19.04.2014 Views

Pachymetry, Specular Microscopy and Confocal Microscopy

Pachymetry, Specular Microscopy and Confocal Microscopy

Pachymetry, Specular Microscopy and Confocal Microscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Pachymetry</strong>, <strong>Specular</strong> <strong>Microscopy</strong><br />

<strong>and</strong> <strong>Confocal</strong> <strong>Microscopy</strong><br />

Ellison Bentley, DVM, Diplomate<br />

ACVO<br />

University of Wisconsin-Madison


<strong>Pachymetry</strong><br />

• Why measure?<br />

– Indicator of corneal health<br />

– Reflects health of endothelium<br />

– Influences tonometry measurements<br />

– Diagnosis of disease, monitoring<br />

– Can be thicker or thinner (refractive surgery)


Methods of measurement<br />

• Historically:<br />

– Calipers on fresh or fixed tissue<br />

• Poor reflection of in vivo thickness<br />

• Tissue swelling after death


Optical pachymetry<br />

• Attachment to table<br />

mounted slit lamp<br />

• Measure oblique<br />

section of cornea with<br />

split prism<br />

• Split epithelial/<br />

endothelial images<br />

aligned by user<br />

• Various equations used<br />

to determine thickness


Optical pachymetry<br />

• Variables:<br />

– Refractive index of<br />

cornea<br />

– Anterior radius of<br />

curvature<br />

• Sources of imprecision<br />

– Equation variables<br />

– Inter-observer variability<br />

• Observer variation in<br />

alignment of images


Optical pachymetry<br />

• Automated optical<br />

pachymetry:<br />

– Significantly decreases<br />

inter-observer variability<br />

– Increases reproducibility<br />

<strong>and</strong> reliability<br />

Non-contact automated<br />

optical pachymeter


Optical pachymetry<br />

• Orbscan Anterior<br />

Segment analysis<br />

system<br />

– Series of slit beam<br />

images (9000 points)<br />

– Anterior/posterior<br />

topography<br />

– 3-D image<br />

– Thinner than with other<br />

methods<br />

http://www.augenlaser-klinik.ch/images/<br />

layout/grafiken_orbscan/<br />

orbscan2.gif&imgrefurl


Optical technique<br />

• Pentacam-rotating<br />

Schiemfplug<br />

camera-can model<br />

the anterior chamber<br />

(humans)<br />

• Scanning slit like<br />

Orbscan-increased<br />

depth of focus


Optical pachymetry<br />

• Requires clear<br />

reflections of epithelial<br />

<strong>and</strong> endothelial surface<br />

– Limited: corneal edema,<br />

scarring, deposits, etc


<strong>Specular</strong> microscopes<br />

• Another form of optical<br />

pachymetry<br />

• Use electromechanical<br />

device<br />

• Central corneal<br />

thickness; newer<br />

models mid-peripheral<br />

From Krachmer, Cornea 2005


<strong>Pachymetry</strong>-specular microscopes<br />

• Measure from posterior surface of tear film to<br />

posterior surface of Descemet’s membrane<br />

– May have error of 20-30 µm<br />

• Contact or non-contact<br />

– Corneal touch-induce some compression; thinner<br />

measurement


Ultrasound pachymetry<br />

• 1980’s<br />

• Preferred method:<br />

– Independent of patient<br />

fixation<br />

– Ease of use<br />

– Peripheral <strong>and</strong> central<br />

measurement<br />

– Improved reproducibility<br />

– Improved accuracy<br />

– Portability


Ultrasound pachymetry<br />

• Modern machines<br />

– Excellent alignment detection<br />

– Fast information retrieval <strong>and</strong> storage<br />

– Better sampling algorithms<br />

– Smaller probe tips (better for wider variety of<br />

animals, more precise measurement)


