20.04.2014 Views

Formula Sheet - Web Physics

Formula Sheet - Web Physics

Formula Sheet - Web Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Constants<br />

J<br />

R = 8.<br />

3145<br />

m⋅<br />

K<br />

23<br />

N = 602 . × 10<br />

A<br />

R<br />

−23<br />

J<br />

kB<br />

= = 138 . × 10<br />

NA<br />

m⋅<br />

K<br />

−19<br />

e = 1.<br />

602 × 10 C<br />

2<br />

1<br />

9 N⋅<br />

m<br />

k = = 9×<br />

10<br />

2<br />

4πε<br />

C<br />

0<br />

µ = 4π<br />

× 10<br />

0<br />

c = 3×<br />

10<br />

8<br />

−7<br />

m<br />

s<br />

T⋅<br />

m<br />

A<br />

Thermal Expansion<br />

∆L = αL0∆T<br />

β = 3α<br />

Heat<br />

Q=<br />

mc∆T<br />

Q=±<br />

mL<br />

Q=<br />

nCV<br />

∆T<br />

Q=<br />

nC ∆T<br />

P<br />

Heat Current<br />

H = k A L T − T<br />

H<br />

H = AeσT<br />

4<br />

Quantities<br />

Work<br />

Vf<br />

W = ∫ PdV<br />

Vi<br />

( )<br />

Isochoric Processes<br />

W = 0<br />

Q=<br />

nCV<br />

∆T<br />

* ∆U = nC ∆T<br />

V<br />

C<br />

<strong>Formula</strong> <strong>Sheet</strong> for <strong>Physics</strong> 251<br />

