11.04.2014 Views

EMPIRE Manual

EMPIRE Manual

EMPIRE Manual

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EMPIRE</strong> <strong>Manual</strong><br />

(c) IMST GmbH 1998-2006<br />

October 19, 2006


User and Reference <strong>Manual</strong><br />

for the<br />

3D-EM Time Domain Simulator<br />

<strong>EMPIRE</strong> XCcel TM<br />

c○IMST GmbH<br />

Carl-Friedrich-Gauß-Str. 2 • D-47475 Kamp-Lintfort, Germany<br />

Phone +49 (0) 2842 / 981 100 • Fax +49 (0) 2842 / 981 199<br />

E-Mail: empire.support@imst.de. Internet: www.empire.de<br />

i (C) 2006


Copyright notice<br />

Copyright c○1998-2006 IMST GmbH. All rights reserved. No part of the <strong>EMPIRE</strong> XCcel TM software, that needs a<br />

license, may be used without a valid license from the IMST.<br />

THERE IS NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-<br />

ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE<br />

PROGRAM ”AS-IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,<br />

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A<br />

PARTICULAR PURPOSE.<br />

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD<br />

THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR<br />

OR CORRECTION.<br />

Please pay attention to the following facts<br />

• <strong>EMPIRE</strong> XCcel TM is a trademark of IMST GmbH.<br />

• <strong>EMPIRE</strong> XCcel TM makes use of public software which has to be distributed with the <strong>EMPIRE</strong> XCcel TM software.<br />

This includes among others<br />

1. The tcl/tk GUI system<br />

2. Gnuplot, Emacs and other GNU–Software<br />

The sources of the public programs including the appropriate license files can be found on the <strong>EMPIRE</strong> XCcel TM<br />

CD-ROM /pd_sources.<br />

ii (C) 2006


Preface<br />

<strong>EMPIRE</strong> XCcel TM is an established and versatile electromagnetic field simulator based upon the Finite-Difference Time-<br />

Domain Method (FDTD). At the IMST GmbH, this powerful method has been applied to build an Electro Magnetic field<br />

simulator for the analysis of Packages, Interconnects, Radiators, waveguide Elements (<strong>EMPIRE</strong> XCcel TM ) and EMC<br />

problems.<br />

The exact knowledge of electromagnetic fields and the propagation of waves is a prerequisite for the design of radio<br />

frequency (RF) elements. In former times, RF design tasks were based on measurement and simple models, leading<br />

to time and costs consuming design procedures. Today, affordable computer hard- and software have established and<br />

simulation programs can accurately predict the electromagnetic behavior of new products. So, field simulators have<br />

become a new standard for RF calculations.<br />

Unlike the Finite Element Method, which has long been established in computing electromagnetic fields, the FDTD<br />

method had its breakthrough in the late 80’s when extensive research and development lead to a number of improvements<br />

in applying advanced boundary conditions, e.g. free space or waveguides, and, therefore, reducing significantly the area<br />

of simulation. Today, its applicability covers the whole area of three-dimensional (3D) field simulations for RF designer.<br />

Originally intended to analyze planar passive structures, the <strong>EMPIRE</strong> XCcel TM simulator was continuously extended<br />

to capture more and more high frequency applications. It has proven its functionality in numerous comparisons with<br />

measurements and was successfully applied in many different microwave component designs. The method is based<br />

on the most efficient algorithm known which is very accurate and simplification is hardly necessary since it solves the<br />

discretized Maxwell’s equations directly.<br />

The <strong>EMPIRE</strong> XCcel TM Graphical User Interface works on all supported Platforms, like Windows NT/2000/XP, Suse and<br />

Red Hat Linux. Graphics data can be easily exchanged with other CAD programs for both 2D layout data (DXF 12,<br />

Gerber, GDSII, ...) as well as 3D structures in STL standard which is supported by nearly all CAD tools. Multiple port<br />

scattering parameters, radiation patterns, field plots etc. are generated for a user defined frequency range within only one<br />

simulation process. Monitoring and animation can give physical insight into the electromagnetic wave phenomena while<br />

accurate results are obtained with little effort.<br />

iii (C) 2006


About this manual<br />

This manual is divided into several parts, intended to guide both very beginners and skilled experts from installation and<br />

simulation setup to understanding and exploiting the results.<br />

• Part I describes the installation and licensing process.<br />

• Part II describes the <strong>EMPIRE</strong> XCcel TM Graphical User Interface, the simulation control as well as pre- and postprocessing<br />

features.<br />

• Part III is the User interface reference, a complete description of all actions, operations, options and simulation<br />

parameters of <strong>EMPIRE</strong> XCcel TM .<br />

• Part IV describes the theoretical background of the applied method. A skilled user can skip this part, if he is<br />

already familiar with FDTD.<br />

Any comments and suggestions related to this manual are highly appreciated and should be mailed to<br />

empire.support@imst.de. <strong>Manual</strong> updates can be down-loaded as pdf-files from the web at www.empire.de.<br />

iv (C) 2006


Contents<br />

I Software Administration 6<br />

1 Installation on Windows PC 7<br />

1.1 Requirements for PC Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.2 Installation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2 License Setup 14<br />

2.1 Request a License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2 Install the License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

3 Floating License on Windows 18<br />

3.1 Installation on the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

3.2 Installation on each Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

4 Support 20<br />

4.1 Web Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

4.2 Contact Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

4.3 License Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

5 Linux systems 22<br />

5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

5.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

5.3 Start Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

5.4 License Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

5.5 Install the License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

II Empire User Interface 24<br />

6 Introduction 25<br />

6.1 Top tool bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

6.2 Control Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

6.3 Bottom line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

1 (C) 2006


CONTENTS 2<br />

7 Templates 30<br />

7.1 Transmission Lines & Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

7.2 SMD chip components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

7.3 RLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

7.4 Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

8 Parameter Set-up 34<br />

8.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

8.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

8.3 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

8.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

8.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

8.6 Autodisc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

8.7 Advanced Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

9 Object creation 42<br />

9.1 Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

9.2 Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

9.3 Line Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

9.4 Bond Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

9.5 Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

9.6 Segment of a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

9.7 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

9.8 Rotational Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

9.9 2D Layout Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

9.10 3D Solid Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

9.11 2D Point List Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

9.12 Python Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

10 Object modification 50<br />

11 Operations 51<br />

11.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

11.2 Select objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

11.3 Move Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

11.4 Copy Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

11.5 Stretch Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

11.6 Boolean operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

12 Object properties 59<br />

12.1 Basic Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

12.2 Circuit Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

12.3 Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

12.4 Advanced Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

(C) 2006


CONTENTS 3<br />

13 Port types 72<br />

13.1 Coaxial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

13.2 Square coaxial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

13.3 Coplanar Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

13.4 Lumped Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

13.5 Perpendicular Lumped Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

13.6 Microstrip Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

13.7 Stripline Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

14 Discretization 81<br />

14.1 Automatic Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

14.2 <strong>Manual</strong> Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

15 Simulation 85<br />

15.1 Basic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

15.2 Advanced Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

15.3 Batch processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

15.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

15.5 Remote Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

16 Results 92<br />

16.1 Graph display set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

16.2 Advanced Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

III User Interface Reference 102<br />

17 Actions 103<br />

17.1 Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

17.2 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

17.3 Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

17.4 DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

17.5 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

17.6 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

17.7 Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

17.8 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

17.9 File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

17.10 Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

17.11 <strong>Manual</strong> Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

17.12 Misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

17.13 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

17.14 Modify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

17.15 Operate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

17.16 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

17.17 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

17.18 View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

17.19 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

(C) 2006


CONTENTS 4<br />

18 Editor Options 139<br />

18.1 3D Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

18.2 Bond Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

18.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

18.4 Draft Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

18.5 Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

18.6 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

18.7 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

18.8 Object Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

18.9 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

18.10 Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

18.11 Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

18.12 Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

18.13 Standard Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

19 Autodisc Options 170<br />

19.1 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

19.2 Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

19.3 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

19.4 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br />

19.5 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

19.6 Simulation Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

20 Simulation Options 177<br />

20.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177<br />

20.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

20.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

20.4 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

20.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

IV Theoretical Background 182<br />

21 General Description 183<br />

21.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

21.2 The Yee algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184<br />

22 Discretization 187<br />

22.1 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

23 Boundary Conditions 188<br />

23.1 Electric Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188<br />

23.2 Magnetic Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188<br />

23.3 Transversal Absorbing Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

23.4 Longitudinal Absorbing Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

23.5 Simple absorbing wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190<br />

23.6 Perfectly Matched Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190<br />

(C) 2006


CONTENTS 5<br />

24 Stability Conditions 191<br />

24.1 Uniform grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br />

24.2 Non-uniform grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br />

24.3 Open boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br />

25 Excitations 193<br />

25.1 Types of excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193<br />

25.2 Time signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br />

26 Ports and S–matrices 196<br />

26.1 Port definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

26.2 Time signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199<br />

26.3 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

26.4 Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

26.5 Wave quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

26.6 Scattering parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

27 Specials 202<br />

27.1 Hollow Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br />

27.2 Near to Far Field Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br />

27.3 SAR and Current Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203<br />

27.4 Low-Frequency Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br />

27.5 Dielectric Properties of Biological Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br />

V Literature 205<br />

VI Index 207<br />

Keyword index 208<br />

Reference index 218<br />

List of Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219<br />

List of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220<br />

List of Autodisc Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222<br />

List of Simulation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222<br />

(C) 2006


Part I<br />

Software Administration<br />

6 (C) 2006


Chapter 1<br />

Installation on Windows PC<br />

1.1 Requirements for PC Installation<br />

The requirements are<br />

• PC-Compatible (Pentium 4/Pentium D/Core/Core 2 or Athlon FX Processor) with at least 512 MBytes of RAM<br />

• Microsoft Windows 2000/XP installed<br />

• Graphic resolution set to at least 1024*768 Pixel<br />

• Graphic processor with hardware accelerated OpenGL support, incl. driver<br />

• at least 300 Mbytes free hard disk storage<br />

1.2 Installation Procedure<br />

You must have Administration rights to allow all files to be installed!<br />

Step 1:<br />

• Insert the <strong>EMPIRE</strong> XCcel TM CD into your CD-ROM drive<br />

• The setup will start automatically, if not:<br />

– Start the File Explorer<br />

– Change the directory to your CD-ROM drive<br />

– Start the program setup.exe<br />

• The window shown in Fig. 1.1 will appear on your screen:<br />

Step 2:<br />

• Press next> to continue the installation<br />

• The window shown in Fig. 1.2 will appear on your screen:<br />

Step 3:<br />

• Please read the License Policy<br />

• Press I Agree to continue the installation<br />

• The window shown in Fig. 1.3 will appear on your screen:<br />

7 (C) 2006


CHAPTER 1. INSTALLATION ON WINDOWS PC 8<br />

Figure 1.1. <strong>EMPIRE</strong> XCcel TM Setup Start Window<br />

Figure 1.2. <strong>EMPIRE</strong> XCcel TM License Agreement Window<br />

(C) 2006


CHAPTER 1. INSTALLATION ON WINDOWS PC 9<br />

Figure 1.3. <strong>EMPIRE</strong> XCcel TM Choose Components Window<br />

Step 4:<br />

• We recommend to install the full <strong>EMPIRE</strong> XCcel TM installation<br />

• If you do not want to install the Examples, deselect the correspondent check box<br />

• Press next> to continue the installation<br />

• The window shown in Fig. 1.4 will appear on your screen:<br />

Figure 1.4. <strong>EMPIRE</strong> XCcel TM Choose Install Location Window<br />

Step 5:<br />

• Please choose the Installation Folder<br />

• Press next> to continue the installation<br />

• The window shown in Fig. 1.5 will appear on your screen:<br />

(C) 2006


CHAPTER 1. INSTALLATION ON WINDOWS PC 10<br />

Figure 1.5. <strong>EMPIRE</strong> XCcel TM Install Desktop Icon Window<br />

Step 6:<br />

• Deselect the check box, if you do not want to install a Desktop Item for <strong>EMPIRE</strong> XCcel TM<br />

• Choose Current User or All User Installation<br />

• Press next> to continue the installation<br />

• The window shown in Fig. 1.6 will appear on your screen:<br />

Figure 1.6. <strong>EMPIRE</strong> XCcel TM Choose Start Menu Folder Window<br />

Step 7:<br />

• Choose a name for the Start Menu Folder<br />

• Press Install to start the installation of <strong>EMPIRE</strong> XCcel TM<br />

• The window shown in Fig. 1.7 will appear on your screen:<br />

(C) 2006


CHAPTER 1. INSTALLATION ON WINDOWS PC 11<br />

Figure 1.7. <strong>EMPIRE</strong> XCcel TM Installing Window<br />

Step 8:<br />

• Please be patience, the installation is proceeding<br />

• The window shown in Fig. 1.8 will appear on your screen:<br />

Figure 1.8. <strong>EMPIRE</strong> XCcel TM Installing Complete<br />

Step 9:<br />

• The installation of the <strong>EMPIRE</strong> XCcel TM files is ready<br />

• Please proceed by pressing next><br />

• The window shown in Fig. 1.9 will appear on your screen:<br />

(C) 2006


CHAPTER 1. INSTALLATION ON WINDOWS PC 12<br />

Figure 1.9. <strong>EMPIRE</strong> XCcel TM Server Setup Window<br />

Step 10:<br />

The <strong>EMPIRE</strong> XCcel TM Server lets your computer provide simulation time to other <strong>EMPIRE</strong> XCcel TM<br />

users in the local network.<br />

• If you want to install the <strong>EMPIRE</strong> XCcel TM Server<br />

– select the Check box<br />

– fill in your username and password<br />

– proceed by pressing next> (this will need few seconds)<br />

• If you do not want to install the <strong>EMPIRE</strong> XCcel TM Server<br />

– Proceed by pressing next><br />

The window shown in Fig. 1.10 will appear on your screen:<br />

Step 11:<br />

• Congratulation, the Installation of <strong>EMPIRE</strong> XCcel TM is complete<br />

• Close the Setup Window by pressing Finish<br />

• You can now start <strong>EMPIRE</strong> XCcel TM by the Desktop Icon or from the Start Menu<br />

• You will need a license for running <strong>EMPIRE</strong> XCcel TM , please continue at Chapter 2 for the<br />

license installation<br />

(C) 2006


CHAPTER 1. INSTALLATION ON WINDOWS PC 13<br />

Figure 1.10. <strong>EMPIRE</strong> XCcel TM Setup Complete Window<br />

(C) 2006


Chapter 2<br />

License Setup<br />

The license can be node locked or floating on some operating systems. Please contact empire.support@imst.de for<br />

setting up floating licenses.<br />

2.1 Request a License<br />

To get the license for the <strong>EMPIRE</strong> XCcel TM software some identification numbers of your computer on which the<br />

software shall be installed are required to generate the key. The following steps are to be taken after installation of<br />

<strong>EMPIRE</strong> XCcel TM :<br />

Step 1:<br />

• Start <strong>EMPIRE</strong> XCcel TM<br />

• Open a random Template<br />

Step 2:<br />

From the <strong>EMPIRE</strong> XCcel TM main menu<br />

• open File - License - License Request as you can see in Fig. 2.1<br />

Figure 2.1. <strong>EMPIRE</strong> XCcel TM License Request Selection<br />

14 (C) 2006


CHAPTER 2. LICENSE SETUP 15<br />

Step 3: The License Request Form will open as in Fig. 2.2<br />

• Please complete the form with your Name, Company, Address and E-mail.<br />

• Save the text into a file<br />

Figure 2.2. <strong>EMPIRE</strong> XCcel TM License Request Window<br />

Step 4:<br />

Send an E-mail to empire.support@imst.de and attache the above saved file.<br />

2.2 Install the License<br />

You need write permission to the <strong>EMPIRE</strong> XCcel TM installation folder to install the license keys!<br />