Ultrasound pachymetry<br />

• Originally-water-filled probe tips<br />

• Currently-solid tips<br />

– Measure from anterior surface of tear film to<br />

posterior surface endothelium<br />

– Automatic gain<br />

– Angle sensitivity-within 5 degrees of axis<br />

– Most 20 MHz, but up to 65 MHz


Ultrasound pachymetry<br />

• Hard plastic probes<br />

• Minimal maintenance<br />

• Easy to sterilize


Ultrasound pachymetry<br />

• Electronic pulservibrates<br />

piezoelectric<br />

crystal<br />

• Ultrasonic pulsereflects<br />

at Descemet’s;<br />

returns to crystal<br />

• Reflected waveselectric<br />

signal goes to<br />

receiver


Ultrasound pachymetry<br />

• Corneal thickness-from time it takes to pass<br />

from end of transducer, to Descemet’s <strong>and</strong><br />

back<br />

Distance = velocity x time<br />

• Velocity-speed of sound in cornea


Ultrasound pachymetry<br />

• Velocity<br />

– Human cornea-1640 m/s<br />

– Range-1550 m/s-1639 m/s-bovine, porcine, cat,<br />

human<br />

– 1639 m/s-best estimate for human but use 1640<br />

m/s-best correlate with optical pachymetry<br />

– Tang et al-velocity in canine: 1577+/- 10m/s<br />

• Since true velocity lower, most machines overestimate<br />

corneal thickness in dogs


Pach-Pen<br />

• H<strong>and</strong>-held pachymeter<br />

• 20 MHz<br />

• Speed of sound-1640<br />

m/s<br />

• Variations in species:<br />

– Feline-1590 m/s<br />

– Pach-Pen overestimates<br />

thickness


Pachymeters<br />

• Accupach <strong>and</strong> others:<br />

• LCD displays<br />

• Printing capabilities<br />

• Audible read-out<br />

• 90-999 microns<br />

• + 5 microns accuracy<br />

• Small h<strong>and</strong>held probes


High frequency ultrasound<br />

• Recently reported<br />

• Typically 50 MHz or<br />

higher<br />

• Intraobserver<br />

reproducibility-high<br />

• Interobserver<br />

reproducibility-lower<br />

• Observer perception of<br />

l<strong>and</strong>marks


<strong>Confocal</strong> microscopy<br />

• Recently: good<br />

repeatibility<br />

• Measure corneal<br />

epithelial thickness<br />

• Bowman’s layer<br />

• Availability likely to<br />

increase-now reports in<br />

vet med<br />

www.swmed.edu/home_pages/ ophth/tscam.htm


<strong>Pachymetry</strong><br />

• Instrument comparison:<br />

– Optical pachymetry-less reproducible, less<br />

reliable than ultrasound<br />

• Both between <strong>and</strong> within observers<br />

– Optical pachymeters-Systematic left eye bias<br />

• Central left eye thicker readings


<strong>Pachymetry</strong><br />

• Studies of instrument comparison:<br />

– Automated optical pachymeter vs specular<br />

microscopy:<br />

• Identical reliability<br />

• Ultrasound pachymeters:<br />

– High intraobserver reproducibility but lower interobserver<br />

reproducibility (still higher than optical)


