15.04.2014 Views

Optimization and Robust Design with modeFRONTIER - Ukintpress ...

Optimization and Robust Design with modeFRONTIER - Ukintpress ...

Optimization and Robust Design with modeFRONTIER - Ukintpress ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Optimization</strong> <strong>and</strong> <strong>Robust</strong> <strong>Design</strong> <strong>with</strong> <strong>modeFRONTIER</strong><br />

Application in automotive Industry<br />

FIAT GROUP AUTOMOBILES – CHASSIS & VEHICLE DYNAMICS<br />

Marco Spinelli<br />

Chassis & Vehicle Dynamics<br />

Virtual Analysis Manager<br />

Francesco Linares<br />

EnginSoft GmbH<br />

Technical Manager SW Solutions<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis


Introduction : Scenario & Targets<br />

<br />

Examples of DOE, ROBUST DESIGN <strong>and</strong><br />

OPTIMIZATION in Chassis & Vehicle Dynamics<br />

<br />

Summary & Conclusion<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

2


Scenario<br />

Automotive industry competition<br />

Fiat Group Automobiles is a reference for product development time<br />

Analisi<br />

scenari<br />

one<br />

Impostazi<br />

Sviluppo tecnico<br />

e tecnologico<br />

Verifica<br />

di<br />

processo<br />

Preserie<br />

Salita<br />

a<br />

produttiv<br />

2001 STILO<br />

briefing Scheda “0”<br />

Delibera<br />

job 1<br />

contrattuale<br />

tecnica<br />

-22<br />

-12,5<br />

0<br />

Lancio<br />

commerciale<br />

2006 BRAVO<br />

2007 500<br />

-18<br />

-6.5<br />

2008 Delta -16<br />

-4<br />

2008 MiTo -16<br />

-4<br />

+ Quality<br />

+ Innovation<br />

Key success factor :<br />

Virtual Analysis<br />

- Costs<br />

- Time to market<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

3


Virtual Analysis in chassis & vehicle dynamics<br />

Vehicle : H<strong>and</strong>ling & ride comfort performances must be take in<br />

account at the same time <strong>and</strong> reach the Vehicle Tecnical<br />

Specification coming from targetsetting of Customer Car Profile<br />

<br />

Subsystems : Performances contribution at Subsystems level<br />

must be also take in account (PTmounts(<br />

& Suspension System)<br />

<br />

To improve QUALITY <strong>and</strong> reduce TIME a better approach could<br />

be used from the beginning in virtual analysis of vehicle<br />

dynamics :<br />

DOE – OPTIMIZATION – ROBUST DESIGN<br />

<br />

Very high potential of that approach for h<strong>and</strong>ling & ride comfort<br />

analisys based on integration of :<br />

MULTIBODY SIMULATION + OPTIMIZATION TOOLS<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

4


Multibody : FIAT Customization of MSC.ADAMS/Car<br />

Car<br />

Multi-body<br />

Models<br />

Assembling vehicle<br />

subsystems<br />

Analysis:<br />

• K&C SUSPENSION<br />

• HANDLING (+driver controls)<br />

• RIDE COMFORT<br />

• FATIGUE TEST<br />

• DRIVEABILITY<br />

Post-processing:<br />

• Automatic plotting of graphs<br />

• Calculation of single maneuver<br />

synthesis parameters<br />

Assemblies/ Testrig<br />

Full-vehicle H<strong>and</strong>ling<br />

Full-vehicle Comfort<br />

Suspension K&C<br />

Suspension NVH<br />

Suspension fatigue<br />

Engine<br />

…<br />

Subsystems<br />

Front Suspension<br />

Rear Suspension<br />

Steering system<br />

Brakes system<br />

Conceptual Driveline<br />

Anti-roll bar<br />

Engine<br />

Tires<br />

Body<br />

• Calculation of H<strong>and</strong>ling/Comfort/<br />

Steering/Braking Subjective Quality<br />

Indexes<br />

Suspension analysis<br />

H<strong>and</strong>ling maneuvers<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

