= n<br />

|Ψ N−1<br />

n |a α |Ψ N 0 | 2 δ(E − (E N 0 − E N−1<br />

n ))<br />

8


the gmK <strong>sum</strong> rule<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE<br />

1<br />

ImG(α, α; E) = Ψ N 0 |a † α[a α , Ĥ]|ΨN 0 <br />

π<br />

8


the gmK <strong>sum</strong> rule<br />

<br />

α(<br />

E<br />

N<br />

0 −EN−1 0<br />

1<br />

dEE<br />

= Ψ N 0 |a † )<br />

ImG(α, α; E)<br />

α[a α , Ĥ]|ΨN 0 <br />

−∞<br />

π<br />

<br />

8


the gmK <strong>sum</strong> rule<br />

<br />

α(<br />

E<br />

N<br />

0 −EN−1 0<br />

1<br />

dEE<br />

= Ψ N 0 |a † )<br />

ImG(α, α; E)<br />

α[a α , Ĥ]|ΨN 0 <br />

−∞<br />

π<br />

<br />

Total energy of the many-body ground-state!!!<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 <br />

8


the gmK <strong>sum</strong> rule<br />

<br />

α(<br />

E<br />

N<br />

0 −EN−1 0<br />

1<br />

dEE<br />

= Ψ N 0 |a † )<br />

ImG(α, α; E)<br />

α[a α , Ĥ]|ΨN 0 <br />

−∞<br />

π<br />

<br />

<strong>The</strong> GMK <strong>sum</strong> rule<br />

Total energy of the many-body ground-state!!!<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 <br />

8


the gmK <strong>sum</strong> rule<br />

<br />

α(<br />

E<br />

N<br />

0 −EN−1 0<br />

1<br />

dEE<br />

= Ψ N 0 |a † )<br />

α[a α , Ĥ]|ΨN 0 <br />

−∞<br />

<br />

π ImG(α, α; E) First developed by Galitksii-<strong>Migdal</strong> (1958),<br />

<strong>The</strong> GMK <strong>sum</strong> rule<br />

later applied to finite systems by Koltun (‘70s)<br />

Total energy of the many-body ground-state!!!<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 <br />

8


the gmK <strong>sum</strong> rule<br />

Hamiltonian describing the system:<br />

9


the gmK <strong>sum</strong> rule<br />

Hamiltonian describing the system:<br />

9


the gmK <strong>sum</strong> rule<br />

Hamiltonian describing the system:<br />

9


the gmK <strong>sum</strong> rule<br />

Hamiltonian describing the system:<br />

<br />

Ψ N 0 |a † α[a α , Ĥ]|ΨN 0 = Ψ N 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

α<br />

9


the gmK <strong>sum</strong> rule<br />

Hamiltonian describing the system:<br />

<br />

Ψ N 0 |a † α[a α , Ĥ]|ΨN 0 = Ψ N 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

α<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 = Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 + Ψ N 0 |Ŵ |ΨN 0 <br />

9


the gmK <strong>sum</strong> rule<br />

Hamiltonian describing the system:<br />

<br />

Ψ N 0 |a † α[a α , Ĥ]|ΨN 0 = Ψ N 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

α<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 = Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 + Ψ N 0 |Ŵ |ΨN 0 <br />

9


2-body interactions<br />

Only 2-body forces:<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 <br />

10


2-body interactions<br />

Only 2-body forces:<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 <br />

1<br />

2 [ α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ] =Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 <br />

10


2-body interactions<br />

Only 2-body forces:<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 <br />

1<br />

2 [ α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ] =Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 <br />

Write this in terms of the 1-body<br />

Green function<br />

10


2-body interactions<br />

Only 2-body forces:<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 <br />

1<br />

2 [ α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ] =Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 <br />

Write this in terms of the 1-body<br />

Green function<br />

<strong>The</strong> 1-body propagator provides the expectation value of any one-body operator:<br />

Ψ N 0 |Ô|ΨN 0 = αα α|O|α Ψ N 0 |a † αa α |Ψ N 0 = αα α|O|α n αα<br />

<br />

10


2-body interactions<br />

Only 2-body forces:<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 <br />

1<br />

2 [ α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ] =Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 <br />

Write this in terms of the 1-body<br />

Green function<br />

<strong>The</strong> 1-body propagator provides the expectation value of any one-body operator:<br />

Ψ N 0 |Ô|ΨN 0 = αα α|O|α Ψ N 0 |a † αa α |Ψ N 0 = αα α|O|α n αα<br />

<br />

One-body<br />

density matrix<br />

10


2-body interactions<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE 1 π ImG(α, α ; E) =<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE n<br />

Ψ N 0 |a † α<br />

|Ψ N−1<br />

n Ψ N−1<br />

n |a α |Ψ N 0 δ(E − (E0 N − En N−1 )<br />

11


2-body interactions<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE 1 π ImG(α, α ; E) =<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE n<br />

