16.04.2014 Views

efsa-opinion-chromium-food-drinking-water

efsa-opinion-chromium-food-drinking-water

efsa-opinion-chromium-food-drinking-water

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chromium in <strong>food</strong> and <strong>drinking</strong> <strong>water</strong><br />

Table 3:<br />

LOD for total <strong>chromium</strong> in <strong>water</strong>s according to the analytical method used<br />

Detection technique<br />

Preconcentration<br />

technique (Y/N)<br />

LOD (µg/L) Reference<br />

Chemiluminescence Y 0.0005 Paleologos et al. (2003)<br />

UV-Visible N 17 Monteiro et al. (2002)<br />

FAAS N 85 Monteiro et al. (2002)<br />

FAAS<br />

N<br />

(a)<br />

< 250 EN 1233: 1996 or ISO 9174:1998<br />

FAAS Y 8.6 Narin et al. (2008)<br />

FAAS Y 2.6 Saracoglu et al. (2002)<br />

GFAAS<br />

N<br />

(a)<br />

< 2.5 EN 1233: 1996 or ISO 9174:1998<br />

GFAAS Y 0.020 Zhang et al. (1999)<br />

GFAAS N 0.67 Monteiro et al. (2001)<br />

GFAAS N 1.1 Monteiro et al. (2002)<br />

GFAAS Y 0.2 Pereira et al. (2004)<br />

GFAAS N 0.5 EN ISO 15586: 2004<br />

GFAAS Y 0.3 Minami et al. (2005)<br />

GFAAS Y 0.1 Water Research Foundation (2012)<br />

ICP-OES Y 1.3 Li et al. (2003)<br />

ICP-OES N 0.5-2.5 EN ISO 11885: 2009<br />

ICP-OES N 0.2-7 Water Research Foundation (2012)<br />

ICP-MS N 0.5 EN ISO 17294-2: 2003<br />

ICP-MS N 0.08 Water Research Foundation (2012)<br />

GC/ICP-MS Y 0.020 Yang et al. (2004)<br />

LOD: limit of detection; UV: ultraviolet; FAAS: Flame atomic absorption spectrometry; GFAAS: Graphite furnace atomic<br />

absorption spectrometry; ICP-OES: Inductively coupled plasma optical emission spectrometry; ICP-MS: Inductively<br />

coupled plasma mass spectrometry; GC: Gas chromatography.<br />

(a): no LOD indicated, estimation based on optimal working range given.<br />

In <strong>food</strong>s, the LOD ranged from 0.23 µg/kg by ICP-MS to 90 µg/kg by FAAS (Table 4).<br />

Table 4:<br />

LOD for total <strong>chromium</strong> in <strong>food</strong>s according to the analytical method used<br />

Detection Preconcentration LOD<br />

technique technique (Y/N) (µg/kg)<br />

Reference<br />

FAAS Y 90 Yebra-Biurrun and Cancela-Pérez (2007)<br />

GFAAS<br />

N<br />

(a) < 8 EN 14082:2003<br />

GFAAS N 20 - 80 EN 14083:2003<br />

GFAAS<br />

N<br />

b 28 Cubbada et al. (2003)<br />

GFAAS N 20 Hammer et al. (2005)<br />

GFAAS N 1 Reczajska et al. (2005)<br />

GFAAS N 5 Figueiredo et al. (2007)<br />

ICP-AES<br />

N<br />

(a) < 0.5 Pehlivan et al. (2008)<br />

ICP-MS<br />

N<br />

(b) 13 Cubbada et al. (2003)<br />

ICP-MS N 3 Hammer et al. (2005)<br />

ICP-MS N 12 Dufailly et al. (2006)<br />

ICP-MS N 0.23 D’Ilio et al. (2008)<br />

ICP-MS N 12 Kadar et al. (2011)<br />

LOD: limit of detection; FAAS: Flame atomic absorption spectrometry; GFAAS: Graphite furnace atomic absorption<br />

spectrometry; ICP-AES: Inductively coupled plasma atomic emission spectrometry; ICP-MS: Inductively coupled<br />

plasma mass spectrometry.<br />

(a): no LOD indicated, estimation based on quantified values given;<br />

(b): given in µg/L and calculated with a sample weight of 0.3 g and a final volume of 50 mL.<br />

After pressure digestion of the <strong>food</strong> samples, inductively coupled plasma - mass spectrometry (ICP-<br />

MS) with a collision/reaction cell technology (CCT) to reduce ArC interferences, is increasingly being<br />

used, due to its multielement capacity and its sensitivity (Hammer et al., 2005; Dufailly et al., 2006;<br />

D’Ilio et al., 2008; Kadar et al., 2011).<br />

EFSA Journal 2014;12(3):3595 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!