5


Multiobjective <strong>Optimization</strong> tool : ModeFrontier<br />

Input variables:<br />

Spring Stiffness <strong>and</strong> preload<br />

Bumpstop clearance <strong>and</strong> characteristics<br />

Anti-roll bar diameter<br />

Damper characteristics<br />

Bushing characteristics<br />

Parameter values Solver <strong>Design</strong> performance<br />

StdA<br />

P.C.<br />

• Process Integration: integrates any CAE software<br />

• <strong>Design</strong> Automation: automates design process<br />

• <strong>Design</strong> <strong>Optimization</strong>: algorithms drive design to optimum<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

6


Multiobjective optimization & robust design :<br />

Adams/Car<br />

linked <strong>with</strong> modeFrontier<br />

<strong>modeFRONTIER</strong><br />

MSC.ADAMS/Car<br />

Model modifications<br />

Input variables<br />

Results simulation<br />

Output <strong>and</strong> comparison<br />

objectives <strong>and</strong> constraints<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

7


REAR_MV<br />

muletto validato CRF<br />

ISO SMORZANTE 223<br />

Minimo realizzabile per 263 con<br />

ammortizzatore attuale<br />

MT104<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000<br />

-500<br />

-1000<br />

-1500<br />

-2000<br />

velocità [mm/s^2]<br />

Input Variables, Objectives <strong>and</strong> Constraints<br />

Input variables:<br />

Objectives:<br />

Constraints:<br />

Suspension Vertical Stiffness <strong>and</strong><br />

Damping<br />

(spring, shock absorber)<br />

Suspension Longitudinal<br />

Stiffness <strong>and</strong> Damping (bushings,<br />

shock absorber)<br />

Suspension Rolling stiffness<br />

(spring, anti-roll-bar)<br />

Suspension Elasto-Kinematic<br />

Input variables:<br />

Spring Stiffness <strong>and</strong> preload<br />

Bumpstop clearance <strong>and</strong> characteristics<br />

Anti-roll bar diameter<br />

Damper characteristics<br />

Bushing characteristics<br />

Key synthesis H<strong>and</strong>ling<br />

parameters<br />

(understeer, sideslip curve, yaw, rolling -<br />

gains, time delays)<br />

AY/DVOL - gain (g/deg)<br />

Key synthesis Comfort<br />

parameters (peak accelerations, time<br />

dissipations, RMS/RMF)<br />

0.0180<br />

0.0160<br />

0.0140<br />

0.0120<br />

0.0100<br />

0.0080<br />

0.0060<br />

0.0040<br />

0.0020<br />

0.0000<br />

frequency response - lateral acceleration / steering angle<br />

80 km/h 0.45g<br />

263 Muletto c alc olo pneumMule (195 "Stilo")<br />

223 s perim pneumMule (195 "Stilo")<br />

263 target<br />

263 7q rev 4 pneumMule (195 "Stilo")<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