The <strong>EMPIRE</strong> XCcel TM Support Team will generate a license file and send it to you.<br />

Step 1:<br />

Step 2:<br />

• Save the license file, that you received by E-mail<br />

• Start <strong>EMPIRE</strong> XCcel TM<br />

At this point, there could possibly pop up a ”FLEXlm license Finder”.<br />

Please ”Cancel” this window!<br />

• Press ”Start From Scratch”<br />

Step 3:<br />

From the <strong>EMPIRE</strong> XCcel TM main menu<br />

• open File - License - License Installation as in Fig. 2.3<br />

The window shown in Fig. 2.4 will appear on your screen:<br />

(C) 2006


CHAPTER 2. LICENSE SETUP 16<br />

Figure 2.3. <strong>EMPIRE</strong> XCcel TM License Installation Selection<br />

Figure 2.4. <strong>EMPIRE</strong> XCcel TM License Agreement Window<br />

(C) 2006


CHAPTER 2. LICENSE SETUP 17<br />

Step 4:<br />

• Please read the License Agreement<br />

• Scroll to the end of the text and press Accept<br />

• Congratulations, the license installation is completed<br />

• Please close Empire and start it again.<br />

(C) 2006


Chapter 3<br />

Floating License on Windows<br />

There are two types of licenses<br />

• node-locked licenses<br />

• floating licenses<br />

The installation of node-locked licenses is described in section 2.2.<br />

This chapter describes the installation of floating licenses.<br />

3.1 Installation on the Server<br />

For the floating license additional steps have to be taken to ensure that the license daemon is started automatically on the<br />

license server:<br />

In the following lines, we assume that C:\Program Files\Empire XCcel\ is the folder where <strong>EMPIRE</strong> XCcel TM is installed.<br />

• Install the license as described in section 2.2<br />

• Start the File Explorer and change to the folder C:\Program Files\Empire XCcel\empire\flexlm\winnt<br />

• Start the program ”lmtools”<br />

• Choose the following settings:<br />

– Select radio box Configuration using Services as in Fig. 3.1<br />

– Select tab Configure Services as in Fig. 3.2<br />

– Enter a service name i.e. ”Empire XCcel”<br />

– Set the paths<br />

∗ C:\Program Files\Empire XCcel\empire\flexlm\winnt\lmgrd.exe<br />

∗ C:\Program Files\Empire XCcel\empire\flexlm\winnt\license.dat<br />

– Select: ”Use Services” and ”Start Server at Power up”<br />

– Press ”Save Service”<br />

• Leave the program and reboot the PC.<br />

3.2 Installation on each Client<br />

Each client has to install the license file as described in section 2.2.<br />

18 (C) 2006


CHAPTER 3. FLOATING LICENSE ON WINDOWS 19<br />

Figure 3.1. <strong>EMPIRE</strong> XCcel TM Lmtools Starting Window<br />

Figure 3.2. <strong>EMPIRE</strong> XCcel TM Configure Services Tab<br />

(C) 2006


Chapter 4<br />

Support<br />

4.1 Web Sites<br />

• Actual information about <strong>EMPIRE</strong> XCcel TM can be found on http://www.empire.de/<br />

• Information about our Company can be found at http://www.imst.com/<br />

4.2 Contact Us<br />

• We highly appreciate any comment to <strong>EMPIRE</strong> XCcel TM . If you have any comment in mind, please let us know by<br />

sending an email to empire.support@imst.de.<br />

• If you have any trouble, do not hesitate to contact our support team empire.support@imst.de<br />

• If we do not reply within two working days, assume a transmission fault of the data. Please retry to contact us.<br />

• Please notice our general working hours Monday to Friday from 9:00 to 17:00 CET, except for German public<br />

holidays.<br />

4.3 License Diagnostic<br />

A tool is available in the installation tree which helps to detect license problems.<br />

The program lmtools.exe is available in C:\Program Files\Empire XCcel\<br />

By executing this program the window as in Figure4.1 appears. Select Server diagnostics to check the status of the<br />

licenses.<br />

If there are troubles concerning the license management please attache this license server diagnostics to your email.<br />

20 (C) 2006


CHAPTER 4. SUPPORT 21<br />

Figure 4.1. <strong>EMPIRE</strong> XCcel TM Lmtools Starting Window<br />

(C) 2006


Chapter 5<br />

Linux systems<br />

5.1 Requirements<br />

<strong>EMPIRE</strong> XCcel TM requirements on Linux/PC Computers.<br />

• Linux/PC/i686: Pentium 4/Pentium D/Core/Core 2 or Athlon FX Processor, at least 512 MBytes Memory recommended.<br />

• Operating Systems<br />

– Suse 9.2 and higher<br />

– Red Hat on request<br />

• full 64 bit support<br />

• 200 MBytes free Disk space for <strong>EMPIRE</strong>, another 400 MBytes for the examples (optional).<br />

• Graphic card with hardware accelerated OpenGL support<br />

– e.g. Nvidia: Riva GeForce 5500+ or ATI<br />

– Latest driver version (usually available from card vendor as download, e.g, www.nvidia.com, or it comes with<br />

the Linux distribution (ATI))<br />

– Monitor settings: True color (32 bit), Z buffer depth: 32 bit<br />

5.2 Installation<br />

1. Mount the CD ROM and start the linux/setup.sh script from a shell and follow the instructions.<br />

• We do not recommend installation as super user (root) for security reasons.<br />

• <strong>EMPIRE</strong> XCcel TM will be available to all users on the workstation from one installation by default.<br />

• <strong>EMPIRE</strong> XCcel TM can be used via network/NFS from other workstations, too.<br />

2. Add the <strong>EMPIRE</strong> XCcel TM installation folder to your search PATH for convenience.<br />

22 (C) 2006


CHAPTER 5. LINUX SYSTEMS 23<br />

5.3 Start Commands<br />

For the main design and control environment<br />

• <strong>EMPIRE</strong>-XCcel<br />

– Templates<br />

– Examples<br />

– Start from scratch<br />

For simulating .acad files<br />

• <strong>EMPIRE</strong><br />

– For advanced users<br />

5.4 License Request<br />

• Please follow the license request guide in section 2.1.<br />

5.5 Install the License<br />

• Please follow the license install guide in section 2.2.<br />

(C) 2006


Part II<br />

Empire User Interface<br />

24 (C) 2006


Chapter 6<br />

Introduction<br />

Figure 6.1. <strong>EMPIRE</strong> XCcel TM start-up window<br />

This chapter gives an introduction about the <strong>EMPIRE</strong> XCcel TM user interface and refers to more detailed chapters which<br />

deal with basic and advanced features. In this chapter the different window areas will be explained.<br />

By starting the <strong>EMPIRE</strong> XCcel TM icon from the desktop, the window as in Figure 6.1 appears. Here, global parameters<br />

which are specific to the current project can be entered. These parameters will be explained in chapter 8.<br />

Hint 1: Drawing unit<br />

It is recommended (but not necessary) to use integer values, e.g. microns as unit for GHz frequencies.<br />

25 (C) 2006


CHAPTER 6. INTRODUCTION 26<br />

It is possible to open an existing project by either selecting one of the recent projects displayed at the bottom or browse<br />

through the folder tree by pressing Open project. Further many built-in templates can be used to start with by selecting<br />

one of the template entries available in the template list. Most templates make use of parameters which can be adjusted<br />

before opening. A comprehensive description is avaliable in chapter 7. If Start from scratch is selected the window as<br />

displayed in figure 6.2 is opened.<br />

Figure 6.2. <strong>EMPIRE</strong> XCcel TM start from scratch<br />

6.1 Top tool bars<br />

The top menu and icons in the <strong>EMPIRE</strong> XCcel TM window define the standard commands which are always available, like<br />

save, import, export, options, viewports, etc.<br />

Hint 2: License management<br />

The license management (request, installation and test) is avaliable in the File menu.<br />

Below the top icons there are folders located to switch between different display modes.<br />

• Draft This mode displays the structure in a wire frame model. Object creation and modification is always entered<br />

in a 2D-view, either xy (default), xz- or yz plane. In the draft mode a 3D isometric view is available, e.g. to select<br />

handles which are on top of each other in the 2D view.<br />

• 3D Here, the structure is displayed in a rendered view. Visibility of different objects can be controlled with the<br />

layer control list on the left. It is also possible to display field values and animations in this mode.<br />

(C) 2006


CHAPTER 6. INTRODUCTION 27<br />

• Voltage If results are already available the time series of the port voltages can be displayed in this mode. Further, if<br />

a simulation is running the evolution of the port voltages can be observed.<br />

• S-Parameters If results are available or a current simulation is finished the scattering parameters will be displayed<br />

in this mode.<br />

• Impedance Similar to S-Parameters the Impedance values will be displayed here.<br />

• Farfield These results are only available if a far field recording box has been defined in structure set up and the far<br />

field has been calculated for some angular sweeps in the post processing.<br />

• Additional Here, the user can define any other data to be displayed which can be selected and saved in the Setup and<br />

options folders.<br />

• Advanced <strong>Manual</strong> set up of simulation parameters and user defined equations.<br />

Hint 3: Drawing planes<br />

By default, the Draft window displays the xy-plane which is the Top View of the structure to be entered. To switch to<br />

the xz-plane (Front view) or the yz-plane (Right view) viewport icons are available in the top tool bar.<br />

Right below the display folders operation buttons are available which appear or disappear depending on the current object<br />

and operator selections (case sensitive tool bar). Their usage may be performed in both forward and backward manner.<br />

Hint 4: Forward usage<br />

1. Press one of the operation buttons<br />

2. Follow the steps indicated in the top left area of the window.<br />

Hint 5: Backward usage<br />

1. Select one or more object(s), or enter point/arrow/number/text/gridbar/...<br />

2. Press one of the operation buttons<br />

While the forward usage is more intuitive the backward usage can be faster and more powerful for the advanced user. A<br />

comprehensive list of all available operations can be found in chapter 17<br />

Hint 6: Operation menu<br />

All operations which are currently available in the case sensitive tool bar can be accessed in a menu to be opened by<br />

pressing the right mouse button in the drawing area.<br />

Hint 7: On-line help<br />

Help is available for most icons and input fields by pressing the right mouse button.<br />

(C) 2006


CHAPTER 6. INTRODUCTION 28<br />

6.2 Control Lists<br />

On the left side of the window there are areas for<br />

• display status, e.g. progress bar (top)<br />

• The control list (middle)<br />

• displaying current mouse button actions (bottom)<br />

The control list is used to create or control layers, objects, ports, options, and parameters.<br />

• Layers All objects are created on layers which are used to group objects with common properties. Here, layers<br />

can be created and controlled. Objects which are created on a layer inherit the layers’ properties, such as default<br />

extrusion height, color, or electric property.<br />

• Structure Basic objects, such as Boxes, Polygons and Linetype Polygons, can be created with the aid of this list by<br />

entering co-ordinate values. More advanced objects, such as Rotational Polygons and Solids can be derived from<br />

basic objects as explained in chapter 9 and modified as shown in chapter 10<br />

• Ports Ports are used to excite the structure with feeding lines or differential ports. This list starts the port library<br />

wizard where a set of different port types can be selected as explained in chapter 13.<br />

• Simulation Setup The global parameters entered in the beginning, such as unit and frequency range, can be accessed<br />

and adjusted in this list. A description of all global parameters is given in chapter 8<br />

• Editor Options Settings such as background color, cursor style, import and export options, and many more can be<br />

adjusted here. Most options are explained and listed in chapter 18.<br />

• Advanced For advanced users this list displays information on the current grid, the content of the function keys<br />

(internal clipboard), and a list of the current selections.<br />

• Parameters Both geometrical and physical properties may be defined parametrically. They are entered as characters,<br />

e.g. xvar, in object co-ordinates or as $ and character, e.g. $epsr, in object properties. After their range has been<br />

defined these parameters are available in this list and can be controlled here.<br />

6.3 Bottom line<br />

At the bottom beneath the drawing area there are fields for<br />

• Name and color of current layer<br />

• Number of selections<br />

• Current cursor or arrow co-ordinate<br />

Hint 8: Active layer<br />

Objects are always created on the active layer. To activate another layer press the left mouse button on one of the layer<br />

names in the layer list.<br />

Hint 9: Operation errors<br />

The field where the number of selections is displayed shows the status of operations by the background color which is<br />

green (Status OK) by default. In case of a red background an error occurred, press Esc to continue.<br />

(C) 2006


CHAPTER 6. INTRODUCTION 29<br />

On the right and on the bottom there are grid bars displayed which show the current meshing. By starting from scratch<br />

no grid lines are available and only the origin is displayed by small green arrows.<br />

Hint 10: Grid generation<br />

A grid is generated automatically before starting simulation or can be enforced by pressing Create Discretization<br />

(C) 2006


Chapter 7<br />

Templates<br />

<strong>EMPIRE</strong> XCcel TM comes with a new template wizard which ensures an easy and intuitive understanding. These templates<br />

are particularly developed for beginners to get ahead started. Nevertheless, experienced users will also benefit from the<br />

template engine, since many settings are done automatically and the structure can be modified according to the current<br />

needs.<br />

• Common template feature<br />

Every template comes at least with two switches to record and display the near field if desired. Additionally, for<br />

antenna templates a far field recording and a Farfield computation is done<br />

• General setting<br />

The drawing unit needs to be specified. The following drawing units can be use within <strong>EMPIRE</strong> XCcel TM : nm,<br />

um, mm, m, mil, inch, the default value is set to um. The default resolution for the FDTD mesh is set to Medium<br />

and be changed to Coarse, Fine and Very Fine, as desired.<br />

• Frequency<br />

Here, the frequency range of interest can be specified. The Target frequency is used for dielectric and conductor<br />

loss modeling if losses should be taken into account. Some antenna templates as well as rectangular waveguide<br />

templates set the frequencies automatically according to their template parameters. If frequency range needs to be<br />

changed in this case, they can be modified later on in the simulation setup.<br />

• Simulation<br />

The loss models for the narrow(5%), medium(50%) and broad band (95%), of the dielectric and the conductor are<br />

centered to the target frequency.<br />

7.1 Transmission Lines & Waveguides<br />

These templates generate very basic transmission line structures such as microstrip & stripline transmission line and<br />

coplanar & rectangular wave guides.<br />

For the lines supporting the TEM propagation mode two different port setups can be chosen, line and impedance. The<br />

line is terminated with a 50Ω concentrated port at both sides, where as for impedance the transmission line is terminated<br />

with an absorbing port at one end. Using this absorbing port the line is effectively terminated with its characteristic<br />

impedance. Using the switch calculate width from impedance, either the line width or the characteristic line impedance<br />

can be specified.<br />

30 (C) 2006


CHAPTER 7. TEMPLATES 31<br />

7.1.1 Microstrip - SMD components<br />

These templates help in modeling SMD chip components (Resistor, Inductor, Capacitor) mounted on a microstrip line.<br />

