16.04.2014 Views

Surface State Density Calculations

Surface State Density Calculations

Surface State Density Calculations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

<strong>Surface</strong> <strong>State</strong> <strong>Density</strong> <strong>Calculations</strong><br />

Step 1 – screen diodes<br />

Perform IV measurement to find “good diodes”, those with low leakage current and highest<br />

breakdown voltage.<br />

Step 2 – perform CV<br />

Use IV curve results to find voltage range that does not have significant leakage current that may<br />

damage diode. This is important because there is no current limiting mechanism on CV machine<br />

(compliance setting). Incidentally, the compliance used for IV graphs was 0.1 µA/cm 2 .<br />

Step 3 – doping concentration estimation<br />

Use CV curve to calculate doping concentration<br />

For p type silicon, here is a typical cv curve<br />

A) Plot 1/C 2 vs. V<br />

*NOTE – curvature in this region may represent nonuniform doping in the semiconductor.


2<br />

B) Calculate the doping concentration, N<br />

ε s = semiconductor dielectric constant<br />

A = diode area<br />

q = magnitude of electronic charge<br />

N = doping concentration (acceptor/donor)<br />

STEP 4 – Calculate Debye length, L D<br />

STEP 5 – Calculate the semiconductor flat band capacitance, C FBS<br />

STEP 6 – Calculate dielectric layer capacitance C i<br />

Calculate or experimentally measure dielectric layer (insulating layer) capacitance (C i )<br />

Calculate by<br />

Ci <br />

<br />

i<br />

d<br />

A<br />

A = diode area<br />

d = insulating layer thickness<br />

ε i = insulating layer dielectric constant<br />

Experimentally obtain by …<br />

*Maximum capacitance with minimal<br />

leakage current (as ascertained by IV<br />

curves from semiconductor parameter<br />

analyzer HP 4145A) is equal to insulator<br />

capacitance, because depletion layer<br />

thickness is essentially 0.


3<br />

The depletion layer thickness increases as the capacitance decreases due to effectively increasing<br />

distance, d, (remember C = εA/d). Therefore, at max capacitance, the depletion layer thickness<br />

is essentially 0, so d = insulator thickness. So, you can back calculate ε i (insulator dielectric<br />

constant) if you know d = insulator thickness …<br />

STEP 7 – Calculate the overall flat band capacitance C FB<br />

Once C i is calculated, you can calculate overall flat band capacitance….<br />

And the ratio C FB /C i<br />

Supplemental<br />

If you know the dielectric layer thickness, the ratio can also be found by….<br />

C<br />

FB<br />

/ C<br />

i<br />

1<br />

<br />

<br />

iL<br />

1<br />

d<br />

s<br />

D<br />

i<br />

STEP 8 – calculating V shift<br />

The “standard” method is to regraph the CV curve as C/C i v.s. V


4<br />

Then use the ratio C FB /C i to estimate the flat band voltage shift V shift or ΔV. Basically, in an ideal<br />

diode, the flat band voltage condition/capacitance ΔV = 0. So, the attached paper attributes the<br />

voltage shift to interfacial states.<br />

Charges<br />

Q m – mobile charges – bias dependent location<br />

Q ot – oxide trapped – distributed in oxide<br />

Q f – fixed oxide – located near surface charge<br />

Q it – interface traps – at interface<br />

From discussion of<br />

SiO 2 /Si diode in<br />

“Semiconductor<br />

Devices Physics and<br />

Technology” by SZE,<br />

Pgs 197‐200<br />

Effect of charge<br />

Q m, Q ot, Q f – shifts curves to left or right (negative charges shift curve to right)<br />

Q it – charge or discharge over range of bias (<br />

change slope)


5<br />

V<br />

FB<br />

<br />

ms<br />

Q<br />

<br />

f<br />

Q<br />

c<br />

m<br />

i<br />

Q<br />

ot<br />

<br />

ms<br />

= work function of metal – work function of semiconductor<br />

STEP 9 – Find ms<br />

P-type<br />

N-type<br />

<br />

ms<br />

<br />

<br />

m<br />

s<br />

m<br />

[ x Eg<br />

B<br />

/ 2 <br />

]<br />

Eg/2= intrinsic Fermi level<br />

<br />

m<br />

= metal work function<br />

X = electron affinity of<br />

semiconductor<br />

<br />

ms<br />

<br />

m<br />

<br />

s<br />

m<br />

[ x Eg<br />

/ 2 <br />

B<br />

]<br />

= Fermi level difference<br />

between Fermi level and intrinsic<br />

Fermi level<br />

STEP 10<br />

X, E g – can be found from reference tables<br />

– may be found from reference tables or calculated<br />

Calculate surface STATE density by….<br />

N f = number/cm 2<br />

N f = surface state density<br />

Method 1<br />

A) Do steps 1 – 4 as described; skip step 5<br />

B) Do step 6 by using reference vale for ε i , use experimental C i to calculate “d”<br />

C) Do step 7 using<br />

C<br />

FB<br />

/ C<br />

i<br />

1<br />

<br />

<br />

iL<br />

1<br />

d<br />

s<br />

D<br />

i<br />

Method 2<br />

D) Do step 8 graphing C/C i vs. V<br />

Use calculated C FB /C i to get V shift<br />

E) Do steps 9 and 10<br />

A) Do steps 1-5 as stated<br />

B) Use experimental value of C i found in step 6


6<br />

Example<br />

C) Do step 7 using and C FB /C i<br />

D) Do steps 8,9, 10<br />

A) Calculating Doping Concentration<br />

(slope) = 2.53 x 10 19<br />

E srelative = E s /E o = 9.7 SiC<br />

A = .005026548 cm 2<br />

B) Calculate debye Length (L D )<br />

T = 300k<br />

K = 1.3806x10 ‐23 J/k (or kgm 2 /s 2 k)<br />

Ε o = 8.85418 x 10 ‐12 F/m<br />

C) Calculating C FBS<br />

Unit Check<br />

D) Get C i from experimental CV curves<br />

F


7<br />

C i = 1/760 x 10 -12 F<br />

E) Calculate C FB<br />

Incidentally…<br />

C<br />

/ 0.998 1<br />

fB C i<br />

F) From this I found V shift (by reading the curves) to be<br />

V shift = – 3.95V<br />

G) Calculate P type Fermi Level distance from intrinsic Fermi level…<br />

Variables<br />

The equations to be solved are…<br />

1)<br />

2)<br />

effective density of states in<br />

valence band<br />

acceptor cone<br />

effective hole mass<br />

= electron rest mass<br />

= .91095 x 10 ‐30 kg<br />

Back to Fermi Level calculation….<br />

= 1 for SiC


8<br />

E i = intrinsic Fermi level<br />

E g = band gap<br />

H) Now to find <br />

m<br />

<br />

ms<br />

<br />

<br />

m<br />

s<br />

m<br />

[ x Eg<br />

B<br />

/ 2 <br />

]<br />

E g = 2.996 eV for SiC<br />

For SiC at 300k<br />

E g = 2.996<br />

X = 4.1 eV (used value for GaN!)<br />

estimated<br />

For Pt metal contact<br />

<br />

m<br />

=5.65eV<br />

<br />

ms<br />

5.65<br />

4.1<br />

(2.996 / 2) 1.32<br />

1.<br />

27eV<br />

Calculate <strong>Surface</strong> state density….

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!