0.0100<br />

frequency (Hz)<br />

BETA/DVOL - gain (deg/deg)<br />

0.0700<br />

0.0600<br />

0.0500<br />

0.0400<br />

0.0300<br />

0.0200<br />

0.500<br />

0.450<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

frequency response - yaw rate / steering angle<br />

80 km/h 0.45g<br />

0.400<br />

frequency response - side slip angle / steering angle<br />

0.350 100 km/h - 0.4 g<br />

PSIP/DVOL - gain (1/s)<br />

263 Muletto c alc olo pneumMule (195 "Stilo")<br />

223 s perim pneumMule (195 "Stilo")<br />

263 target<br />

263 7q rev 4 pneumMule (195 "Stilo")<br />

Option 1<br />

Option 2<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

Ride heights in various load conditions<br />

Feasibility of the components for<br />

.ex. rate between axial <strong>and</strong> radial bushing<br />

stiffness, damper characteristics, bumpstop<br />

length <strong>and</strong> characteristics etc.<br />

Performance constraints<br />

BETA/DVOL - gain (deg/deg)<br />

0.0600<br />

0.0500<br />

StdA<br />

0.0400<br />

0.0300<br />

0.0200<br />

0.0100<br />

0.0000<br />

frequency response - side slip angle / steering angle<br />

P.C.<br />

80 km/h 0.45g<br />

263 Muletto c alc olo pneumMule 101 (195 "Stilo")<br />

223 s perim pneumMule (195 "Stilo")<br />

100<br />

263 target<br />

99<br />

263 7q rev 4 pneumMule (195 "Stilo")<br />

Efficienza ammortizzatore [%]<br />

Tarature ammortizzatore posteriore 263<br />

confronto con tarature X250<br />

98<br />

97<br />

96<br />

95<br />

94<br />

93<br />

92<br />

0 200 4.5 400 600 800 1000 1200<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

frequency (Hz)<br />

Rigidezza verticale [N]<br />

0.2<br />

0.15<br />

0.0000<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

-0.02<br />

Forza [N]<br />

-0.05<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

AY/DVOL - phase (s)<br />

0.1<br />

0.05<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

-0.05<br />

-0.1<br />

-0.15<br />

PSIP/DVOL - phase (s)<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

BETA/DVOL - phase (s)<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

-0.3<br />

-0.2<br />

-0.12<br />

-0.35<br />

-0.25<br />

-0.14<br />

-0.4<br />

frequency (Hz)<br />

frequency (Hz)<br />

frequency (Hz)<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

8


DOE Study <strong>and</strong> <strong>Optimization</strong> Method<br />

Preliminary Study :<br />

DoE Study (Sobol/Reduced-factorial distribution) =><br />

Selection of principal variables / constraints / objectives<br />

Main Study :<br />

DoE Study or DoE Study + <strong>Optimization</strong> of a<br />

limited number of input variables & objectives<br />

using detailed model or response surfaces<br />

Pareto FRONTIER => Selection of “optimum”<br />

solutions of vehicle target setting<br />

<strong>Robust</strong>ness evaluation of Pareto optimal<br />

solution<br />

Results of DOE study:<br />

Main Goal DOE / <strong>Optimization</strong>:<br />

Linear <strong>and</strong> non-linear<br />

correlations<br />

Main Influences<br />

(Inputs <strong>and</strong> Outputs)<br />

Target feasibility & optimization<br />

Target feasibility<br />

Sensitivity <strong>and</strong> correlation<br />

direct/inverse of design<br />

variables vs targets &<br />

between each design variables<br />

Principal Heavy costraints<br />

(boundary condition)<br />

<strong>Optimization</strong> of targets<br />

Trade-off scenarios<br />

<strong>Robust</strong>ness of solutions<br />

-16% -12% -17% -14% -30%<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

9


Introduction<br />

<br />

Examples of DOE, ROBUST DESIGN <strong>and</strong><br />

OPTIMIZATION in Chassis & Vehicle Dynamics<br />

<br />

Summary & Conclusion<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

10


Applications – some examples<br />

<br />

H<strong>and</strong>ling & Ride Comfort<br />

<br />

<br />

K&C Suspension<br />

PT Mounts System<br />

<br />

<br />

Suspension NVH - H<strong>and</strong>ling<br />

Active Systems (ARB)<br />

<br />

<br />

Focus on Timing & optimization results<br />

Method comparison<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

11


0.0250<br />

0.0200<br />

0.0150<br />

0.0100<br />

0.0050<br />

0.0000<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

-0.3<br />

-0.35<br />

-0.4<br />

frequency response - lateral acceleration / steering angle<br />

100 km/h - 0.5g<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz )<br />

Sol 125<br />

BASE Progetto 263<br />

Sol 105<br />

Sol 162 (90)<br />

Sol 162<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

0.600<br />

0.500<br />

0.400<br />

0.300<br />

0.200<br />

0.100<br />

0.000<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

-0.12<br />

-0.14<br />

-0.16<br />

-0.18<br />

frequency response - yaw rate / steering angle<br />

100 km/h - 0.5g<br />

Sol 125<br />

BASE Progetto 263<br />

Sol 105<br />

Sol 162 (90)<br />

Sol 162<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

0.0900<br />

0.0800<br />

0.0700<br />

0.0600<br />

0.0500<br />

0.0400<br />

0.0300<br />

0.0200<br />

0.0100<br />

0.0000<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

-0.3<br />

-0.35<br />

-0.4<br />

-0.45<br />

frequency response - side slip angle / steering angle<br />

100 km/h - 0.5g<br />

Sol 125<br />

BASE Progetto 263<br />

Sol 105<br />

Sol 162 (90)<br />

Sol 162<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

frequency (Hz)<br />

H<strong>and</strong>ling&Comfort<br />

DOE & <strong>Optimization</strong> h<strong>and</strong>ling&comfort performances<br />