Ψ N 0 |a † α<br />

|Ψ N−1<br />

n Ψ N−1<br />

n |a α |Ψ N 0 δ(E − (E0 N − En N−1 )<br />

= n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

Ψ N−1<br />

n |a α |Ψ N 0 = Ψ N 0 |a † α<br />

a α |Ψ N 0 = n αα<br />

<br />

11


2-body interactions<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE 1 π ImG(α, α ; E) =<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE n<br />

Ψ N 0 |a † α<br />

|Ψ N−1<br />

n Ψ N−1<br />

n |a α |Ψ N 0 δ(E − (E0 N − En N−1 )<br />

= n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

Ψ N−1<br />

n |a α |Ψ N 0 = Ψ N 0 |a † α<br />

a α |Ψ N 0 = n αα<br />

<br />

Problem solved!<br />

11


2-body interactions<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE 1 π ImG(α, α ; E) =<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE n<br />

Ψ N 0 |a † α<br />

|Ψ N−1<br />

n Ψ N−1<br />

n |a α |Ψ N 0 δ(E − (E0 N − En N−1 )<br />

= n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

Ψ N−1<br />

n |a α |Ψ N 0 = Ψ N 0 |a † α<br />

a α |Ψ N 0 = n αα<br />

<br />

Problem solved!<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 = 1 2 [ α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ]<br />

11


2-body interactions<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE 1 π ImG(α, α ; E) =<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE n<br />

Ψ N 0 |a † α<br />

|Ψ N−1<br />

n Ψ N−1<br />

n |a α |Ψ N 0 δ(E − (E0 N − En N−1 )<br />

= n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

Ψ N−1<br />

n |a α |Ψ N 0 = Ψ N 0 |a † α<br />

a α |Ψ N 0 = n αα<br />

<br />

Problem solved!<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 = 1 2 [ α<br />

= 1 <br />

2π<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ]<br />

dE (Eδ α,α<br />

+ α|T |α )Im G(α, α ; E)<br />

11


2-body interactions<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE 1 π ImG(α, α ; E) =<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dE n<br />

Ψ N 0 |a † α<br />

|Ψ N−1<br />

n Ψ N−1<br />

n |a α |Ψ N 0 δ(E − (E0 N − En N−1 )<br />

= n<br />

Ψ N 0 |a † α |Ψ N−1<br />

n<br />

Ψ N−1<br />

n |a α |Ψ N 0 = Ψ N 0 |a † α<br />

a α |Ψ N 0 = n αα<br />

<br />

Problem solved!<br />

E N 0<br />

= Ψ N 0 |Ĥ|ΨN 0 = 1 2 [ α<br />

= 1 <br />

2π<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E)+ΨN 0 | ˆT |Ψ N 0 ]<br />

dE (Eδ α,α<br />

+ α|T |α )Im G(α, α ; E)<br />

<strong>The</strong> Koltun <strong>sum</strong> rule<br />

11


2- and 3-body interactions<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

12


2- and 3-body interactions<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

1<br />

dEE<br />

π Im G(α, α; E)+2 3 ΨN 0 | ˆT |Ψ N 0 + 1 <br />

3 ΨN 0 | ˆV |Ψ N 0 <br />

= Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 + Ψ N 0 |Ŵ |ΨN 0 <br />

12


2- and 3-body interactions<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

1<br />

dEE<br />

π Im G(α, α; E)+2 3 ΨN 0 | ˆT |Ψ N 0 + 1 <br />

3 ΨN 0 | ˆV |Ψ N 0 <br />

= Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 + Ψ N 0 |Ŵ |ΨN 0 <br />

12


2- and 3-body interactions<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

1<br />

dEE<br />

π Im G(α, α; E)+2 3 ΨN 0 | ˆT |Ψ N 0 + 1 <br />

3 ΨN 0 | ˆV |Ψ N 0 <br />

= Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 + Ψ N 0 |Ŵ |ΨN 0 <br />

This quantity depends on the 2-body Green<br />

function, G II , which is complicated to calculate....<br />

12


2- and 3-body interactions<br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

dEE 1 π Im G(α, α; E) =ΨN 0 | ˆT |Ψ N 0 +2Ψ N 0 | ˆV |Ψ N 0 +3Ψ N 0 |Ŵ |ΨN 0 <br />

<br />

α<br />

E<br />

N<br />

0 −EN−1 0<br />

−∞<br />

1<br />

dEE<br />

π Im G(α, α; E)+2 3 ΨN 0 | ˆT |Ψ N 0 + 1 <br />

3 ΨN 0 | ˆV |Ψ N 0 <br />

= Ψ N 0 | ˆT |Ψ N 0 + Ψ N 0 | ˆV |Ψ N 0 + Ψ N 0 |Ŵ |ΨN 0 <br />

This quantity depends on the 2-body Green<br />

function, G II , which is complicated to calculate....<br />

Open problem: how should we transform this formula in order to<br />

continue benefiting of the power of the GMK <strong>sum</strong> rule?<br />

12


Thank you for your attention!<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!