<strong>Pachymetry</strong><br />

• Instrument comparison:<br />

– <strong>Specular</strong> vs ultrasound pachymetry vs ultrasound<br />

biomicroscopy:<br />

• Ultrasound (both) less variability<br />

• Ultrasound pachymeter-error outputs, assess probe<br />

placement<br />

• UBM-centrality <strong>and</strong> perpendicularity can be assessed<br />

on image<br />

• Cannot assess these criteria with optical devices


Sources of error<br />

• Instrument itself<br />

• Repeated measurements<br />

• Drying of cornea<br />

• Patient positioning<br />

• Marking of cornea


Sources of error<br />

• Repeated measurements: < 1.5 % variability<br />

– Blinking between measurements decreases<br />

variability<br />

• Recumbency increases corneal thickness in<br />

humans


<strong>Pachymetry</strong> in veterinary medicine<br />

• 1985-Chan-ling-central feline corneal<br />

thickness-569 + 36 µm; diurnal variation of<br />

49; thicker after sleeping<br />

– Diurnal variation due to lid closure<br />

– Ultrasound pachymetery; Velocity=1550 m/s


<strong>Pachymetry</strong> in veterinary medicine<br />

• 1986-Carrington/Woodward-feline-755 µm<br />

– Slit lamp based optical pachymeter<br />

• 1991-Gilger-canine<br />

– Central corneal thickness-520-597 µm<br />

– Peripheral corneal thicker<br />

– Thickness increased with weight<br />

– Females thinner corneas<br />

• Ultrasonic, Velocity=1630 m/s


<strong>Pachymetry</strong> in veterinary medicine<br />

• 1993-Gilger-feline<br />

– Central <strong>and</strong> peripheral thickness similar<br />

– 578 + 64 µm<br />

– Thickness ↑ with age up to 100 months<br />

– No sex difference<br />

– Ultrasound pachymetery; Velocity=1590 m/s


<strong>Pachymetry</strong> in veterinary medicine<br />

• 1995-Schoster-feline<br />

– 13 locations<br />

– Central cornea: 546 + 48 µm<br />

– Variations in corneal thickness<br />

• Temporal <strong>and</strong> sub-periaxial areas thicker<br />

• Superio-nasal-thinnest<br />

– Ultrasound; Velocity=1640 m/s


<strong>Pachymetry</strong> in veterinary medicine<br />

• 1995-van der Woerdt-horses<br />

– Central cornea: 793 + 44 µm<br />

– Peripheral cornea significantly thicker: 831-924<br />

µm<br />

– Auriculopalpebral nerve block, xylazine, IOP,<br />

age, sex-no effect<br />

– Ultrasound; Velocity=1640 m/s


<strong>Pachymetry</strong> in veterinary medicine<br />

• 1999-Ramsey-horses<br />

– Rocky Mountain horses with cornea globosa<br />

– Thickness increases with age longer than normal<br />

horses<br />

– Ultrasound; Velocity=1640 m/s


<strong>Pachymetry</strong> in veterinary medicine<br />

• 2003-Ch<strong>and</strong>ler-dogs; post transcorneal iridal<br />

photocoagulation (diode)<br />

– No significant changes in corneal thickness<br />

– Non-contact specular microscope


<strong>Pachymetry</strong> in veterinary medicine<br />

• 2003-Plummer-Miniature horses vs full sized<br />

– Similar values between populations<br />

– Ultrasound; Velocity-1640 m/s<br />

• 2004-Gerding-dogs post intracameral<br />

lidocaine<br />

– No significant differences<br />

– Ultrasound; Velocity=1640 m/s


<strong>Specular</strong> microscopy<br />

• Typically used for endothelium exam<br />

• Light → surface: reflected, transmitted or<br />

absorbed<br />

• Usually all 3 occur<br />

• Microscope: light transmitted THROUGH<br />

substance<br />

• <strong>Specular</strong> microscope: light reflected FROM<br />

optical interface


<strong>Specular</strong> microscopy<br />

• <strong>Specular</strong> reflection = mirror like<br />

– Angle of refraction = angle of incidence<br />

– Microscope captures reflected light<br />

• Interfaces-2 media of different refractive<br />

indices<br />

– Reflection of some light<br />

– Difference in refractive indices related to amount<br />

of reflection


<strong>Specular</strong> microscopy<br />

• Optical interface between<br />

corneal endothelium <strong>and</strong><br />

aqueous humor<br />

– Also: corneal epithelium,<br />

stroma, lens<br />

• Equipment: contact or noncontact<br />

• Stationary slit, moving slit,<br />

moving spot<br />

from Krachmer, Cornea 2005


<strong>Specular</strong> microscopy<br />

• Four zones of reflection:<br />

– Zone 1-interface lens, coupling fluid, epithelium<br />

– Zone 2-light reflected from stroma<br />

– Zone 3-endothelial reflection<br />

– Zone 4-aqueous (very little reflection-dark)