Input Variables Constraints Objectives<br />

- Spring stiffness <strong>and</strong> preload - Vehicle Heighs (different load conditions) H<strong>and</strong>ling&Comfort synthesis parameters<br />

- Bumpstop clearance <strong>and</strong> stiffnesses - components feasibility - Roll,Pitch,yaw velocity,sideslip angles<br />

- Bushing stiffnesses X,Y,Z - time delays,pk/gain frequency<br />

- Shock-absorber characteristics - Peak/peak obstacle passing<br />

- ARB diameter<br />

K&C models<br />

H<strong>and</strong>ling model Comfort model<br />

AY/DVOL - gain (g/deg)<br />

Angolo d’Assetto<br />

PSIP/DVOL - gain (1/s)<br />

Frequency Response<br />

BETA/DVOL - gain (deg/deg)<br />

Velocità d’Imbardata<br />

AY/DVOL - phase (s)<br />

PSIP/DVOL - phase (s)<br />

BETA/DVOL - phase (s)<br />

Simulated manoeuvers :<br />

K&C : Elastokinematics<br />

H<strong>and</strong>ling : Sweep, Step Steer<br />

Comfort : Obstacle passing,<br />

Motorway, Pavè<br />

Results:<br />

Performance target<br />

optimization<br />

9 input variables<br />

6 objectives<br />

12 constraints<br />

7 maneuvers<br />

350 designs:<br />

70 Sobol x 5 MOGA-II iterations<br />

alt. 350 Sobol<br />

3.5 days<br />

Accelerazione Long. Guida Sedile<br />

Accelerazione Vert. Guida Sedile<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

12


Ride Comfort (H<strong>and</strong>ling Constraints)<br />

DOE & optimization comfort performances satisfying h<strong>and</strong>ling targets<br />

SF<br />

Input Variables Constraints Objectives<br />

- Spring stiffness <strong>and</strong> preload - Vehicle Heighs - Seats acceleration (RMF, amplitude)<br />

- Bumpstop clearance <strong>and</strong> stiffnesses - components feasibility - Peak/peak obstacle passing<br />

- Bushing stiffnesses X,Y,Z H<strong>and</strong>ling parameters : - body motion (velocity&acceleration)<br />

- Shock-absorber characteristics - gain ay,Theta,Psip,Beta<br />

SF<br />

- time delays Psip/Ay,…<br />

Run_RMS_PHI Run_RMS_PHIP RMS_ZZP_4_12Hz HW_RMS_ZZG AZ_F AZ_R EN_RMS_ZZG EN_RMS_ZZP<br />

Improved Ride-comfort<br />

SF<br />

SF<br />

! = 25.5% ! = 19% ! = 18.8% ! = 0.06 g ! = 0.11 g ! = 16 % ! = 10 %<br />

Simulated<br />

manoeuvers :<br />

K&C : Elastokin.<br />

H<strong>and</strong>ling : Sweep,<br />

Step Steer<br />

Comfort : Ostacle,<br />

Hole,<br />

Pavè track<br />

Motorway<br />

Results:<br />

Max performance allowed under<br />

constraints<br />

0.05<br />

Driver characteristics<br />

0.00<br />

Gain [1/s]<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

ID0 ID65 ID112 ID318<br />

ISO-H<strong>and</strong>ling<br />

0 1 2 3 4<br />

Freq [Hz]<br />

7 input variables<br />

9 objectives<br />

9 constraints<br />

14 maneuvers<br />

300 Sobol alt.<br />

80 Sobol +<br />

MOGA-II 4<br />

iterations => 320<br />

designs<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

13


H<strong>and</strong>ling & Comfort <strong>Robust</strong> <strong>Design</strong><br />