The SMD size along with its value is placed with its pad between two microstrip line ports. The SMD components are<br />

modeled in the sense that they consist of metal caps and an inner sheet with the defined electric properties. This allows<br />

an accurate modeling taking into account parasitic effects of the pads and caps of the SMD.<br />

SMD Port<br />

This template can be used to model a SMD component, using a circuit simulator. Between the two metal caps of the<br />

SMD a lumped port is placed. By exporting the s-matrix of the 3 port structure (two microstrip ports and one inner SMD<br />

port), external SMD data can be processed using a circuit simulator.<br />

7.1.2 Rectangular Wave Guides<br />

Rectangular Wave Guides (WG) are easily set up using this template. Here the common WG types and their frequency<br />

range are listed. The structure uses electric wall at the 4 sides of the WG and absorbing walls in the direction of propagation.<br />

Two waveguide ports to operate in the first TE Mode at either end of the wave guide are defined. The frequency<br />

range is set from 0.8 × f c (cut- off frequency) to the max operating frequency of the wave guide that is also given in the<br />

selection list. WG devices like filters, couplers or diplexers can be easily generate by modifying this structure.<br />

7.2 SMD chip components<br />

These templates helps in modeling single SMD chip components (Resistor, Inductor, Capacitor) on a substrate. The SMD<br />

size along with its value is placed with its pad between two lumped ports. The SMD components are modeled in the sense<br />

that they consist of metal caps and an inner sheet with the defined electric properties. This allows an accurate modeling<br />

taking into account parasitic effects of the pads and caps of the SMD.<br />

7.3 RLC<br />

7.3.1 Rectangular Inductor<br />

With the number of turns n, the line width and the slot width a rectangular inductor is placed on top of the substrate<br />

material. Two lumped ports at the inner as well as the outer line end are defined. By replacing the inner short, a stub<br />

conductor to ground is obtained and the inductance can be found from the impedance slope. Using the loss models of the<br />

dielectric as well as of the conductor, the quality factor of the coil can be computed. The simulation box is confined by<br />

magnetic walls except for the z min direction which uses an electric wall. In order not to strongly effect the near field<br />

and the simulated inductance the wall should be placed at a distance of one coil diameter away from the structure. The<br />

simulation bandwidth is computed automatically taking into account the total length of the structure.<br />

7.4 Antennas<br />

7.4.1 The dipole<br />

The dipole antenna can be specified either by its resonance frequency or its physical length. The dipole is excited by<br />

a lumped port in the center. The near & far field calculation are performed at the resonance frequency of the antenna.<br />

The thickness of the dipole may not be smaller than 1e-3 of its length to ensure a quick simulation time. This is a very<br />

basic example to compute an antenna in free space. It can also be useful for experienced users to model their individual<br />

antennas and just use the pre-settings (Far field computation, Simulation settings and Simulation box) for their structures<br />

and frequencies of their interest.<br />

(C) 2006


CHAPTER 7. TEMPLATES 32<br />

Figure 7.1. Patch array template<br />

7.4.2 The monopole<br />

The monopole antenna basically has the same setting as the dipole antenna. It is resonating at a quarter wave length.<br />

Additionally, a finite ground plane can be employed in the model with the dimension to be specified in the template. This<br />

model can be widely used for other types of antennas by specifying the ground plane size and replacing the monopole<br />

arm with individual radiating elements.<br />

7.4.3 Microstrip Antenna<br />

This template will generate a very basic patch antenna on an infinite ground plane. The substrate material permittivity<br />

(default Rogers Duroid 5880) as well as the height h (default 1524 um) are given in the initial setting. The λ 2 operating<br />

frequency needs to be specified. The patch length and the size of the total simulation box are calculated based on these<br />

parameters. The two switches Insert Far Field transformation and Insert field dump allows to access the near field data and<br />

the far field data at the resonance frequency. After running the simulation the layer for the far field animation and the<br />

layer for the field animation are activated to see the fields in the 3d mode.<br />

7.4.4 Mobile phone<br />

A generic model of a cellular phone is implemented to model multi band antennas in mobile devices. The Antenna height<br />

is the distance between the upper antenna structure and the printed circuit board (PCB) and is set to 6mm by default.<br />

With the two geometric parameters Board length (default 107mm) and Board width (40 mm), the total size of the device<br />

can be adopted to the dimension of interest. This template is particularly useful to setup a quick simulation for any kind<br />

of mobile devices. The position, shape and size of the Antenna structure can be rearranged and modified in order to<br />

tackle the customer’s needs. The frequency range for this template is automatically set from 500 MHz to 2.5 GHz. And<br />

the Farfield computation is done for 920 MHz. For this template the dimensions of the cell phone should be limited to<br />

(C) 2006


CHAPTER 7. TEMPLATES 33<br />

40mm < w < 100mm and 70mm < h < 150mm. The two switches model battery and model plastic casing, will generate<br />

the phone’s battery (modeled as PEC) and a 1mm thick casing with a permittivity of 3, respectively.<br />

7.4.5 Biquad<br />

The BiQuad Antenna is rather simple antenna with a comparatively high directivity (about 10 dB). Each of the two<br />

folded arms have are a wavelength (λ) long and the total structure is placed at a distance of about λ 4<br />

over an infinite<br />

ground plane. By entering the resonance frequency (default IMS band 2.45 GHz) the length of the two antenna arms are<br />

calculated automatically to resonate at λ. The two switches lumped port excitation and coaxial excitation allow to define<br />

the excitation scheme. By default, a lumped port is used to save simulation time, due to the less stringent discretization<br />

requirements of this port type. In case of a practical BiQuad antenna a coaxial feeding line should be used.<br />

7.4.6 Patch Antenna Array<br />

The patch array is the most complex antenna template. By defining the patch size, as there is the length l and the width w<br />

of the patch and the spacing (hdx and wdy) between the patches, an n x × n y array is set up. The numbers of elements n x<br />

in x-direction and n y in y-direction are limited due to the computational resources available. An array of 10x10 Elements<br />

and the default settings needs less than 5 minutes on a P4 architecture. The beam can be tilted by specifying the two<br />

angles in spherical coordinates theta (θ) and phi (ϕ). Please note that for tilted beams (time delays for the ports) a correct<br />

s-parameter evaluation is not possible. If the switch assign common port for all elements is turned off, every element will<br />

be assigned its own port number, which allows to compute the total coupling using the n x × n y S-matrix.<br />

7.5 Examples<br />

Here, many examples with fixed parameters can be previewed and selected from a list. They can also be found in the<br />

<strong>EMPIRE</strong> XCcel TM installation folder.<br />

(C) 2006


Chapter 8<br />

Parameter Set-up<br />

Upon starting <strong>EMPIRE</strong> XCcel TM , most global simulation parameters have already been entered or set by an opened<br />

project. To access and adjust these global parameters the entry Simulation Setup in the control list can be opened as shown<br />

in Figure 8.1<br />

Figure 8.1. Global simulation parameters<br />

8.1 Geometry<br />

The drawing unit determines the relation between one unit in the drawing plane and the geometry in reality. The default<br />

is 1µm and can be changed according to the entries in the list.<br />

34 (C) 2006


CHAPTER 8. PARAMETER SET-UP 35<br />

8.2 Frequency<br />

Start- and End Frequency determine the width of a Gaussian pulse which is used as the default excitation function. If the<br />

start frequency is different from zero a modulated Gaussian pulse will be used.<br />

Hint 11: Pulse width<br />

It can be advantageous to excite with a pulse as short as possible to minimize simulation time.<br />

To achieve a minimum pulse width the frequency bandwidth should be as large as possible. The end frequency determines<br />

the maximum grid size and is limited. Therefore the start frequency should be zero to allow maximum bandwidth.<br />

Hint 12: Start frequency<br />

Only with a few exceptions, e.g. hollow waveguides where the minimum frequency should be above cut-off, the start<br />

frequency should be set to 0 Hz.<br />

The target frequency specifies the center of the frequency band where loss models are optimized for.<br />

8.3 Prototype<br />

In this paragraph information about the simulation problem type have to be entered.<br />

Discretization - Algorithms can be optimized depending on information about the object types (mainly planar or<br />

mainly 3-dimensional)<br />

• Planar + 3D Here, the grid will be optimized for both planar and general 3D structures. The planar plane is assumed<br />

to be xy-plane by default but can be set differently in the options menu.<br />

• Planar Grid lines will be preferred for planar structure, i.e. one-third rule grid lines will be favored over generic<br />

grid lines from 3D objects.<br />

• 3D Only 3D objects will be assumed and no optimization for flat metals will be performed.<br />

• User defined Some parameters of the automatic meshing engine in Editor options - Autodisc can be adjusted only, if<br />

the mode is set to user defined.<br />

• <strong>Manual</strong> This mode is used to switch off the automatic meshing engine and to define the grid manually.<br />

Resolution - Defines the accuracy of the grid<br />

• Coarse, e.g. 3 cells for a stripline<br />

• Medium, e.g. 4 cells for a stripline<br />

• Fine, e.g. 5 cells for a stripline<br />

• Very fine, e.g. 6 cells for a stripline<br />

Structure type - Determines number of timesteps, required energy decay and resonance estimation order depending on<br />

typical simulation problems.<br />

• Inductor n < 5, medium energy decay, low order estimation, e.g. single turn inductor<br />

• Inductor n < 20, slow energy decay, low order estimation, e.g. multiple turn inductor<br />

(C) 2006


CHAPTER 8. PARAMETER SET-UP 36<br />

• Short Response, fast energy decay, no estimation, e.g. broad band antenna<br />

• Medium Response, medium energy decay, high order estimation, e.g. narrow band antenna<br />

• Filter HO slow energy decay, high order estimation, e.g. high order filter<br />

• Filter LO medium energy decay, high order estimation, e.g. low order filter<br />

• User Setup (Advanced) Here, the end criteria (last time step and energy decrement) and resonance estimation order<br />

have to be defined by the user.<br />

8.4 Simulation<br />

By default Dielectrics and Conductors are treated as lossless. This reduces simulation time and leads to reliable results<br />

for parameters such as reflection or coupling. In case of resonators or if the transmission losses play a significant role and<br />

high accuracy is required the losses can be included in the simulation at different levels. Here, the frequency dependent<br />

loss models are centered to the Target frequency which can be set in section Frequency.<br />

Dielectrics<br />

• lossless, ideal dielectrics<br />

• narrow band lossy, equivalent conductivity, typically ±10% bandwidth<br />

• medium band lossy, 1st order approximation of constant loss angle, typically ±50% bandwidth<br />

• broad band lossy, 2nd order approximation of constant loss angle, typically ±95% bandwidth<br />

Conductors<br />

• lossless, ideal conductors<br />

• narrow band lossy, constant conductivity, typically ±10% bandwidth<br />

• medium band lossy, 1st order approximation of skin effect typically ±50% bandwidth<br />

• broad band lossy, 2nd order approximation of skin effect, typically ±95% bandwidth<br />

Flat metal thickness<br />

• thin, metalization will be resolved with one gridline<br />

• 1 cell, metalization will be resolved with two grid lines with the spacing of the conductor thickness.<br />

8.5 Boundary conditions<br />

These parameters determine which boundary conditions will be applied at the six sides of the simulation domain.<br />

• Electric Tangential electric field is forced to be zero at the outermost gridline. Used for (lossless) ground planes,<br />

metal packages, or symmetry planes<br />

• Magnetic Tangential magnetic field is forced to be zero in the middle of the outermost cell. Used to truncate<br />

simulation domain if both radiation and reactive field can be neglected at the boundaries. Further, can be used as<br />

symmetry plane.<br />

• Open n Radiating boundary condition with n Perfectly Matched Layers. The higher the number of layers the lesser<br />

reflections will be produced at the boundary (but slows down simulation speed). The layers are placed outside the<br />

simulation domain.<br />

• Resistive sheet A sheet with 377Ω is placed at the boundary which absorbs radiation which is directed normal to<br />

the boundary. Used for high directivity radiation or to suppress box mode resonances in simulations.<br />

(C) 2006


CHAPTER 8. PARAMETER SET-UP 37<br />

8.6 Autodisc<br />

If not disabled, the automatic mesh generation engine will be executed each time if<br />

• the operation Create Discretization is executed<br />

• the button Convert and Save is used before simulation<br />

• the button Simulation is pressed to start a simulation<br />

• a parameter value is swept in a variation or optimization<br />

The settings of the automatic mesh generation can be adjusted here. If the Prototype is set to User defined all parameters<br />

can be accessed otherwise only a limited number of parameters can be changed.<br />

The most important parameters to be adjusted will be described in chapter 14 while the complete list and description of<br />

the different Autodisc parameters is available in chapter 19<br />

8.7 Advanced Simulation Parameters<br />

If item Structure Type is set to User defined the respective parameters can be set in the Advanced Display Mode.<br />

8.7.1 Excitation<br />

According to the entered values the shape of the pulses in frequency and time domain are displayed in the preview<br />

windows. Also the number of frequency points used for the Frequency Transformation DFT can be adjusted.<br />

Hint 13: Minimum number of timesteps<br />

In the pulse preview window the required number of time steps can be estimated. At least twice the duration given in<br />

steps have to be simulated.<br />

8.7.2 Boundary Conditions<br />

To enter Boundary Conditions select Boundary Conditions on the left list. Here, the boundary conditions have to be<br />

entered by selecting the desired combination.<br />

Figure 8.2. Boundary conditions setup<br />

(C) 2006


CHAPTER 8. PARAMETER SET-UP 38<br />

• Metal and magnetic boundaries can be combined with any open boundary condition<br />

• Retarding boundary conditions (trans abs, long abs, mur) may not be combined with Perfectly Matched Layers<br />

(pml).<br />

• Perfectly Matched Layers (pml a) may be combined with Perfectly Matched Layers (pml b) with different numbers<br />

of layers a,b.<br />

Hint 14: Retarding boundary conditions<br />

Retarding boundary conditions (trans abs, long abs) are suited for TEM like feedings (Absorbing Ports), such as Coaxial,<br />

MSL, CPW,... The effective permittivity has to be entered and can be found in literature for many line types.<br />

Hint 15: 1st order Mur boundary condition<br />

First order Mur (mur) is suited for radiation problems if the radiation direction is known. if α is the angle between<br />

radiation direction and normal vector of the boundary the effective permittivity can be obtained from ε e f f = ε r cos 2 (α)<br />

Hint 16: Perfectly Matched Layer boundary conditions<br />

Perfectly Matched Layers (pml) are well suited for general use. Strong reactive fields should be avoided at the boundaries.<br />

8.7.3 End Criteria<br />

Figure 8.3. End criteria setup<br />

There are two possibilities to terminate the simulation run.<br />

• Fixed number of time steps: The simulation will terminate if the value is exceeded. During the simulation this<br />

number can be changed.<br />

• Maximum checksum decrement: If the energy left inside the structure is declined to this value, the simulation will<br />

be terminated.<br />

Restarting the simulation after termination is not possible.<br />

Hint 17: Restart<br />

(C) 2006


CHAPTER 8. PARAMETER SET-UP 39<br />

Remarks:<br />

• The value for the maximum simulation time is not known in general.<br />

• The maximum checksum decrement can be used to terminate the simulation run automatically when the energy<br />

inside the structure is decreased below this value.<br />

• For resonant structures simulation time can be saved using Resonance Estimation.<br />