mtot<br />

= nM<br />

Heat Engines<br />

M = NAm<br />

W = QH<br />

+ QC<br />

N = NAn<br />

W<br />

e =<br />

QH<br />

Ideal gases<br />

TC<br />

* PV = nrT<br />

ec<br />

= 1 −<br />

TH<br />

* PV = NkT<br />

* v<br />

3RT<br />

M<br />

* indicates formulas that are specific to ideal gases<br />

† indicates formulas that are specific to parallel-plate capacitors<br />

RMS<br />

P<br />

=<br />

3<br />

* CV<br />

= R(monatomic)<br />

2<br />

5<br />

* CV<br />

= R(diatomic)<br />

2<br />

* C = C + R<br />

V<br />

Isobaric Processes<br />

W = P∆V<br />

Q=<br />

nCP∆T<br />

* ∆U = nC ∆T<br />

Isothermal Processes<br />

⎛ Vf<br />

⎞<br />

* W = nRT ln⎜<br />

⎟<br />

⎝ V ⎠<br />

⎛ Vf<br />

⎞<br />

* Q = nRT ln⎜<br />

⎟<br />

⎝ Vi<br />

⎠<br />

* ∆U<br />

= 0<br />

Adiabatic Processes<br />

* W =−nCV<br />

∆T<br />

Q = 0<br />

* ∆U<br />

= nCV<br />

∆T<br />

γ γ<br />

* PV<br />

1 l<br />

= PV<br />

2 2<br />

γ −1<br />

γ −1<br />

* TV<br />

1 l<br />

= TV<br />

2 2<br />

CP<br />

γ =<br />

C<br />

V<br />

V<br />

Cyclic Processes<br />

W = Q<br />

∆U<br />

= 0<br />

i<br />

Refrigerators<br />

W = Q + Q<br />

H<br />

C<br />

K<br />

Q C<br />

=<br />

W<br />

TC<br />

Kc<br />

=<br />

T − T<br />

H<br />

Force, Field, Energy<br />

and Potential<br />

r r<br />

F = qE<br />

∆U<br />

= q∆V<br />

b r r<br />

Vab<br />

= ∫ E⋅dl<br />

a<br />

r<br />

E =−∇V<br />

C<br />

1 Point Charge<br />

r<br />

E = k q r r<br />

V = k q r<br />

2 ˆ<br />

2 Point Charges<br />

r<br />

F k qq 1 2<br />

= rˆ<br />

2<br />

r<br />

U = k qq r<br />

1 2<br />

Distributed Charge<br />

r<br />

E = ∫ k dq<br />

r rˆ<br />

2<br />

V = ∫ k dq<br />

r<br />

Many Sources<br />

r r<br />

E = E<br />

U<br />

T<br />

T<br />

=<br />

∑<br />

i<br />

∑<br />

pairs<br />

i<br />

U<br />

ij<br />

“Elementary” E Fields<br />

r<br />

E = k Q r ˆ sphere<br />

2<br />

r<br />

r λ<br />

E =<br />

r r ˆ line<br />

2πε0<br />

r σ<br />

E = nˆ<br />

plane<br />

2ε0<br />

r σ conducting<br />

E = nˆ<br />

ε surface<br />

0<br />

Capacitors<br />

C =<br />

Q V<br />

CT<br />

= ∑ Ci<br />

parallel<br />

i<br />

1 1<br />

= ∑ series<br />

i<br />

CT<br />

Ci<br />

2<br />

1 2 Q 1<br />

U = CV = = QV<br />

2 2C<br />

2<br />

A<br />

† C = ε0<br />

d<br />

V σ<br />

† E = =<br />

d ε<br />

Flux and Gauss’s Law<br />

ϕ = ∫∫ r r<br />

E⋅da<br />

Qenclosed<br />

ϕclosed<br />

=<br />

ε<br />

Current and Current<br />

Density<br />

I =<br />

dq<br />

dt<br />

r<br />

I = J ⋅da<br />

r<br />

J = nqv d<br />

∫∫ r<br />

0<br />

0


Ohm’s Law<br />

r r<br />

E = ρJ<br />

V = IR<br />

Resistivity and Resistance<br />

dL<br />

R = ∫ ρ A<br />

ρ = ρ 1 + α T −T<br />

[ ( )]<br />

0 0<br />

Uniform Currents only<br />

V<br />

E =<br />

L<br />

L<br />

R = ρ<br />

A<br />

I<br />

J =<br />

A<br />

Electric Power<br />

P = IV<br />

2<br />

P = I R<br />

P =<br />

V 2<br />

R<br />

Real Batteries<br />

V = E − Ir<br />

Addition of Resistors<br />

RT<br />

= R1 + R2<br />

+ ... series<br />

1 1 1<br />

= + + ... parallel<br />

R R R<br />

T<br />

1 2<br />

Kirchoff’s rules<br />

V = 0<br />

∑<br />

∑<br />

loop<br />

node<br />

I = 0<br />

RC circuits (charging)<br />

t<br />

−<br />

τ<br />

I = Ie<br />

i<br />

⎛<br />

Q= Qf<br />

⎜1<br />

−e<br />

⎝<br />

t<br />

−<br />

τ<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Formula</strong> <strong>Sheet</strong> for <strong>Physics</strong> 251<br />