DOE & <strong>Robust</strong> design of h<strong>and</strong>ling & ride comfort performances<br />

Input Variables (noise variables) Constraints Objectives<br />

- Spring stiffness <strong>and</strong> preload - Vehicle Heighs (different load conditions) H<strong>and</strong>ling&Comfort synthesis parameters<br />

- Bumpstop clearance <strong>and</strong> stiffnesses - components feasibility - Roll,Pitch,yaw velocity,sideslip angles<br />

- Shock-absorber characteristics - time delays,pk/gain frequency<br />

- STD DEV Parameters - Peak/peak obstacle passing<br />

Input Variables (optimization var.)<br />

- Bushing stiffnesses X,Y,Z<br />

Approach :<br />

1. DOE + optimization to find Pareto solutions. –><strong>Robust</strong> <strong>Design</strong> of Pareto Solutions<br />

including STDEV as parameter<br />

2. DOE & optimization including STDEV for all interesting inputs from the beginning<br />

Best compromise time - accuracy :<br />

1. Large DOE <strong>with</strong> evaluation main parameters, correlation inputs-outputs,correlation<br />

between objectives<br />

2. Reduction of number of input variables & objectives using direct / inverse correlation<br />

3. New DOE + optimization to find Pareto solutions<br />

4. Evaluation of Pareto solutions including stdev – check max/min performances<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

14


H<strong>and</strong>ling & Comfort <strong>Robust</strong> <strong>Design</strong><br />

Statistic distribution<br />

input variables<br />

<strong>Optimization</strong> of MEAN<br />

<strong>and</strong> STDEV<br />

25 Sobol x 26 LHS +<br />

MOGA-II 5 iterations<br />

=> 3300 designs<br />

Full-vehicle analysis<br />

<strong>Optimization</strong> of nominal<br />

performance<br />

One of Pareto<br />

FRONTIER optimum<br />

set-ups<br />

before <strong>Robust</strong> Study<br />

Optimum set-up<br />

chosen after <strong>Robust</strong><br />

Study<br />

4 input variables<br />

6 objectives<br />

2 constraints<br />

7 maneuvers<br />

Results:<br />

<strong>Robust</strong> design evaluation of h<strong>and</strong>ling & ride<br />

comfort performances<br />

H<strong>and</strong>ling Output<br />

Nominal value<br />

50 Sobol + MOGA-II 5<br />

iterations => 250<br />

designs<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

15


K&C Suspension<br />

DOE & <strong>Optimization</strong> K&C targets new suspension layout<br />

Input Variables Constraints Objectives<br />

Suspension attachments : Layout bushing feasib. Elastokinematics parameters :<br />

- geometry X,Y,Z Durability - toe & camber gain<br />

- Bushing characteristics X,Y,Z - Wheelbase & track var. vs Fx,Fy,Fz<br />

PT10<br />

Strictly correlated output<br />

parameters<br />

K&C curve<br />

PT2<br />

PT1<br />

Camber<br />

Toe<br />

PT1<br />

Camber<br />

Toe<br />

NP<br />

Simulated manoeuvers<br />

(ride height StdA & 2P) :<br />

Parallel travel<br />

Lateral load 2W parallel<br />

Braking 1W<br />

Results:<br />

Correlation & Sensitivity input/output<br />

variables<br />

Correlation design variables vs targets<br />

<strong>Optimization</strong> of K&C targets<br />

16 input variables<br />

8 objectives<br />

5 constraints<br />

4 analysis<br />

1000 designs:<br />

200 Sobol x 5 MOGA-II iterations<br />

17 hours<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

16


K&C <strong>Robust</strong> <strong>Design</strong><br />

DOE & <strong>Robust</strong> design of suspension characteristics <strong>and</strong> tolerances analysis<br />