• The order of the averaging system gives the number of sample points which will be used for estimation.<br />

High quality structures are able to store the energy for a long time thus causing long simulation runs for accurate determination<br />

of results. A special resonance estimation technique can reduce simulation time drastically. A moving average<br />

system (mAVG) is applied with an adjustable order which determines the estimation interval.<br />

Info window:<br />

The info window gives useful hints for the required number of time steps.<br />

• Time step: Time step size in seconds. Depending on smallest grid size and material distribution only.<br />

• Sample factor: Every ns time steps the signal values are stored into the time domain files, e.g ut1.<br />

• Excitation Duration: DE, the length of the pulse in time steps<br />

• Wave in Air: DA, approximate duration for wave traveling 1mm in free space<br />

• Zero size structure: Calculated from DE + 2nsN, where N is the system order<br />

• Small size structure: Calculated from 2DE + 2nsN, where N is the system order<br />

• Minimum recommended frequency: Frequency which can be resolved by estimation. This value can be decreased by<br />

increasing order N if the estimation interval is long enough.<br />

8.7.4 Port Setup<br />

Figure 8.4. Port setup<br />

• Effective Permittivity: Has to be entered if retarding boundary conditions are applied. The value may be calculated<br />

separately by simulating the feeding line only using PMLs. For the feed lines in the port library, an Info window<br />

displays this value depending on the line parameters.<br />

(C) 2006


CHAPTER 8. PARAMETER SET-UP 40<br />

• Length of source area:<br />

1. N = 0 for plane wave and lumped source excitation<br />

2. N = 3 for waveguide excitation with TE- or TM-modes<br />

3. N > 2D f /δx b for matched source excitation, where D f is the effective field diameter and δx b is the first<br />

discretization step at the excitation boundary.<br />

• The default value of the lumped port impedance of 50Ω which is used to separate incident and reflected waves, e.g.<br />

ut1.inc, ut1.ref can be adjusted if the port impedance has been modified in the structure setup.<br />

8.7.5 Cleanup Setup<br />

The cleanup defines the files to be deleted before subsequent simulation runs.<br />

Figure 8.5. Cleanup setup<br />

8.7.6 Special parameters<br />

Parameters<br />

• Time delay in minutes: Delay for starting a batch simulation<br />

• Oversampling factor: Determines number of timesteps written in time series files, e.g. ut1<br />

• Parameter tolerance: Level, at which relative FDTD coefficients are treated as equal.<br />

• Gauss attenuation at start: Level of incident pulse at timestep 0.<br />

• Maximum Runlength: Number of Yee cells used in one system call<br />

• Multiple Timestepping: Can be switched off if not supported by processor<br />

• Number of Threads: Number of CPUs used for simulation<br />

(C) 2006


CHAPTER 8. PARAMETER SET-UP 41<br />

Figure 8.6. Miscellaneous<br />

Switches<br />

• Increased stability reserve: Reduces the calculated maximum time step. This can help to avoid long term instabilities.<br />

• Excitation normalization: By default, the energy distribution of the incident pulse over the frequency is compensated<br />

by the normalization function ef. Can be switched off.<br />

• Wait for license: If more remote hosts are enabled than licenses available in the network this switch causes simulation<br />

tasks to wait until licenses are checked out again.<br />

• Save memory during set up: Memory used during compilation will be de-allocated if enabled. This may cause Out<br />

of memory errors on 32 bit machines for large structures.<br />

• Close Idle Processors: If enabled, only active jobs will be displayed in the batch mode.<br />

• Speed Optimization of losses: Can be disabled to be compatible with old version<br />

(C) 2006


Chapter 9<br />

Object creation<br />

This chapter gives an overview on how to create objects in <strong>EMPIRE</strong> XCcel TM . Building more complex geometries, e.g.<br />

shaping, drilling, merging, will be described in chapter 10.<br />

Hint 18: Object creation<br />

New objects are created on the active layer and inherit the layer property by default.<br />

9.1 Box<br />

A box is defined by 6 numbers which represent two opposite points in the 3D space. In <strong>EMPIRE</strong> XCcel TM a box is mainly<br />

used to define rectangular shapes, field dump regions, surface for far field transformations, animation planes and centers.<br />

It can be created in the following ways.<br />

Forward Usage<br />

1. Press button Create Box (default)<br />

2. Enter co-ordinate values of the box<br />

3. Press OK<br />

Remarks<br />

• The co-ordinates perpendicular to the current drawing plane are defined by the layer arrow.<br />

• Instead of entering the co-ordinate values an arrow can be drawn in the drawing area.<br />

• Pressing the OK button can be replaced by pressing the right mouse button in the drawing area.<br />

Backward usage<br />

1. Draw an arrow in the drawing plane representing the box’s cross section<br />

2. Press button Create Box (default)<br />

Structure List<br />

1. Select ⊞Structure ⊞Create ⊢Box<br />

2. Enter co-ordinate values of the box<br />

42 (C) 2006


CHAPTER 9. OBJECT CREATION 43<br />

3. Press OK to confirm or Cancel<br />

The structure is displayed immediately in the drawing area<br />

Hint 19: Point input by mouse<br />

Instead of typing the values, it is also possible to press the button Input Point by Mouse<br />

drawing area and press left button to enter the values.<br />

and move the cursor to the<br />

9.2 Polygon<br />

An N-point polygon is defined by (N+2) numbers which represent the N-point cross section and two height co-ordinates.<br />

A polygon is closed by connecting first and last points. These objects are mainly used in planar layouts. They can be<br />

created as follows.<br />

Forward Usage<br />

1. Press button Create Poly<br />

2. Adjust extrusion arrow if necessary by pressing height=z 0.0-1000.0<br />

3. Enter co-ordinate values of the points<br />

4. Press OK<br />

• Press Insert after or Insert before to add points to the polygon.<br />

• Press Delete point<br />

to delete a point<br />

Remarks<br />

• The extrusion height is defined by the layer arrow.<br />

• Instead of entering the co-ordinate values press the button Input Point by Mouse<br />

drawing area and press left button to enter a point.<br />

and move the cursor to the<br />

• Pressing the OK button can be replaced by pressing the right mouse button in the drawing area.<br />

Backward usage<br />

1. Enter a set of points in the drawing area<br />

2. Press button Create Poly<br />

Remarks<br />

• The sequence of points entered determine which points will be connected with lines<br />

• The last point and first point will be connected to close the polygon<br />

• The latest entered point(s) can be deleted by pressing the Backspace key<br />

Structure List<br />

1. Select ⊞Structure ⊞Create ⊢Poly<br />

2. Follow the same procedure as defined in Forward usage<br />

(C) 2006


CHAPTER 9. OBJECT CREATION 44<br />

9.3 Line Polygon<br />

The special polygon Linpoly is an unclosed N-point polygon. It is a line type object and can be oriented in space by<br />

assigning a tangential vector.<br />

1. Enter a set of points in the drawing area<br />

2. Press button Advanced and Create Linpoly<br />

3. Select the line polygon<br />

4. Switch to an alternative view<br />

5. Enter a tangential arrow for the orientation in space<br />

6. Press button Advanced and Set tangential<br />

Hint 20: Line objects<br />

Line objects are always discretized in a way that connection from first to last point can be ensured.<br />

9.4 Bond Wire<br />

A bond wire is a special line type object which shape is fixed by start and ending point and slope angle (third order<br />

polynomial).<br />

Forward usage<br />

1. Press the icon Create Bondwire<br />

2. Enter an arrow in the drawing area which represents the start and end point of the wire.<br />

3. Press OK or press right mouse button<br />

4. Adjust heights of beginning and end<br />

5. Optionally, adjust slope angle and number of supporting points<br />

6. Press OK or press right mouse button<br />

Backward usage<br />

1. Enter an arrow in the drawing area which represents the start and end point of the wire.<br />

2. Press the icon Create Bondwire<br />

3. Adjust heights of beginning and end<br />

4. Optionally, adjust slope angle and number of supporting points<br />

5. Exit by pressing Close<br />

(C) 2006


CHAPTER 9. OBJECT CREATION 45<br />

9.5 Circle<br />

In <strong>EMPIRE</strong> XCcel TM a circle is a 1-point polygon with a radius > 0. Together with the height co-ordinates a circular<br />

cylinder is defined.<br />

Forward usage<br />

1. Press the icon Create Circular Cylinder<br />

2. Enter Midpoint P0 of the circle<br />

3. Enter any point on the circumference of the circle<br />

4. Press OK<br />

Remarks<br />

• The height of the cylinder is defined by the layer arrow.<br />

• Instead of entering the co-ordinate values an arrow can be drawn in the drawing area from midpoint to any point<br />

on the circle.<br />

• Pressing the OK button can be replaced by pressing the right mouse button in the drawing area.<br />

Backward usage<br />

1. Enter an arrow in the drawing area from midpoint to any point on the circle.<br />

2. Press the icon Create Circular Cylinder<br />

Structure list<br />

1. Select ⊞Structure ⊞Create ⊢Poly<br />

2. Delete one of the points, e.g. Point 1, by pressing the Delete point button<br />

3. Enter x and y values of the midpoint<br />

4. Enter the radius r<br />

5. Press OK<br />

9.6 Segment of a circle<br />

To obtain segments of a circle it has to be converted into a multiple point polygon first which resolution can be edited in<br />

Editor options<br />

1. Create a circular cylinder with method above<br />

2. Select object, e.g. press middle mouse button<br />

3. Press icon Merge<br />

4. Select object at first segmentation point (green handle at P1)<br />

5. Activate handle at second segmentation point (green handle at P2)<br />

6. Press icon Advanced and Bisect polygon<br />

7. Select circular segment to be deleted<br />

8. Press Del key to erase<br />

(C) 2006


CHAPTER 9. OBJECT CREATION 46<br />

Remarks<br />

• By merging a circle it will be converted to a multiple point polygon<br />

• The number of points is determined by the circle resolution (default 11.25 degree), and can be changed in Editor<br />

Options - Polygon - Circle Resolution<br />

9.7 Sphere<br />

A sphere is a special rotational polygon with the cross section of a half circle.<br />

1. Create a half circle parallel to one axis with method above<br />

2. Enter a 1D arrow as rotational axis (e.g. diameter of the half circle)<br />

3. Select the circle, e.g. press middle mouse button<br />

4. Press the icon Change to ROTPOLY<br />

9.8 Rotational Polygon<br />

A rotational polygon Rotpoly is defined by the polygon cross section and a rotational axis.<br />

1. Create a (closed) polygon as described before<br />

2. Enter a 1D arrow as rotational axis, e.g. in x-direction<br />

3. Select the polygon, e.g. press middle mouse button<br />

4. Press the icon Change to ROTPOLY<br />

One example of a rotational polygon is displayed in Figure ??<br />

Remarks<br />

• The rotational polygon is subdivided for display. To obtain a finer resolution this number of can be changed in<br />

Editor Options - Polygon - Rotpoly Subdivision<br />

9.9 2D Layout Import<br />

Imported layout objects are always represented as polygons. Layout data is often available in files which have a certain<br />

standard. <strong>EMPIRE</strong> XCcel TM supports the following file types:<br />

• Gerber - ending .ger, .gbr<br />

• DXF - ending .dxf (only DXF 12)<br />

• GDS2 - ending .gds<br />

Before import the respective settings in the Editor options should be checked and adjusted. The most important settings<br />

are:<br />

• Scaling - To be adjusted if layout unit and <strong>EMPIRE</strong> XCcel TM drawing unit are different<br />

(C) 2006


CHAPTER 9. OBJECT CREATION 47<br />

Figure 9.1. View of rotational Polygon in the 3D mode<br />

• Arc resolution - If Layout contain a huge amount of curved objects the import time can be reduced by enlarging the<br />

default resolution of 5 degrees.<br />

• Circle recognition - Automatically convert multiple point circles into single point circles to speed up drawing<br />

• DXF connection tolerance - A value > 0 can help to join single lines into polygons.<br />

The import procedure is executed with the following commands.<br />

1. Select Menu File - Import - Layout and file format<br />

2. Browse directory and select layout file<br />

3. Select or de-select layer or additional files to be imported<br />

4. Press Import and Close to finish the layout import<br />

5. Browse through the layers and assign a respective height<br />

Hint 21: Layout import<br />

Layout files do not contain any height information and has to be set by the user. If a layer stack has been set once it can<br />

be re-used if the layer names are identical for another layout file.<br />

9.10 3D Solid Import<br />

Arbitrary objects which have been generated by, e.g. a mechanical CAD tool, can be imported in STL standard (Stereo-<br />

Lithography), a format which most of the CAD tools support.<br />

Before import the respective settings in the Editor options should be checked and adjusted. The most important settings<br />

are:<br />

• Scaling - To be adjusted if drawing units are different<br />

• Import Shift - To be set if origins are different<br />

(C) 2006


CHAPTER 9. OBJECT CREATION 48<br />

• Separate STL objects - In some cases several solids are grouped in one file. They can be separated if switched On<br />

• STL Resolution - Reduce complexity of solids if less than 100% to speed up import and drawing time.<br />

The import procedure is executed with the following commands.<br />

1. Select Menu File - Import - 3D - Import STL object<br />

2. Browse directory and select file with ending .stl<br />

3. Select or de-select additional files to be imported<br />

4. Press Import and Close to finish the import<br />

9.11 2D Point List Import<br />

In order to create special shapes it is possible to import a set of points from a simple list which has been created, e.g. by<br />

another tool. After import the points will be displayed in <strong>EMPIRE</strong> XCcel TM and can be further processed, e.g. to create<br />

a polygon with the cross section defined by the points. The points and the polygon cross section will be generated in the<br />

current drawing plane. Therefore, the desired plane has to be selected first.<br />

The file can have any name, e.g. list.txt and the entries have to be plain ASCII. One example of a parabolic shape could be:<br />

0 0<br />

100 10<br />

200 40<br />

300 90<br />

400 160<br />

600 360<br />

800 640<br />

1000 1000<br />

1000 -100<br />

0 -100<br />

The procedure to generate this parabolic cylinder is:<br />

1. Select Menu File - Import - User - 2D Points from File<br />

2. Browse directory and select point list file<br />

3. Press button Create Poly<br />

9.12 Python Scripts<br />

<strong>EMPIRE</strong> XCcel TM supports an interface to Python scripts which allow the generation of user defined shapes. The Python<br />

programming language, commands and syntax is available at www.python.org.<br />

Hint 22: Python scripts<br />

Python scripts (ending .py) have to be located in the respective project folder.<br />