<strong>Specular</strong> microscopy<br />

• Dark boundarybetween<br />

zone 3 <strong>and</strong> 4<br />

• Bright boundarybetween<br />

zone 2 <strong>and</strong> 3<br />

• Particularly noticableslit<br />

images<br />

http://www.djo.harvard.edu


<strong>Specular</strong> microscopy<br />

• Increasing angle of incidence-wider slit,<br />

larger image area<br />

– ↓ image quality-increased illumination <strong>and</strong><br />

increased scatter (stroma <strong>and</strong> epithelium)<br />

– Shortening of endothelial cells<br />

• Modern solution:<br />

– Small slits/spot-scan over tissue-↑ field of view


<strong>Specular</strong> microscopes<br />

• Difficult in awake veterinary<br />

patients<br />

• Patients typically fixate (no<br />

eye movement!)<br />

• Konan NonCon Robot-very<br />

automated<br />

– Chin rest, fixate, machine<br />

aligns by Purkinje images,<br />

focuses on endothelium,<br />

picture<br />

Cat endothelial cells-eyebank<br />

specular microscope


<strong>Specular</strong> microscopy<br />

• Analysis:<br />

– Endothelial cell density (cells/mm 2 )<br />

– Cell area (µm 2 /cell)<br />

– Pleomorphism (% of 3, 4,5, 6, 7, 8 sided cells)<br />

– Often automated counts


<strong>Specular</strong> microscopy<br />

• Density<br />

• Polymegathism<br />

Krachmer, 1997, Cornea, fig 1-10


<strong>Confocal</strong> microscopy<br />

• Optical sections of living tissue<br />

– Magnification, resolution-differentiate cellular <strong>and</strong><br />

subcellular structures<br />

– Based on principle of Lukosz<br />

• Resolution improved by decreasing field of view


<strong>Confocal</strong> microscopy<br />

• 1955-Minsky<br />

– Microscope condenser-focused light w/in small<br />

area of tissue, focused objective lens on same<br />

area<br />

– ‘<strong>Confocal</strong>’-condenser, lens same focal point<br />

– Now: light source focused on small volume,<br />

confocal point detector to collect signal, scanning<br />

for full field view


<strong>Confocal</strong> microscopy<br />

• Pinhole/screen aperture for viewing-eliminates<br />

scatter from rest of tissue-very sharp image<br />

• Pinhole conjugate to focal point of lens=confocal<br />

pinhole=confocal microscope<br />

http://www.physics.emory.edu/~weeks/confocal/


• Laser-provide<br />

high intensity<br />

• Mirrors-scan<br />

across sample<br />

• Light focused on<br />

pinholemeasured<br />

by<br />

detector<br />

<strong>Confocal</strong> microscopy<br />

http://www.physics.emory.edu/~weeks/confocal


<strong>Confocal</strong> microscopy<br />

• Acquire series of thin optical sections<br />

• 3-D reconstruction<br />

• Can see all corneal layers<br />

• Better detail than specular


Anterior epithelium<br />

3 µm<br />

8 µm<br />

25µm<br />

53µm<br />

3 µm<br />

8 µm<br />

(1000x Arndt, C., doct. thesis. LMU-<br />

München, 1999)<br />

Pictures<br />

courtesy<br />

C Kafarnik<br />

25 µm<br />

53 µm


Stroma <strong>and</strong> endothelium<br />

79 µm<br />

79 µm 293 µm 487 µm<br />

293 µm<br />

487 µm<br />

517 µm<br />

535 µm<br />

539 µm<br />

517 µm 535 µm 539 µm<br />

Pictures courtesy C Kafarnik<br />

(100x; Arndt, C.,doct.<br />

thesis-LMU- München,<br />

1999)


<strong>Confocal</strong> in veterinary medicine<br />

• Kafarnik-Vet Ophth<br />

2007, 2008-dogs, cats,<br />

birds, dogs<br />

– Noted lower nerve fiber<br />

densities in<br />

brachycephalics<br />

• Ledbetter-Vet Ophth<br />

2009-horsescharacterized<br />

normal<br />

Ledbetter, VO, 2009-Eq endothelium


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1979-Stapelton-7 young dogs<br />

– 2816 + 187 cell/mm 2<br />

• 1981-Peiffer-11 cats<br />

– 2668 + 211 cell/mm 2


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1981-Befanis-endothelial repair-’young’ dogs<br />

– Froze 90%<br />

– Demonstrated re-formation of intact monolayer<br />

by 6 weeks<br />

– 2,800 cells/mm 2


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1982-Gwin-central <strong>and</strong> peripheral cornea-dog<br />

– No differences cell counts centrally vs<br />

peripherally<br />

– Cell # decreased with age<br />

• < 1 year - > 2600 cells/mm 2<br />

• 1-9 years - 2300-2500 cells/mm 2<br />

• > 10 years - 1900-2100 cells/mm 2


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1983-Gwin-21 dogs, mature cataracts, phaco<br />

<strong>and</strong> ECCE<br />

– Phaco-Cell counts ↓ 22% centrally, 13%<br />

peripherally<br />

– ECCE-Cell counts ↓ 34% centrally, 31%<br />

peripherally<br />

– Cells enlarged, pleomorphic with both surgeries


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1985-Glasser-cats, effect of BSS vs BSS plus<br />

irrigation of anterior chamber<br />

– No difference in cell density<br />

– Increased polymegathism, pleomorphism in BSS<br />

group<br />

– No change cell morphology with BSS plus


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1986-Nassise-Saline, BSS, BSS plus<br />

glutiathione-AC irrigation in dogs<br />

– 22 minute irrigation with 100mls<br />

– No changes endothelial cell density<br />

• Mild corneal thickness increase with saline group


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1990-Gerding-dogs-replace aqueous with:<br />

BSS, sodium hyaluronate, sodium<br />

chondroitin-sulfate/sodium hyaluronate,<br />

hydroxypropyl methylcellulose<br />

– No significant differences in cell density or<br />

morphology or thickness


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 1992-Gerding-intracameral tPA in dogs<br />

– High dose group (50 µg/100 ml)-18% decrease in<br />

hexagonal cells<br />

– No other changes in cell density, morphology or<br />

thickness noted


<strong>Specular</strong> microscopy in veterinary<br />

• 2001-Andrew-equine<br />

– 3155 cell/mm 2<br />

medicine<br />

– Decreased cell density in ventral quadrant vs<br />

medial/temporal<br />

– Cell density dereased with age


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 2002-Andrew-36 llamas, 20 alpacas<br />

– Llamas-2668 cells/mm 2<br />

– Cell density decreased with age<br />

– Alpacas-2275 cells/mm 2<br />

– Polymegathism frequent


<strong>Specular</strong> microscopy in veterinary<br />

medicine<br />

• 2003-Ch<strong>and</strong>ler-post trancorneal iridal<br />

photocoagulation in dogs<br />

– No significant difference in endothelial cell counts<br />

or morphology<br />

• 2004-Gerding-post lidocaine in AC in dogs<br />

– No significant effects on endothelial cell counts or<br />

morphology


Questions??

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!