Input Variables Constraints Objectives<br />

- Geometric Tolerances of suspension attach. - K&C<br />

- H<strong>and</strong>ling VTS<br />

Influences from input variables<br />

on h<strong>and</strong>ling output parameter<br />

TPsipAy 0.5Hz<br />

0.127 – 0.137s<br />

KDVOL<br />

Influences from input variables<br />

on K&C output parameter<br />

68 – 75 deg/g<br />

Results:<br />

Influence of geometric tolerances on K&C <strong>and</strong> h<strong>and</strong>ling VTS<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

17


PT Mounts System<br />

<strong>Optimization</strong> of PTMounts System<br />

Input Variables Constraints Objectives<br />

- Geometry (Elastic center) - components feasibility - Force trasmission,working points<br />

- Mounts stiffnesses characteristics (X,Y,Z ) - geometry layout - RMS/RMF seat acceleration<br />

- peak acceleration<br />

Targets Force trasmission& geometry<br />

Targets Force trasmission& stifnesses<br />

K t<br />

K lin<br />

K t<br />

x4<br />

x2<br />

x1<br />

x3<br />

Ride comfort<br />

Filtering AV3<br />

Simulated manoeuvers:<br />

Static analysis (loads fatigue &<br />

misuse)<br />

Dynamic analyses (idle,WOT)<br />

Ride comfort pavè & motorway<br />

Results:<br />

Optimize engine suspension characteristics in multiple mission<br />

Trade off in performances ride comfort , idle & acoustic<br />

12 input variables<br />

9 objectives<br />

4 maneuvers<br />

500 designs:<br />

100 Sobol x 5<br />

MOGA-II iterations<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

18


Suspension NVH - H<strong>and</strong>ling<br />

DOE & <strong>Optimization</strong> forces trasmitted from suspension<br />

Input Variables Constraints Objectives<br />

- Bushing stifnesses X,Y,Z H<strong>and</strong>ling performance : Ride performance :<br />

- toe vs Fy, toe vs Mz - Peak/peak obstacle passing<br />

- camber vs Fy - Med./High frequency force trasmission<br />

1 2 3 4<br />

Mod 1 Mod 2<br />

3 Models<br />

• K&C<br />

• Comfort<br />

• State Space<br />

Matrix<br />

Results:<br />

NVH-Ride <strong>Optimization</strong> determining<br />

optimum vehicle set-ups considering<br />

H<strong>and</strong>ling constraints. Response<br />

surfaces used for FEM model<br />

analysis <strong>and</strong> final optimization.<br />

30 60 120 160<br />

8 input variables<br />

5 objectives<br />

3 constraints<br />

4 analysis/maneuvers<br />

500 designs:<br />

100 Sobol x 5 MOGA-II iterations<br />

1.5 days<br />

Mod 3 Mod 4<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

19


modeFrontier - ADAMS - Matlab co-simulation<br />

Active Systems : DoE h<strong>and</strong>ling <strong>and</strong> comfort parameters<br />

Input Variables Constraints Objectives<br />

- Spring stiffness <strong>and</strong> preload - specific h<strong>and</strong>ling parameters - H<strong>and</strong>ling & Comfort VTS<br />

- Shock-absorber characteristics<br />

- Bushing stiffnesses X,Y,Z<br />

New front active ARB<br />

Matlab/Simulink<br />

MSC.ADAMS<br />

<strong>modeFRONTIER</strong><br />

Input<br />

Variables<br />

Outputs,<br />

Objectives &<br />

Costraints<br />

Matlab/Simulink<br />

MSC.ADAMS<br />

Results:<br />

- H<strong>and</strong>ling <strong>and</strong> comfort targets,<br />

- Correlation & sensitivity input/output variables<br />

- Study of controls in all vehicle condition<br />

16 input variables<br />

12 objectives<br />

6 constraints<br />

5 analysis<br />

250 designs: 250 Sobol<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

20


DOE-<strong>Optimization</strong> Study results<br />

Simulation Time %Perf. Improv.<br />

H<strong>and</strong>ling&Comfort 15min/design, 350designs => 3.5ggr 15%<br />

H<strong>and</strong>ling / Comfort <strong>Robust</strong> <strong>Design</strong> 8min/design, 3300 designs => 20ggr 10%<br />