(C) 2006


CHAPTER 9. OBJECT CREATION 49<br />

Figure 9.2. View of rotational Polygon in the 3D mode<br />

9.12.1 User defined polygons<br />

To create a user defined polygon:<br />

1. Create a layer with property, e.g. userpoly anyname $amp<br />

2. Create a two point polygon with start and end point of the shape<br />

One typical python script, named userdef.py to generate a user defined shape has the following content:<br />

from math import *<br />

def anyname (pts,args):<br />

p2d = []<br />

(x0,y0),(x1,y1) = pts[:2]<br />

Amp = eval(args[0])<br />

Include math library<br />

function call from userpoly name in <strong>EMPIRE</strong> XCcel TM<br />

Initializing a 2 dimensional point list<br />

Assigning points from a 2-point polygon<br />

Every time the drawing is updated this value is renewed<br />

LX = int(x1-x0) Interval size<br />

for x in range(0,LX,LX/100.):<br />

y = Amp *(x/LX)**2<br />

p2d.append((x+x0,y0+y))<br />

p2d.append((x1,y0))<br />

p2d.append((x0,y0))<br />

Loop over x values<br />

function with parameters<br />

Append points to the list<br />

Append last point<br />

Append first point<br />

return p2d Return point list to <strong>EMPIRE</strong> XCcel TM (C) 2006


Chapter 10<br />

Object modification<br />

50 (C) 2006


Chapter 11<br />

Operations<br />

This chapter lists a choice of operations which are often used in <strong>EMPIRE</strong> XCcel TM . A complete list of all available<br />

operations and their explanations can be found in chapter 17.<br />

11.1 Operators<br />

Some operations require the input of an arrow, a point or a number. When these operators are requested in the left top<br />

area they can be entered by either:<br />

or<br />

Arrow<br />

1. Editing the values with the keyboard<br />

2. Press OK<br />

1. Moving the cursor to the start point of the arrow<br />

2. Press and drag the left mouse button to the end point of the arrow<br />

3. Press the right mouse button or OK<br />

Point<br />

1. Moving the cursor to the point<br />

2. Press the right mouse button or OK<br />

51 (C) 2006


CHAPTER 11. OPERATIONS 52<br />

11.2 Select objects<br />

Also it is often required to select objects. To select one or more objects several methods are available:<br />

• Move the cursor to an object and press the middle mouse button<br />

• Move the cursor to an object, press the Ctrl key and the left mouse button<br />

• If objects lay on top of each other drag the mouse to toggle between objects<br />

• Press the keys Ctrl and a to select all objects<br />

• Press the button Select overlapping<br />

• Press the button Select enclosed<br />

and enter an arrow which partially or totally covers the object(s)<br />

and enter an arrow which totally covers the object(s)<br />

• Enter an arrow which does not touch or intersect objects to be selected and press the buttons Advanced<br />

Select outside<br />

and<br />

Hint 23: Object Handles<br />

If an object is selected the object is highlighted and small square handles are displayed on edges (boxes) or corners (polys<br />

and soldis). The handle which is the nearest to the cursor will be activated (green square). Handles can be activated or<br />

de-activated (red square) with the left mouse button. Multiple handles can be activated by entering an arrow covering<br />

multiple edges of the (un-selected) object.<br />

11.3 Move Objects<br />

Forward usage<br />

1. Press the button Move<br />

2. Select objects to be shifted<br />

3. Enter the shift arrow<br />

Backward usage<br />

1. Enter the shift arrow<br />

2. Select objects to be shifted<br />

3. Press the button Move<br />

Mouse input<br />

1. Select object(s) to be shifted<br />

2. Move the mouse to one green handle<br />

3. Press and hold the right mouse button<br />

4. Drag the mouse to the desired position<br />

(C) 2006


CHAPTER 11. OPERATIONS 53<br />

11.3.1 Move Object to Layer<br />

If objects have to be moved from one layer to another the following procedures can be applied:<br />

1. Select object(s) to be moved to another layer<br />

2. Open the layer list<br />

3. Press the layer button Move selections to this layer<br />

or<br />

1. Open the layer list and activate the desired layer by pressing the left mouse button on the layer name<br />

2. Select object(s) to be moved<br />

3. Press Advanced and Move objects to the current layer<br />

11.3.2 Parametric Move<br />

For geometry variations it is possible to move objects parametrically. Here, the shift vector may be defined with parameters.<br />

1. Select objects to be shifted parametrically<br />

2. Press Advanced and Parameter Move<br />

3. Enter shift arrow, e.g. x=xvar y=yvar and press OK<br />

4. Enter Min Max Value Step for the parameters and press OK<br />

Now the parameters are available in the Parameters list and the range can be verified by using the sliders.<br />

11.3.3 Mirror Destructive<br />

If objects should be mirrored a plane has to be defined. It is only possible to use a mirror plane which is parallel to one<br />

of the co-ordinate axes and is defined by a 1D-arrow in the current drawing plane.<br />

1. Switch to the desired drawing plane<br />

2. Select objects to be mirrored<br />

3. Press Mirror Destructive<br />

4. Enter mirror arrow co-ordinates and press OK<br />

• As before, instead of entering co-ordinates an arrow can be drawn and can be confirmed by pressing the left mouse<br />

button in the drawing area.<br />

• A 1D arrow always contains two identical co-ordinates.<br />

• The length of the arrow can be arbitrary.<br />

(C) 2006


CHAPTER 11. OPERATIONS 54<br />

11.3.4 Rotate Destructive<br />

If objects should be rotated a rotational axis has to be defined. It is only possible to use a rotational axis which is parallel<br />

to one of the co-ordinate axes and is defined by a point in the current drawing plane.<br />

1. Switch to the desired drawing plane<br />

2. Select objects to be rotated<br />

3. Press Rotate Destructive<br />

4. Enter point co-ordinates and press OK<br />

5. Enter rotation angle and press OK<br />

• As before, instead of entering co-ordinates a point can be entered and confirmed with the left mouse button in the<br />

drawing area.<br />

• The sequence of the steps can also be mixed.<br />

• The default rotation angle can be set in the Editor Options - Operations<br />

11.3.5 Center<br />

Objects can be centered to a point which can be helpful, e.g. to align objects.<br />

1. Switch to the desired drawing plane<br />

2. Select objects to be centered<br />

3. Press Center to Point<br />

4. Enter point co-ordinates and press OK<br />

• As before, instead of entering co-ordinates a point can be entered and confirmed with the left mouse button in the<br />

drawing area.<br />

• The sequence of the steps can also be mixed.<br />

11.4 Copy Objects<br />

Hint 24: Copy Objects<br />

Copied objects will always be generated on layers of the original objects.<br />

Forward usage<br />

1. Press the button Copy<br />

2. Select objects to be copied<br />

3. Enter the shift arrow<br />

Backward usage<br />

1. Enter the shift arrow<br />

2. Select objects to be copied<br />

(C) 2006


CHAPTER 11. OPERATIONS 55<br />

3. Press the button Copy<br />

Mouse input<br />

1. Select object(s) to be copied<br />

2. Move the mouse to one green handle<br />

3. Press and hold the middle mouse button<br />

4. Drag the mouse to the desired position<br />

11.4.1 Copy to Current Layer<br />

1. Open the layer list and activate the desired layer by pressing the left mouse button on the layer name<br />

2. Select object(s) to be copied<br />

3. Press Copy objects to the current layer<br />

11.4.2 Copy Assign Arrow<br />

The copied box gets the cross section of the entered arrow but maintains the same height as the original box<br />

1. Select box to be copied<br />

2. Press the button Copy Assign Arrow<br />

3. Enter co-ordinates of the new box and press OK<br />

• As before, instead of entering co-ordinates an arrow can be entered and confirmed with the left mouse button in the<br />

drawing area.<br />

• Operation available for boxes only.<br />

11.4.3 Multiple Copy<br />

For the generation of an array this operation is useful.<br />

1. Select object to be multiple copied<br />

2. Press the buttons Advanced and Multiple Copy<br />

3. Adjust default copy expression and press OK<br />

• The default copy expression can also be adjusted in the Editor Options - Operations<br />

• dx, dy, dz - Shift values in x, y and z direction<br />

• nx, ny, nz - Number of copies in x, y and z direction<br />

• map=lambda - Mapping function for more complex arrays<br />

Examples<br />

dx=100,nx=9,dy=100,ny=9,dz=0,nz=0<br />

dx=45,nx=8,map=lambda x,y,z:(100*cos(x*0.0175),100*sin(x*0.0175),0)<br />

dx=100,nx=9,map=lambda x,y,z:(x, 0, x*x/100)<br />

dx=0.4,nx=16,dy=0.4,ny=8,map=lambda x,y,z:(10*cos(x)*sin(y),10*sin(x)*sin(y),10*cos(y))<br />

Comment<br />

10x10 linear array<br />

circular array<br />

parabolic array<br />

spherical array<br />

(C) 2006


CHAPTER 11. OPERATIONS 56<br />

Figure 11.1. Example of a multiple copy array<br />

11.4.4 Mirror Constructive<br />

Similar to Mirror Destructive but the original object will be maintained.<br />

1. Switch to the desired drawing plane<br />

2. Select objects to be mirrored<br />

3. Press Mirror Constructive<br />

4. Enter mirror arrow co-ordinates and press OK<br />

11.4.5 Rotate Constructive<br />

Similar to Rotate Destructive but the original objects will be maintained.<br />

1. Switch to the desired drawing plane<br />

2. Select objects to be rotated<br />

3. Press Rotate Constructive<br />

4. Enter point co-ordinates and press OK<br />

5. Enter rotation angle and press OK<br />

11.5 Stretch Objects<br />

Forward usage<br />

1. Press the button Stretch<br />

2. Select objects to be stretched and press OK<br />

3. Activate handles of corners or edges to be shifted<br />

(C) 2006


CHAPTER 11. OPERATIONS 57<br />

4. Enter the shift arrow and press OK<br />

Backward usage<br />

1. Select objects to be stretched<br />

2. Activate handles of corners or edges to be shifted<br />

3. Press the button Stretch<br />

4. Enter the shift arrow and press OK<br />

Mouse input<br />

1. Select objects to be stretched<br />

2. Activate handles of corners or edges to be shifted<br />

3. Move the mouse to one green handle<br />

4. Press and hold the right mouse button<br />

5. Drag the mouse to the desired position<br />

Hint 25: Stretch objects<br />

Stretching boxes and polygons is also possible with the aid of the left list by selecting e.g. ⊞Structure ⊞Boxes ⊞L name,<br />

press Input Coordinate by Mouse and move the cursor in the drawing area.<br />

11.5.1 Parametric Stretch<br />

For geometry variations it is possible to stretch objects parametrically. Here, the stretch vector may be defined with<br />

parameters.<br />

1. Select objects to be stretched parametrically<br />

2. Press Advanced and Parameter Stretch<br />

3. Enter stretch arrow, e.g. x=xvar y=yvar and press OK<br />

4. Enter Min Max Value Step for the parameters and press OK<br />

Now the parameters are available in the Parameters list and the range can be verified by using the sliders.<br />

11.5.2 Scale<br />

Objects can be scaled to their center or to the origin (green triangles on grid bar).<br />

1. Select objects to be scaled<br />

• Press Advanced<br />

• Press Advanced<br />

and Scale to Center<br />

and Scale to Origin<br />

2. Enter scale factor and press OK<br />

(C) 2006


CHAPTER 11. OPERATIONS 58<br />

11.5.3 Assign Arrow<br />

The box gets the cross section of the entered arrow but maintains the same height as the original box.<br />

1. Select box to be copied<br />

2. Press the button Copy Assign Arrow<br />

3. Enter co-ordinates of the new box and press OK<br />

• As before, instead of entering co-ordinates an arrow can be entered and confirmed with the left mouse button in the<br />

drawing area.<br />

• Operation available for boxes only.<br />

11.6 Boolean operations<br />

In order to create more complex shapes, Boolean operations between all objects are allowed.<br />

1. Select two or more objects to apply Boolean operations<br />

• Merge Press the button Merge<br />

• Subtract Press the button Subtract<br />

• Drill Press the buttons Advanced and Drill<br />

• Intersect Press the buttons Advanced and Intersect<br />

(C) 2006


Chapter 12<br />

Object properties<br />

To all objects certain properties have to be assigned to which can be either physical or functional properties. By default<br />

the object properties are used from the layer properties. 1<br />

Control for all layers<br />

• - Switch on all layers<br />

• - Switch off all but the current layer<br />

• - Create a new layer with default properties<br />

• - Delete unused layers<br />

• - Recolor all layers according to the current background color<br />

Control for single layers<br />

• - Move layer up in list<br />

• - Move layer down in list<br />

• - Switch layer on/off<br />

• - Select layer color<br />

• - Lock/unlock layer to prevent its objects from selection<br />

• - Discretization modes important, basic, ignore<br />

• - Move selected objects to this layer<br />

• - Edit layer name or Edit property<br />

• - Copy layer or Add property<br />

• - Delete layer (including objects on it) or Delete Property<br />

• - Color of fill style<br />

• - Line width<br />

• - Fill style<br />

59 (C) 2006


CHAPTER 12. OBJECT PROPERTIES 60<br />

Figure 12.1. Dielectrics data base<br />

12.1 Basic Object Properties<br />

12.1.1 Dielectric Assistant<br />

Folders<br />

• Basic - Here, the material properties can be entered manually.<br />

• Database - A list of predefined materials can be selected for usage.<br />

• Userbase - The user can add, modify and save his own material database.<br />

• Info - The frequency dependence can be realized by high order Debye models and previewed in this window.<br />

Basic<br />

• Name - A unique name of an item in the data- and userbase or userdefined<br />

• Rel. Permittivity - ε r ≥ 1<br />

• Tangent Delta - tanδ ≥ 0<br />

• Conductivity - σ ≥ 0 in 1<br />

Ωm<br />

• Priority Integer > 0, used for intersecting objects<br />

Database<br />

To use one of these materials, open one of the entries by pressing ⊞ and selecting one of the materials. Switch to Basic<br />

to verify the selection or to Info to see the frequency dependence.<br />

Userbase<br />

• Folder - A unique name of an entry in the userbase list<br />

• Name - A unique name of a material in the userbase<br />

• Rel. Permittivity - ε r ≥ 1<br />

• Tangent Delta - tanδ ≥ 0<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 61<br />

Figure 12.2. Conductor data base<br />

12.1.2 Conductor Assistant<br />

• Basic - Here, the material properties can be entered manually.<br />

• Database - A list of predefined materials which can be selected.<br />

• Userbase - The user may add, modify and save his own definitions<br />

• Info - The frequency dependence of different approximation models can be previewed in this window.<br />

Basic<br />

• Name - A unique name of an item in the data- and userbase or userdefined<br />

• Conductivity - σ ≥ 0 in 1<br />

Ωm<br />

• Thickness for skin effect - 0 < t < 10a, in µm 2<br />

• Surface roughness - 0 ≤ R a < thickness, average roughness in µm<br />

• Priority - Integer > 0, used for intersecting objects<br />

• Autodisc Modeling - auto-detected or set as flat or bulk material<br />

• Active Sides - If set to groundplane only one side is used for loss calculation.<br />

Database<br />

To use predefined conductors open one of the entries by pressing ⊞ and select one of the materials. Switch to Basic to<br />

verify the selection or to Info to see the frequency dependence.<br />

Userbase<br />

• Folder - A unique name of an entry in the userbase list<br />

• Name - A unique name for a material in the userbase<br />

• Conductivity - σ ≥ 0 in 1<br />

Ωm<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 62<br />

Figure 12.3. Lumped resistor definition<br />

12.2 Circuit Elements<br />

• The object type has to a box which can be flat or thin and has to be defined between two conductors<br />