RC circuits (discharging) Ampere’s Law<br />

t<br />

r r<br />

−<br />

τ<br />

I = Ie<br />

∫ B⋅ dl = µ<br />

0<br />

Ienc<br />

+ I<br />

i<br />

t<br />

where<br />

−<br />

τ<br />

Q=<br />

Qe<br />

i<br />

dϕ<br />

E<br />

Id<br />

= ε0<br />

τ = RC<br />

dt<br />

Magnetic Force and<br />

Torque<br />

r r r<br />

F = qv × B<br />

r r r<br />

dF = Idl × B<br />

r r<br />

τ = µ × B<br />

r r<br />

U =−µ<br />

⋅B<br />

Cyclotron Motion<br />

R =<br />

mv<br />

qB<br />

2πm<br />

T =<br />

qB<br />

qB<br />

ωc<br />

=<br />

m<br />

Flux and Gauss’s Law for<br />

Magnetism<br />

r<br />

ϕ = B⋅da<br />

∫∫ r<br />

ϕclosed = 0<br />

Sources of Magnetic<br />

Fields<br />

r<br />

µ qv × rˆ<br />

0<br />

B =<br />

2<br />

4π<br />

r<br />

r<br />

r µ Idl × rˆ<br />

0<br />

B = ∫<br />

2<br />

4π<br />

r<br />

µ<br />

0I<br />

B = ∞straight wire<br />

2πr<br />

µ<br />

0I<br />

B = center of loop<br />

2R<br />

B = µ<br />

0nI∞solenoid<br />

µ<br />

0NI<br />

toroidal<br />

B =<br />

2πr<br />

solenoid<br />

τ = RC<br />

* indicates formulas that are specific to ideal gases<br />

† indicates formulas that are specific to parallel-plate capacitors<br />

Faraday’s Law<br />

( )<br />

dϕ<br />

B<br />

E =−<br />

dt<br />

or<br />

r r r r<br />

E⋅ dl = B⋅da<br />

∫<br />

C<br />

∫∫<br />

Mutual Inducance<br />

M<br />

N 1ϕB1<br />

N ϕ<br />

= =<br />

I2<br />

I1<br />

=−M dI 2<br />

E1<br />

dt<br />

=−M dI 1<br />

E2<br />

dt<br />

Self Inductance<br />

Nϕ<br />

B<br />

L =<br />

I<br />

E =−L dI<br />

dt<br />

1 2<br />

U = LI<br />

2<br />

S<br />

d<br />

2 B2<br />

RL Circuits (charging)<br />

⎛<br />

I = If<br />

⎜1<br />

−e<br />

⎝<br />

VL<br />

= Ve<br />

0<br />

L<br />

τ =<br />

R<br />

t<br />

−<br />

τ<br />

t<br />

−<br />

τ<br />

⎞<br />

⎟<br />

⎠<br />

RL Circuits (discharging)<br />

I = Ie<br />

VL<br />

= Ve<br />

i<br />

L<br />

τ =<br />

R<br />

i<br />

t<br />

−<br />

τ<br />

t<br />

−<br />

τ<br />

AC Circuits (general)<br />

XL<br />

= ωL<br />

1<br />

XC<br />

=<br />

ωC<br />

2 2<br />

Z = R + ( XL<br />

− XC)<br />

XL<br />

− XC<br />

tanϕ<br />

=<br />

R<br />

I = I0<br />

cosωt<br />

V = V0<br />

cos( ωt<br />

+ ϕ)<br />

V0 = I0Z<br />

V0<br />

Vrms<br />

=<br />

2<br />

I0<br />

Irms<br />

=<br />

2<br />

VR<br />

,max<br />

= IR<br />

VL,max<br />

= IXL<br />

VC,max<br />

= IXC<br />

1 2 1 2<br />

P = I0<br />

R=<br />

I0<br />

Zcosϕ<br />

2 2<br />

AC Circuits (resonance)<br />

ϕ = 0<br />

Z = R<br />

1<br />

ω =<br />

LC<br />

X = X<br />

L<br />

C


<strong>Formula</strong> <strong>Sheet</strong> for <strong>Physics</strong> 251<br />

Light<br />

Lateral and Angular<br />

Emax<br />

= cB<br />

Magnification<br />

max<br />

1<br />

c =<br />

m<br />

y s<br />

= ′ =− ′<br />

εµ<br />

y s<br />

0 0<br />

mT<br />

= mm<br />

1 2...<br />

c = λf<br />

r 1 r r<br />

θ<br />

S = E×<br />

B<br />

M = ′<br />

µ<br />

θ<br />

0<br />

25<br />

EmaxB<br />

M =<br />

max<br />

I = Sav<br />

=<br />

f ( cm)<br />

Magnifier<br />

2µ<br />

0<br />

fobjective<br />

Sav<br />

M =− Telescope<br />

prad<br />

=<br />

feyepiece<br />

c<br />

Propagation of Light Cameras<br />

c<br />

f<br />

n =<br />

f - number =<br />

v<br />

D<br />

λ0<br />

λ =<br />

Eyeglasses<br />

n<br />

θr<br />

= θ<br />

power = 1 diopters<br />

a<br />

f<br />

nasinθa = nbsinθb<br />

nb<br />

θc<br />

= (TIR)<br />

na<br />

2<br />

I = I0<br />

cos ϕ<br />

Focal Lengths<br />

R<br />

f =<br />

2<br />

1 ⎛ 1 1 ⎞<br />

= ( n −1) ⎜ − ⎟<br />

f ⎝ R1 R2⎠<br />

Image Location<br />

1 1 1<br />

= +<br />

f s s ′<br />

* indicates formulas that are specific to ideal gases<br />

† indicates formulas that are specific to parallel-plate capacitors

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!