K&C Suspension 1min/design, 1000designs => 17h 25%<br />

PT Mounts System 4min/design, 500designs => 1.3ggr 30%<br />

Co-simulation MSC.ADAMS-Matlab<br />

Active Control System<br />

Suspension NVH<br />

70min/design, 250designs => 10ggr<br />

4min/design, 500designs => 1.5ggr<br />

+10% of feasible<br />

design<br />

+25% of feasible<br />

design<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

21


Methods Comparison – a test case<br />

H<strong>and</strong>ling <strong>and</strong> Ride-Comfort Performances<br />

Comparison between traditional & multi-objective optimization approach<br />

H<strong>and</strong>ling/Comfort simulation -<br />

test case<br />

Needs<br />

TRADITIONAL APPROACH<br />

Knowledge <strong>and</strong> experiences about<br />

vehicle dynamics & simulation<br />

MULTIOBJECTIVE OPTIMIZATION<br />

APPROACH<br />

Knowledge <strong>and</strong> experiences about<br />

vehicle dynamics & simulation . Basic<br />

knoledge of Doe, optimization<br />

techniques<br />

Method ‘Trial <strong>and</strong> error’ Multiobjective & statistical<br />

Human time dedicated<br />

(pre/post)<br />

8 days 3 days<br />

Calculation time 1 day 5 days<br />

Total time 2 weeks < 2 weeks<br />

Human activities<br />

Numbers of solutions /<br />

scenarios evaluated :<br />

Optimal performance<br />

reached<br />

80% for model modification & run ,<br />

20% postprocessing<br />

X<br />

20% for model modification & run ,<br />

80% postprocessing <strong>and</strong> scenarios<br />

analysis<br />

10X – 100X<br />

70-80% 100%<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

22


Introduction<br />

<br />

Examples of DOE, ROBUST DESIGN <strong>and</strong><br />

OPTIMIZATION in Chassis & Vehicle Dynamics<br />

<br />

Summary & Conclusion<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

23


Summary<br />

Fiat’s latest success products, were developed using intensive use of virtual analysis<br />

in only 16-18 months.<br />

New target for future projects : increment of virtual analysis to reduce cost & time<br />

development <strong>and</strong> to allow more robust experimental testing<br />

DOE, <strong>Robust</strong> design & multiobjective optimization are success key factor<br />

The use of <strong>modeFRONTIER</strong> in Chassis Virtual Analysis as a DOE or/<strong>and</strong> optimization<br />

tool enables:<br />

To Reduce time <strong>and</strong> calculation loops<br />

To Gain a deeper underst<strong>and</strong>ing of the system <strong>and</strong> the correlation between input variables<br />

<strong>and</strong> output parameters<br />

To increase possibility to explore best solutions & scenarios<br />

To evaluate robust <strong>and</strong> stable solutions<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

24


Conclusion & next steps…<br />

Advantages in extended application :<br />

REDUCTION OF DEVELOPMENT TIME<br />

VEHICLE TESTING & EXPERIMENTAL TUNING QUALITY ORIENTED<br />

APPROACH THE OPTIMUM SOLUTION ALREADY FROM THE BEGINNING<br />

TARGET FEASIBILITY & MAIN COSTRAINTS ARE KNOWN FROM EARLY PHASE<br />

CLEAR & OPTIMIZED TRADE OFF OF PERFORMANCES<br />

EXPLORE BEST SCENARIOS AND GIVE MORE CHOISES TO MANAGEMENT<br />

Don’t forget to improve…<br />

Model complexity & detail of physical systems <strong>and</strong> components<br />

Statistical approach in model correlation : numerical model & measurements statistically<br />

correlated<br />

... Words to take in mind...<br />

“DOE - OPTIMIZATION - ROBUST DESIGN”<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

25


Thanks !<br />

Thank you for your attention<br />

Stuttgart, 24.06.2010<br />

FGA - Engineering & <strong>Design</strong> – Chassis & Vehicle Dynamics – Virtual Analysis<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!