• The direction of current flow has to be specified<br />

• Metal caps ensure a homogeneous current flow<br />

• Lumped Resistor - Value (> 0) has to be entered in Ω.<br />

• Lumped Capacitor - Value (> 0) has to be entered in Farad. 3<br />

• Lumped InductorValue (> 0) has to be entered in Henry. 4<br />

12.3 Field<br />

12.3.1 Field storage<br />

Only Boxes can be used to define areas of field storage.<br />

Field distribution<br />

Field dumps are possible for both time and frequency domain. All field nodes which are covered by the box will be<br />

recorded. Frequency dumps are generated by an on-line DFT during the simulation run, therefore the performance can<br />

slow down if many frequency points are used.<br />

• Name If more than one field distribution boxes are used the names must be different.<br />

• Domain Frequency or Time domain<br />

• Points To specify frequencies or time steps it is possible to define equidistant sequences or single points.<br />

• Advanced Parameters Field components can be deselected to save memory.<br />

1 For special purposes properties can also be set directly to objects.<br />

2 where a is the skin depth a = 1 √ (π f µσ)<br />

3 Maximum value can be determined from N timesteps δt > 3τ = 3RC<br />

4 Maximum value can be determined from N timesteps δt > 3τ = 3 L R<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 63<br />

Figure 12.4. Field dump definition<br />

Nearfield to Farfield Transformation<br />

Figure 12.5. Near-field box definition<br />

The near-field will be recorded on each side of the entered box. Intersection of this box with material or metal boxes can<br />

lead to unphysical results and leads to warning messages.<br />

For scattering problems, the box should be placed outside the plane wave box to record the scattered field only.<br />

• Name If more than one NF-to-FF boxes are used the names must be different.<br />

• Points Only Frequency domain far field transformations are possible.<br />

12.3.2 Field Display<br />

The field is displayed in the 3D mode together with the structure. To hide objects their respective layers can be switched<br />

of or set to transparent.<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 64<br />

Figure 12.6. Field animation box definition<br />

3D Field Animation Box<br />

Usually flat boxes are used to define planes for display of fields in 3D mode. They have to defined within the respective<br />

field dump box and can be entered before or after the simulation.<br />

Hint 26: Field animation plane<br />

If only a single plane should be displayed a flat box can be defined on a single layer with both Field Distribution and 3D<br />

Field Animation Box properties.<br />

General<br />

• Name of fielddump If more than one field dump has been defined, the file name has to be selected<br />

• Frequency/Time selection - If more than one frequency has been defined for the field dump it has to be specified<br />

here<br />

• Normalization - Field values can be normalized for different frequency domain results, e.g. ef, if1, if1.inc<br />

• Animation loop - Sweep over angle/timestep/frequencies or no-sweep<br />

• Field components - E (electric field), H (magnetic field), J (current density), j (Surface current density), S (Power<br />

flow), ACD (averaged current density), SAR (Specific Absorption Rate)<br />

• Fielddump scaling Linear / logarithmic scaling and dynamic<br />

• Legend keys - Switch On/Off and set number of keys for field strength vs. colors<br />

Additional<br />

• Arrow field Plot - Off/On/Exclusive for displaying field vectors<br />

• Arrow Size - Length of arrows<br />

• Line Color - On/Off and line color<br />

• Line Type - Showing grid or lines of constant field strength<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 65<br />

Advanced<br />

• Action - Display only or Display and Export to file after pressing the 3D button<br />

• Weight Factor - Can be used if multiple animation boxes are used<br />

• Field MAX value - Maximum: Automatic or absolute value<br />

• Fielddump subsampling - Use every 1st, 2nd, 3rd, ... cell for display in the respective direction<br />

• Fielddump move - Shift of animation display versus structure<br />

• Fielddump type - Display style if lines are used as fill mode<br />

• Shade Model - Interpolated or constant shading<br />

• Fielddump fill Mode - Display styles fill, lines, points<br />

ACD/SAR 1<br />

• Restrict calculation - ACD/SAR can be restricted to animation box to reduce simulation time. No global maximum<br />

can be determined in this case.<br />

• ACD/SAR target frequency - for Gabriel parameters<br />

• ACD/SAR cube interpolation - different standards of interpolation<br />

• ACD/SAR max surface distance - ACD/SAR can be restricted to a certain depth of the body to reduce simulation<br />

time.<br />

ACD/SAR 2<br />

• Min Number of neighbor cells - Used for tissue identification algorithms<br />

• Tissues not zero - List of tissues found in volume<br />

3D Farfield Animation Box<br />

Figure 12.7. Far Field animation box definition<br />

This box defines the center where the 3D radiation pattern is displayed in the 3D mode.<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 66<br />

Hint 27: Farfield animation center<br />

If the NF-to-FF box can be used as the center for display a single layer with both Nearfield to Farfield Transformation and<br />

3D Farfield Animation Box properties is sufficient.<br />

• Filename - If more than one NF-to-FF boxes have been defined, the file name has to be selected<br />

• Animation loop - Sweep over frequencies or phase angles, e.g. for circular polarized beams.<br />

• Scaling - Linear / logarithmic scaling and dynamic<br />

• Amplitude - Display relative to drawing<br />

• Move - Shift relative to drawing<br />

• Type - Display style if lines are used as fill mode<br />

• Poly fill mode - Display styles fill, lines, points<br />

• Borders - On/Off and line color for lines of constant field strength<br />

• Legend keys - Switch On/Off legend and set number of keys for field strength vs. colors<br />

12.4 Advanced Properties<br />

12.4.1 Object Definition - General objects<br />

Metal<br />

• A metal object is defined here as a ideal conductor. Lossy metal has to be defined as material with a certain<br />

conductivity for bulk objects or as conducting sheets.<br />

• The default priority value for metal is higher than the default number for a material box which is used for intersecting<br />

objects.<br />

Material<br />

• A material box may have homogeneous and isotropic permittivity and conductivity. The values to be entered are<br />

the relative permittivity and the conductivity which must be given in 1<br />

Ωm<br />

• The default priority value for material is lower than the default number for a metal box.<br />

Debye Material<br />

A complex, frequency dependent permittivity can be defined using a Debye model:<br />

Usage<br />

• ε ∞ is the permittivity for f → ∞<br />

• f ν are the pole frequencies<br />

• ∆ε ν are the relative changes of permittivity<br />

ε( f ) = ε r ( f ) − j<br />

2π f σ( f ) = ε ∞ +<br />

debye PRIO N EPSINF ε ∞ JUMPS [ f 1 ,∆ε 1 , f 2 ,∆ε 2 ,...]<br />

Here, N denotes the priority number for intersecting objects.<br />

n<br />

∑<br />

ν=1<br />

∆ε ν<br />

1 + j f<br />

f ν<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 67<br />

Advanced Material<br />

• The material may be an-isotropic by using, e.g [2 1 4] for the relative permittivity or permeability tensor<br />

ε r ,µ r =<br />

⎛<br />

⎝ 2 0 0 1 0<br />

0<br />

⎞<br />

⎠<br />

0 0 4<br />

• Electric conductivity, e.g. σ e = 2π f 0 ε 0 ε r tanδ<br />

• Magnetic conductivity, e.g. σ m = 2π f 0 µ 0 µ r tanδ<br />

• Mass density has to be defined if Specific Absorption Rate should be evaluated with mass averaging, e.g. for 1g.<br />

12.4.2 Object Definition - Sheet objects<br />

Sheet Resistor<br />

• A sheet resistor in Ω can be defined<br />

• The box must cover only one grid line in one direction.<br />

• For the calculation of the conductivity the direction of the current has to be entered.<br />

Sheet Resistor (Rsquare)<br />

A direction-less square resistance can be entered if current direction is not known<br />

Conducting Sheet<br />

Sheet model approximation: Special algorithm for broadband modeling of skin losses.<br />

12.4.3 Surface metalization<br />

Surface metalization of volume objects.<br />

• Metalization - Surface will be metalized with ideal conductor or R square resistance.<br />

• Mask - Metalization is switched off where Mask objects intersect Metalization object.<br />

• Unmask - Cancel Mask definition where Unmask objects intersect Metalization object.<br />

12.4.4 Object Definition - Line objects<br />

Line Resistor<br />

• A line resistor with a value in Ω m<br />

can be defined<br />

• The object type has to be a line object, e.g. bond wire.<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 68<br />

12.4.5 Object Definition - Other objects<br />

Voxel model<br />

A meshed body model can be included into the simulation to evaluate the field in tissues, e.g. ACD or SAR.<br />

• Name of the voxel file (ending .vxx), must be located in project folder<br />

• Gabriel target frequency used for low frequency algorithm<br />

• Fixed Permittivity if value can be neglected for simulation<br />

• Fixed Conductivity if value can be neglected for simulation<br />

• Store Voxel Info on / off<br />

• Clip Region used if only part of the model is used<br />

• Erase Start Points is used if only part of the model is used<br />

• Anchor defines insertion point relative to voxel box co-ordinates x0, y0, z0<br />

• Rotation limited to multiples of 90 degrees<br />

• Length unit for display has to be set according to drawing unit<br />

• Min Permittivity for display Tissues with lower values will be hidden<br />

• Min Conductivity for display Tissues with lower values will be hidden<br />

12.4.6 Measurement Definition<br />

Voltage Box<br />

• A voltage box fixes the integration path for the electric field.<br />

• The voltage box has to cover exactly one grid line and has to be placed between two conducting objects 5 where the<br />

voltage will be evaluated.<br />

• For each port a unique number has to be defined.<br />

Current Box<br />

• A current box fixes the integration path for the magnetic field.<br />

• For an outer port the current box has to be placed between the two first or two last grid lines of a boundary (It must<br />

be placed in any case between two grid lines). The defined area has to cover the cross section of the conductor<br />

which current should be evaluated.<br />

• For each port a unique number has to be defined.<br />

12.4.7 Excitation Definition<br />

Concentrated source<br />

• Voltage source, the structure is excited by 1 Volt.<br />

• Impressed electric field source, the structure is excited by 1 V m<br />

• Current source, the structure is excited by 1 Ampere.<br />

5 an electric boundary may be regarded as an conducting object<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 69<br />

Excitation Box<br />

• The electrical field components with the entered direction will be excited at the nodes which are covered by the<br />

excitation box.<br />

• The excitation box has to be defined at one of the boundaries and has to cover exactly the first or the last grid line.<br />

• Weighting factors can be used, e.g. to double the current when using a magnetic wall.<br />

• For each port a unique number has to be defined.<br />

Plane Wave Excitation<br />

Plane waves are realized as compact sources. This means that inside the box both the incident field wave as well as the<br />

scattered field exists, whereas outside the box only the scattered field is present.<br />

All scattering objects must lie inside the plane wave box. The scattering objects may not touch or even intersect the box.<br />

One boundary may be chosen to be electric to simulate ground. Depending on polarization and propagation direction a<br />

mirrored plane wave will be generated to ensure proper boundary conditions at the ground wall.<br />

The direction of propagation is entered in spherical co-ordinates in degrees. The polarization of the wave is uniquely<br />

defined by components of the spherical unit vectors.<br />

More than one plane wave boxes may be defined to exploit interference effects, e.g. a standing wave to model a homogeneous<br />

field. To calculate delay factors one plane wave has to be regarded as reference.<br />

• E theta - θ- component of electric field for polarization in V m<br />

• E phi - φ- component of electric field for polarization in V m<br />

• K theta - θ- component for direction of propagation in degree<br />

• K phi - φ- component for direction of propagation in degree<br />

• Delay - Used for more than one plane wave excitations in s<br />

Waveguide Port<br />

A waveguide port can only be hollow or filled with one dielectric material. At a waveguide port more than one mode can<br />

be taken into account by defining port numbers for every mode.<br />

Before simulation TE and TM modes will be calculated i = 1,...,M − N + 1 They are numbered in ascending order of<br />

their cut-off frequencies.<br />

• Start Port Number N: N 1 > 0 6<br />

• End Port Number M: M 1 ≥ N 1<br />

7<br />

• Start Excitation Port Number J: N ≤ J ≤ M<br />

• End Excitation Port Number K: J ≤ K ≤ M<br />

• Sign - Used to adjust phase angle at this port<br />

• Weight - Can be adjusted to account for electric symmetry plane<br />

Here, M − N + 1 Modes are used for termination at this waveguide port and K − J + 1 Modes are used for (subsequent)<br />

excitations at this waveguide port.<br />

6 nth waveguide N n > M n−1<br />

7 nth waveguide M n ≥ N n<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 70<br />

Hint 28: Waveguide mode visualization<br />

Modes can be visualized by<br />

1. Adding 3D Field Animation Box to the Waveguide Box<br />

2. Loading wg port i.dbx file<br />

12.4.8 Other definitions<br />

Name Object<br />

• A name can be specified for layers or objects<br />

• Naming convention: name anynamewithoutspaces<br />

Poly smart discretization<br />

For compatibility purposes only.<br />

Ignore Object<br />

If this property is set to a layer or object it will be ignored for simulation.<br />

Autodisc Hints<br />

• Autodisc Hints - important , basic , ignore or auto.<br />

• Autodisc Modeling - treatment as flat or bulk material.<br />

12.4.9 Experimental<br />

Meta Material<br />

Metamaterials are Materials with unusual and unconventional wave properties. One class of Metamaterials has a negative<br />

refraction index (NRI). To model this NRI phenomenon, a Drude model for the electric field as well as for the magnetic<br />

field is implemented in <strong>EMPIRE</strong> XCcel TM . For frequencies lower than the electric resonant frequency f elec and magnetic<br />

f mag resonant frequency an effective negative permittivity ε e f f as well as a negative permeability µ e f f can be observed.<br />

At the transition frequency the effective material parameters ε e f f and µ e f f are zero, which corresponds to an infinite<br />

wavelength at a non-zero frequency.<br />

µ e f f ( f ) = µ r<br />

(<br />

1 − f )<br />

mag<br />

2<br />

f 2<br />

ε e f f ( f ) = ε r<br />

(1 − f elec<br />

2 )<br />

f 2<br />

• Relative Permittivity - ε r positive permittivity value, which corresponds to the effective permittivity for the frequency<br />

approaching infinity.<br />

• Relative Permeability - µ r positive permeability value, which corresponds to the effective permeability for the frequency<br />

approaching infinity<br />

• Electric Conductivity - takes into account losses for the electric node in Ω m<br />

• Magnetic Conductivity - takes into account losses for the magnetic node in Ω m<br />

• Electric Resonance - transition frequency f elec for the electric field node<br />

• Magnetic Resonance - transition frequency f mag for the magnetic field node<br />

• Priority - Used for intersecting objects<br />

(C) 2006


CHAPTER 12. OBJECT PROPERTIES 71<br />

Diode<br />

Nonlinear Spice Diode model. Parameters not part of Spice Model:<br />

• Direction of the diode - only positive axes possible<br />

• NRS: series resistance in cells - Cells for Series Resistance<br />

• DUM: max. Voltage Step - Maximum voltage iteration step in V<br />

• OFF: Voltage Offset - used for DC bias in small signal simulations<br />

• SF: File to Save for LTV sim - File to save time domain diode parameters<br />

(C) 2006


Chapter 13<br />

Port types<br />

The following section describes the different port types which are available in the Library Wizard. For all port types the<br />

following hints are valid:<br />

Hint 29: Ports<br />

• The direction of a port must coincide with one of the major axes.<br />

• A concentrated port may not be placed at the boundary.<br />

• An absorbing port has to be placed at the boundary.<br />

• The ports consist of voltage and current boxes for recording the time signals and a surface resistance with an<br />

adjustable impedance (default 50 Ω) parallel to the voltage box.<br />

• If the port is excited, a current source as an excitation box is added to the port parallel to the resistor.<br />

• Its basic elements can be displayed by selecting the port and pressing the icon Explode Library Element.<br />

Undo to recover the library element.)<br />

(Use<br />

To insert a port into the current drawing:<br />

1. Select a suitable drawing plane<br />

2. Set an appropriate layer arrow<br />

• Press the button Open Library Wizard<br />

• Select ⊞Ports ⊞Create<br />

or<br />

3. Select one of the available port types in the list 13.1<br />

13.1 Coaxial Port<br />

• The transverse insertion point is defined by the beginning of the height value<br />

• The direction of the coaxial port is defined by the points Point 0 and Point 1 in the port list.<br />

• Depending on the type of the port the reference plane (indicated by a blue line) is either at the boundary (absorbing<br />

port) or within the structure (concentrated port)<br />

72 (C) 2006


CHAPTER 13. PORT TYPES 73<br />

Figure 13.1. Library Wizard: Port types<br />

Figure 13.2. Parameters of Coaxial Port<br />

(C) 2006


CHAPTER 13. PORT TYPES 74<br />

1. Geometry to be entered in drawing units<br />

• Inner Diameter, di > 0 Inner Conductor, ideal metal<br />

• Dielectric Diameter, dd > di, Isolator<br />

• Outer Diameter, da > dd, Outer conductor, ideal metal<br />

2. Material<br />

• Permittivity(rel), epsr ≥ 1<br />

3. Priority to be adjusted if port intersects other objects<br />

• Outer Priority, pra > 0<br />

• Dielectric Priority, prd > pra<br />

• Inner Priority, pri > pri<br />

4. Concentrated Port Parameters (only for port type = concentrated)<br />

• Ref. Impedance, R > 0 in Ω, internal load of current source<br />

• Port Distance, pd > 0 in drawing unit, distance between load and reference plane<br />

• Use old concentrated ports, OCP = on/o f f , no end cap is used if set to on<br />

5. Discretization Parameters to be entered in drawing units<br />

• Inner Disc, d0 > 0, grid spacing for inner conductor<br />

• Dielectric Disc, d1 > 0, grid spacing for isolator<br />

• Outer Disc, d2 > 0, grid spacing for outer conductor<br />

• Longitudinal Disc, dL > 0, grid spacing in propagation direction<br />

6. Advanced Parameters<br />

• Excitation Delay, ED ≥ 0 in s, used for multiple simultaneous excitations<br />

• Excitation weight factor, WE, used for weighting multiple ports<br />

• Current weight factor, WC, used for, e.g. magnetic symmetry plane<br />

• Voltage weight factor, WV , used for, e.g. electric symmetry plane<br />

7. Start Port Definition Port at Point 0<br />

• Start Port Type, p1t Concentrated, Absorbing, None<br />

• Number of Start Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• Start Port Excitation p1e = On/O f f , Off - only used for termination<br />

8. End Port Definition Port at Point 1<br />

• End Port Type, p1t Concentrated, Absorbing, None<br />

• Number of End Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• End Port Excitation p1e = On/O f f<br />

13.2 Square coaxial Port<br />

All remarks and parameters are equal to those of the circular coaxial port.<br />

(C) 2006


CHAPTER 13. PORT TYPES 75<br />

Figure 13.3. Parameters of Square coaxial Port<br />

Figure 13.4. Library Wizard: Coplanar Port<br />

13.3 Coplanar Port<br />

• The direction of the coplanar port is defined by the points Point0 and Point1 in the port list.<br />

• Depending on the type of the port the reference plane (indicated by a blue line) is either at the boundary (absorbing<br />

port) or within the structure (concentrated port)<br />

• The substrate has to be defined separately<br />

• The port has to be defined on a layer with conductor or metal property<br />

1. Geometry to be entered in drawing units<br />

• Width of CPW Center Conductor, w > 0<br />

• Width of CPW Gap, s > 0<br />

• Width of CPW Outer Conductors, b > 0<br />

• Met Thickness, t > 0<br />

2. Material - ! Only used for Impedance calculation in Info Window !<br />

• Permittivity(rel), epsr ≥ 1<br />

3. Concentrated Port Parameters (only for port type = concentrated)<br />

• Ref. Impedance, R > 0 in Ω, internal load of current source<br />

• Port Load Size, pl > 0 in drawing unit, width of load in propagation direction<br />

• Port Distance, pd > 0 in drawing unit, distance between load and reference plane<br />

(C) 2006


CHAPTER 13. PORT TYPES 76<br />

4. Advanced Parameters<br />

• Excitation Delay, ED ≥ 0 in s, used for multiple simultaneous excitations<br />

• Excitation weight factor, WE, used for weighting multiple ports<br />

• Current weight factor, WC, used for, e.g. magnetic symmetry plane<br />

• Voltage weight factor, WV , used for, e.g. electric symmetry plane<br />

5. Discretization Parameters to be entered in drawing units<br />

• Min Disc, d0 > 0, minimum grid spacing for inner conductor and gap<br />

• Max Disc, d1 ≥ d0, maximum grid spacing for inner conductor and gap<br />

• Longitudinal Disc, d2 > 0, grid spacing in propagation direction<br />

• Perpendicular Height, hp > w + 2s, Minimum distance to perpendicular boundary<br />

• Perpendicular Max Disc, d p > 0, perpendicular grid spacing<br />

• Met Thickness Disc, dt, flat metal gird resolution<br />

6. Start Port Definition Port at Point 0<br />

• Start Port Type, p1t Concentrated, Absorbing, None<br />

• Number of Start Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• Start Port Excitation p1e = On/O f f , Off - only used for termination<br />

7. End Port Definition Port at Point 1<br />

• End Port Type, p1t Concentrated, Absorbing, None<br />

• Number of End Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• End Port Excitation p1e = On/O f f<br />

13.4 Lumped Port<br />

Figure 13.5. Parameters of Lumped Port<br />

• The direction of the lumped port is defined by the points Point0 and Point1 in the port list.<br />

• The lumped port may not be placed at the boundary.<br />

(C) 2006


CHAPTER 13. PORT TYPES 77<br />

1. Port Parameters<br />

• Width of Port, w > 0 in drawing unit<br />

• Port Number, p1 ≥ 1, to be adjusted for multiple ports<br />

• Port Excitation p1e = On/O f f , Off - only used for termination<br />

• Weight factor, WE, used for weighting multiple ports<br />

2. Advanced Parameters<br />

• Ref. Impedance, R > 0 in Ω, internal load of current source<br />

• Disc, d0 > 0, grid spacing<br />

• Excitation Delay, ED ≥ 0 in s, used for multiple simultaneous excitations<br />

• Excitation weight factor, WE, used for weighting multiple ports<br />

• Current weight factor, WC, used for, e.g. magnetic symmetry plane<br />

• Voltage weight factor, WV , used for, e.g. electric symmetry plane<br />

• Excitation Function, FE, used for multiple simultaneous excitations with different pulse shapes<br />

• Length of metal connectors, DL ≥ 0, used if port end have to be enlarged<br />

13.5 Perpendicular Lumped Port<br />

Figure 13.6. Parameters of Perpendicular Lumped Port<br />

• The direction of the perpendicular lumped port is defined by the layer arrow.<br />

• The lumped port may not be placed at the boundary.<br />

• The cross section of the port is defined by the Points P0 and P1.<br />

1. Port Parameters<br />

• Port Number, p1 ≥ 1, to be adjusted for multiple ports<br />

• Port Excitation p1e = On/O f f , Off - only used for termination<br />

• Weight factor, WE, used for weighting multiple ports<br />

2. Advanced Parameters identical to usual lumped port.<br />

(C) 2006


CHAPTER 13. PORT TYPES 78<br />

Figure 13.7. Parameters of Microstrip Port<br />

13.6 Microstrip Port<br />

• The direction of the microstrip port is defined by the points Point0 and Point1 in the port list.<br />

• Depending on the type of the port the reference plane (indicated by a blue line) is either at the boundary (absorbing<br />

port) or within the structure (concentrated port)<br />

• Ground metalization and substrate have to be defined separately<br />

• The port has to be defined on a layer with conductor or metal property<br />

1. Geometry to be entered in drawing units. If signal line is below ground plane these parameters have to entered as<br />

negative numbers<br />

• Width of Conductor, w > 0<br />

• Top height, |ht| > hb + w, Minimum distance to top boundary<br />

• Bottom height, |hb| > 0, distance between signal line and ground<br />

• Met Thickness, |t| > 0<br />

2. Material - ! Only used for Impedance calculation in Info Window !<br />

• Permittivity(rel), epsr ≥ 1<br />

3. Concentrated Port Parameters (only for port type = concentrated)<br />

• Ref. Impedance, R > 0 in Ω, internal load of current source<br />

• Port Distance, pd > 0 in drawing unit, distance between load and reference plane<br />

4. Advanced Parameters<br />

• Excitation Delay, ED ≥ 0 in s, used for multiple simultaneous excitations<br />

• Excitation weight factor, WE, used for weighting multiple ports<br />

• Current weight factor, WC, used for, e.g. magnetic symmetry plane<br />

• Voltage weight factor, WV , used for, e.g. electric symmetry plane<br />

5. Discretization Parameters to be entered in drawing units<br />

• Min Disc, d0 > 0, minimum grid spacing for signal line<br />

• Max Disc, d1 ≥ d0, maximum grid spacing for signal line<br />

• Transverse Disc Width, wd > 0, minimum distance to transverse boundary<br />

(C) 2006


CHAPTER 13. PORT TYPES 79<br />

• Perpendicular Disc, d p0 > 0, minimum perpendicular grid spacing<br />

• Perpendicular Max Disc, d p > 0, maximum perpendicular grid spacing between signal and ground<br />

• Perpendicular Big Disc, d p > 0, perpendicular grid spacing to boundary<br />

• Longitudinal Disc, d2 > 0, grid spacing in propagation direction<br />

• Met Thickness Disc, dt, flat metal gird resolution<br />

6. Start Port Definition Port at Point 0<br />

• Start Port Type, p1t Concentrated, Absorbing, None<br />

• Number of Start Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• Start Port Excitation p1e = On/O f f , Off - only used for termination<br />

7. End Port Definition Port at Point 1<br />

• End Port Type, p1t Concentrated, Absorbing, None<br />

• Number of End Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• End Port Excitation p1e = On/O f f<br />

13.7 Stripline Port<br />

Figure 13.8. Parameters of Stripline Port<br />

• The direction of the stripline is defined by the points Point0 and Point1 in the port list.<br />

• Depending on the type of the port the reference plane (indicated by a blue line) is either at the boundary (absorbing<br />

port) or within the structure (concentrated port)<br />

• Ground metalization and substrate have to be defined separately<br />

• The port has to be defined on a layer with conductor or metal property<br />

1. Geometry to be entered in drawing units.<br />

• Width of Conductor, w > 0<br />

• Top height, ht > 0, Distance to top ground<br />

• Bottom height, hb > 0, Distance to bottom ground<br />

• Met Thickness, t > 0<br />

2. Material - ! Only used for Impedance calculation in Info Window !<br />

(C) 2006


CHAPTER 13. PORT TYPES 80<br />

• Permittivity(rel), epsr ≥ 1<br />

3. Concentrated Port Parameters (only for port type = concentrated)<br />

• Ref. Impedance, R > 0 in Ω, internal load of current source<br />

• Port Distance, pd > 0 in drawing unit, distance between load and reference plane<br />

4. Advanced Parameters<br />

• Excitation Delay, ED ≥ 0 in s, used for multiple simultaneous excitations<br />

• Excitation weight factor, WE, used for weighting multiple ports<br />

• Current weight factor, WC, used for, e.g. magnetic symmetry plane<br />

• Voltage weight factor, WV , used for, e.g. electric symmetry plane<br />

5. Discretization Parameters to be entered in drawing units<br />

• Min Disc, d0 > 0, minimum grid spacing for signal line<br />

• Max Disc, d1 ≥ d0, maximum grid spacing for signal line<br />

• Transverse Disc Width, wd > 0, minimum distance to transverse boundary<br />

• Perpendicular Disc, d p0 > 0, minimum perpendicular grid spacing<br />

• Perpendicular Max Disc, d p > 0, maximum perpendicular grid spacing between signal and ground<br />

• Perpendicular Big Disc, d p > 0, perpendicular grid spacing to boundary<br />

• Longitudinal Disc, d2 > 0, grid spacing in propagation direction<br />

• Met Thickness Disc, dt, flat metal gird resolution<br />

6. Start Port Definition Port at Point 0<br />

• Start Port Type, p1t Concentrated, Absorbing, None<br />

• Number of Start Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• Start Port Excitation p1e = On/O f f , Off - only used for termination<br />

7. End Port Definition Port at Point 1<br />

• End Port Type, p1t Concentrated, Absorbing, None<br />

• Number of End Port, p1 ≥ 1, to be adjusted for multiple ports<br />

• End Port Excitation p1e = On/O f f<br />

(C) 2006


Chapter 14<br />

Discretization<br />

14.1 Automatic Discretization<br />

Figure 14.1. General Adjustments<br />

The automatic discretization creates a suitable mesh for the entered structure. It should be used after all structure and<br />

excitation information has been entered.<br />

Hint 30: Grid statistics<br />

81 (C) 2006


CHAPTER 14. DISCRETIZATION 82<br />

Information about the current discretization can be obtained by<br />

• Pressing the right mouse button on one of the grid bars, Figure 14.2<br />

• Open the left list ⊞Advanced ⊞ Discretization<br />

Figure 14.2. Bottom grid bar<br />

Depending on the structure only a few parameters have to be adjusted in Simulation Setup - Autodisc :<br />

14.1.1 General<br />

• Relative Drawing accuracy This number times the boundary distance gives the absolute drawing accuracy in each<br />

direction. Below this threshold co-ordinates will be treated as identical.<br />

• Relative Limit for warning A warning message will be displayed if grid spacing is below this number times the<br />

boundary distance in each direction.<br />

14.1.2 Directions<br />

x,y,z-discretization in units<br />

• off The automatic discretization is turned of in this direction.<br />

• auto Automatic discretization will be used.<br />

• auto+fixed As auto but fixed lines (black and bold) will be kept.<br />

• number Equidistant mesh with a spacing of selected number.<br />

14.1.3 Simulation Box<br />

In some cases additional space to the boundaries will be required which can not be detected from the automatic meshing<br />

routines, e.g. if coils or antennas with a large reactive volume should be simulated.<br />

In other cases the simulation domain should be truncated to model only a part of the structure, e.g. for large circuits<br />

where far distance components can be neglected.<br />

Simulation Box X,Y,Z<br />

• The numbers displayed in min and max are the current boundary positions<br />

• By pressing from structure all objects will be evaluated and a overall bounding box defines the boundary.<br />

• To adjust the simulation box by hand the co-ordinates can be edited.<br />

• By pressing Apply the displayed values will be used for boundaries.<br />

(C) 2006


CHAPTER 14. DISCRETIZATION 83<br />

14.1.4 Resolution<br />

Values can only be modified if Simulation Setup - Prototype - Discretization is set to User defined.<br />

• Min Cells per Wavelength The minimum number of cells per wavelength may not be smaller than 5. Recommended<br />

10. High precision 20.<br />

• Absolute min resolution in units Co-ordinates below these numbers will be treated as equal.<br />

• Min. Resolution in units Minimum cell spacing<br />

• Max. Resolution in units Maximum cell spacing, if set to None it will be determined from maximum frequency.<br />

• Object cells Number of cells used to resolve box-type objects<br />

• Refinement ratio Used to generate a graded mesh between small and large cells.<br />

14.1.5 Options<br />

Values can only be modified if Simulation Setup - Prototype - Discretization is set to User defined.<br />

• Planar Direction Default value is z (xy-plane). Can be changed if needed.<br />

• Arc Resolution Angular step to discretize circles and arcs.<br />

• Flat metal recognition limit This factor is used to decide if metal is treated as flat.<br />

14.1.6 Layers<br />

Discretization hints can also be given for each layer separately by switching the button<br />

• Objects on this layer are important for grid generation, e.g. signal lines, hot vias, ports, etc.<br />

• Objects on this layer don’t need accurate grid resolution, e.g. via fences, ground planes, etc.<br />

• Ignore objects of this layer for grid generation, e.g. field dump boxes, labels, etc.<br />

14.2 <strong>Manual</strong> Discretization<br />

The <strong>Manual</strong> Discretization can be enabled by<br />

• Setting Simulation Setup - Prototype - Discretization to <strong>Manual</strong><br />

• Press the left mouse button on one of the grid bars and confirming dialog boxes<br />

• Loading an old input file, ending .gym, which has been generated with Empire v4.20 or older<br />

14.2.1 Generic discretization<br />

Press left mouse button on one of the grid bars:<br />

• Deletes initial grid and inserts fixed lines on object edges<br />

• Deletes initial grid and inserts a graded mesh between every pair of fixed lines<br />

• In marked intervals inserts a graded mesh between a pair of fixed lines<br />

• Deletes initial grid and generates a mesh using Generic Disc and Smoothing Algorithms using a maximum<br />

grid spacing of the entered number<br />

(C) 2006


CHAPTER 14. DISCRETIZATION 84<br />

14.2.2 Delete Lines<br />

Press left mouse button on one of the grid bars:<br />

• Press the middle mouse button on one line in the grid bar<br />

• Delete the whole grid lines<br />

• Delete only un-fixed (red) grid lines<br />

• Delete range defined by entered arrow<br />

• Delete range (only un-fixed lines) defined by arrow<br />

• Delete grid line defined by entered point<br />

14.2.3 Add lines<br />

Press left mouse button on one of the grid bars:<br />

• Press the middle mouse button on empty space of the grid bar<br />

• Add fixed lines defined by points or tips or arrows<br />

• Add un-fixed lines defined by points or tips of arrows<br />

• Add grid lines in the marked interval with the spacing of δ<br />

• Add grid lines in the marked interval with n equal subdivisions<br />

14.2.4 Port discretization<br />

• Select Port<br />

Delete initial mesh and insert grid proposed by the port<br />

• Select Port, select grid bar<br />

• Select Port, select grid bar<br />

Add grid proposed by the port<br />

Add local grid proposed by the port<br />

(C) 2006


Chapter 15<br />

Simulation<br />

After the structure has been set up the input data has to be converted into a suitable format (file with ending .acad) to be<br />

further processed by the <strong>EMPIRE</strong> XCcel TM kernel. This is done by<br />

• Pressing Convert & Save<br />

• Pressing Start Simulation<br />

generate the .acad file and display input statistics<br />

to generate the .acad file and start a basic simulation directly.<br />

Hint 31: Project folder<br />

It is recommended to use one working directory for every project. All simulation data will be stored within or beneath<br />

this directory path. The input file has the ending .gym and contains all necessary information for the simulation. Use Save<br />

as to generate copies of the project.<br />

15.1 Basic Simulation<br />

The simulation will be started by pressing the Start Simulation button . In the upper left region of the <strong>EMPIRE</strong> XCcel TM<br />

window the progress of compilation is being displayed. The simulation starts when the display mode is switched to<br />

Voltage where the evolution of the time domain signals is depicted. The simulation is finished when the display mode is<br />

switched to S-Parameters. The simulation can be aborted by pressing the button.<br />

In case of multiple port excitations, the next port will be excited and a new simulation will be started automatically.<br />

15.2 Advanced Simulation<br />

If more details of the simulation should be displayed the user can switch to the Advanced display mode after pressing the<br />

button Convert & Save .<br />

The simulation is started by selecting Processing - Start in the list and pressing the button Complete Simulation. Then<br />

a log window is displayed, as in Figure 15.1, where some internal information like warnings, messages, and errors are<br />

displayed. During the simulation run, performance and status of the simulation are displayed in the monitor part and<br />

checksums are given to estimate the remaining energy inside the structure.<br />

Setup<br />

• Output level Displays more or less output in the log window<br />

• Number of Timesteps Can be adjusted during simulation<br />

• Checksum Decrement Can be adjusted during simulation<br />

• Apply Set new values<br />

85 (C) 2006


CHAPTER 15. SIMULATION 86<br />

Figure 15.1. Snapshot of a running job<br />

Admin<br />

Action<br />

Status<br />

• Clear Clear log windows<br />

• Save log Save log window to file<br />

• Close Close log window and return to section Processing - Start<br />

• Start Page Return to section Processing - Start without closing log window<br />

• Kill Terminate current simulation without result generation<br />

• Output Sync Write out current near field data<br />

• Steps Already simulated time steps<br />

• Performance measured in million cells each second<br />

• Checksum E,H current checksum decrement, which is a measure for energy, for E and H fields<br />

• Time Time needed to reach the number of time steps<br />

It is possible to adjust the number of time steps during the simulation. This can be useful if the time signals have reached<br />

steady state long before the simulation ends, or if the signals don’t decay fast enough so a larger number of time steps<br />

should be given. The expected end time is displayed in the monitor part of job control. For multi-port simulation, this<br />

time refers to the current port only.<br />

Hint 32: Intermediate results<br />

To obtain intermediate frequency domain results, a new job can be started by returning to the Processing - Start section<br />

and pressing the button PostProc. DFT’s of the current time signals will be performed and the scattering parameters will<br />

be calculated.<br />

(C) 2006


CHAPTER 15. SIMULATION 87<br />

15.3 Batch processing<br />

If several jobs should be executed after another a batch control can be used for this task. For all jobs which should be<br />

simulated the converted files .acad have to exist in the respective folders. To select the different jobs, the search path and<br />

the search depth have to be selected. The jobs to be executed can then be selected by checkmarks.<br />

Figure 15.2. Batch control window<br />

Batch Control<br />

Press Add to add one or more batch jobs to the list<br />

Batch Start<br />

• Simulation Start batch processing<br />

• Postprocessing Generate intermediate results<br />

Batch Admin<br />

• Delete Batch Close batch control<br />

• Close Idle Close finished batch jobs<br />

• Kill All Terminate batch processing - no results will be generated<br />

Batch Setup - Files<br />

• Batch Root relative to current project folder, e.g. .. parent folder<br />

• Search Depth relative to batch root, e.g. 2 for parent folder<br />

• Delete all listed folders (!)<br />

• Generate new subfolders<br />

• Select New Select all new jobs<br />

(C) 2006


CHAPTER 15. SIMULATION 88<br />

• Select All Select all jobs<br />

• Deselect All Deselect all jobs<br />

• Refresh Start new job search<br />

• Stop Filesearch Terminate job search<br />

Batch Setup - Hosts<br />

• Single host - Enable localhost<br />

• Multiple hosts - See section Remote processing<br />

15.4 Optimization<br />

If parametric objects or parametric values have been defined , they can be be varied or optimized using the variator or<br />

Discrete Gradient, respectively. The variator simulates all parameter combinations subsequently. The Discrete Gradient<br />

applies a certain strategy to find the optimum parameter set following the entered optimization goal and terminates the<br />

process if the goal has been reached.<br />

Figure 15.3. Optimizer control window<br />

Control<br />

• Optimization - Press button Add Optimization to add one or more optimization controls<br />

• Optimization Options - The Log Level determines the amount of log output<br />

• Subdirectory Selection - Used only for sequential optimizations<br />

Optimization Action<br />

• Start - Start optimization process<br />

• Stop - Stop optimization process<br />

• Postprocessing - Generate intermediate results<br />

• Clear Log - Empty log window<br />

(C) 2006


CHAPTER 15. SIMULATION 89<br />

• Save Log - Save log into a file<br />

• Delete - Close Optimization control<br />

• Close Idle - Close finished simulations<br />

• Delete Subdirs - Delete previous results<br />

Setup - General<br />

• Optimizer - Optimization method<br />

• Initial Step Factor - Step enlargement for first iteration<br />

• Step Factor Decay - Step decay for next iteration<br />

• Sequential Subdir Calculation - Used for result dependent optimization<br />

Setup - Goal<br />

• Source Files - To be used for goal definition. Press >>> to add to Terms window.<br />

• Parameter Min - Start value of target interval, e.g. f 1<br />

• Parameter Max - End value of target interval, e.g. f 2<br />

• Equation - Goal function. Press >>> to ad to Terms window.<br />

• Reference - Reference Value used for error function.<br />

• Weight - Value used to weight different goals.<br />

Figure 15.4. Goal definition for optimization<br />

Setup - Hosts<br />

• Single host - Enable localhost<br />

• Multiple hosts - See section Remote processing<br />

Setup - Log Window displaying current error and progress of optimization.<br />

(C) 2006


CHAPTER 15. SIMULATION 90<br />

15.5 Remote Processing<br />

If multiple licenses are available in a network, the jobs in the batch and optimization control can be executed remotely<br />

on every machine on which <strong>EMPIRE</strong> XCcel TM is installed and the empire-server is running on. This works for Linux and<br />

Windows and cross installations.<br />

Figure 15.5. Hosts control window<br />

• Add Processor - Select specific host or processor to the host list<br />

• Update Status - Refresh list of available host<br />

• Get hosts - Get a list of all available hosts in the LAN<br />

• Host - Name of the processor to be added to hostlist<br />

• Process Number limit - Specify number of jobs which can be handled by this processor in parallel.<br />

• - Delete host from list<br />

• - Select host for processing<br />

• State - busy if host is processing an own job<br />

• Host - Hostname in network<br />

• Job Limit - Number of jobs which can be run simultaneously<br />

• Availability - Yes / No<br />

• Performance - in Mcells/s<br />

(C) 2006


CHAPTER 15. SIMULATION 91<br />

• Admin - Information of owner, RAM size, etc.<br />

• Jobs - Number of currently running jobs on this host<br />

• Users - Owners of currently running jobs<br />

(C) 2006


Chapter 16<br />

Results<br />

After the simulation all desired values like S-parameters or field dumps are available to be displayed or further processed<br />

by special tools described in this chapter.<br />

16.1 Graph display set up<br />

The following graph display modes are available:<br />

1. Voltage: Voltage time signals files are detected and displayed linear<br />

2. S-Parameters: S-parameter files are detected and displayed logarithmic<br />

3. Impedance: Impedance files are detected and displayed with real and imaginary parts<br />

4. Farfield: Radiation patterns are detected and displayed<br />

5. Additional: User defined graph set up<br />

All setups can be can be changed and saved for the current project.<br />

16.1.1 Display<br />

Graph<br />

Display of the results depending on the adjustments in the Setup. Labels and graph style can be changed in Options.<br />

Legend<br />

Colors and names of the graphs which are displayed, which can be switched on/off<br />

Actions<br />

• update - Reread current data base and update the graph<br />

• print - Print graph<br />

• separate - Open the graph display in a separate window<br />

• save - Save current settings selected in setup and options<br />

• save zoom - Save current zoom selection<br />

• autoscale - Reset zoom<br />

• copy - Copy graph to the windows clipboard to be used, e.g. in Office tools<br />

92 (C) 2006


CHAPTER 16. RESULTS 93<br />

• zoom - Zoom is done by dragging a rectangle in the graph window. Pressing this button displays a help text in the<br />

status area.<br />

• marker - Markers are activated by selecting one of the graphs with the cursor. Pressing this button displays a help<br />

text in the status area.<br />

Status<br />

Displays xy values depending on the cursor position in the graph or a help text after pressing a button.<br />

16.1.2 Setup<br />

General selection - Type<br />

• u(t) - voltage in time steps<br />

• i(t) - current in time steps<br />

• u(f) - voltage over frequency<br />

• i(f) - current over frequency<br />

• s(f) - S-parameters in a Cartesian grid<br />

• s(f) Smith Chart - S-parameters in a Smith chart display<br />

• s(f) Polar - S-parameters in a polar diagram<br />

• z(f) - impedance over frequency<br />

• y(f) - admittance over frequency (to be enabled in Advanced - Postprocessing - General Setup)<br />

• p(f)- power over frequency (to be enabled in Advanced - Postprocessing - General Setup)<br />

• e() - Farfield over angle in a Cartesian grid (to be enabled in Advanced - Postprocessing - Farfield)<br />

• e() polar - Farfield in a polar diagram (to be enabled in Advanced - Postprocessing - Farfield)<br />

• e,h path - Electric or magnetic field along a path (to be enabled in Advanced - Postprocessing - Equations<br />

• sc(f) - Scattering cross section over frequency Advanced - Postprocessing - Farfield - Frequency dependent results)<br />

General selection - Flavor<br />

• magnitude lin = |y(x)| Magnitude in linear style<br />

• magnitude dB = 20log|y(x)| Magnitude in logarithmic style<br />

• angle degrees = ϕ( f ) = 180<br />

π<br />

• group delay = 1<br />

• VSWR = | 1+s<br />

1−s |<br />

dϕ<br />

2π d f<br />

arctan<br />

Is<br />

Rs<br />

• magnitude lin/angle - Linear magnitude and angle in degree of complex value<br />

• magnitude dB/angle - Logarithmic magnitude and angle in degree of complex value<br />

• Re/Im - Real and imaginary part of complex value<br />

• Re - Real part of complex value<br />

(C) 2006


CHAPTER 16. RESULTS 94<br />

• Im - Imaginary part of complex value<br />

General selection - Name in Legend<br />

Usage<br />

• - Folder and filename, where project folder is regarded as root folder<br />

• - Filename, only<br />

• anyname - Name can be userdefined<br />

1. Select or enter Name in legend<br />

2. Select file in Files list<br />

3. Press add ==> (or right mouse button) to add to Graphs list<br />

General selection - File Filter<br />

The Files list detects result files automatically depending on the Type selection. It may contain many files, especially in<br />

parameter variation subfolders. The automatic file detection can be limited by applying a file filter.<br />

Usage<br />

1. Enter a filter expression using the wildcard replacer *, e.g. ut*<br />

2. Press reread in the Action area<br />

Scaling<br />

The range of the graphs can be adjusted by selecting one of the predefined values or by entering values manually. The<br />

values have always to be entered in basic units, e.g. in Hz for the frequency (1 GHz = 1000000000 = 1e9).<br />

Curves<br />

• xstart - Left limit of graph<br />

• xstop - Right limit of graph<br />

• xgrid - Interval size of grid lines on ordinate<br />

• ystart - Bottom limit of graph<br />

• ystop - Top limit of graph<br />

• ygrid - Interval size of grid lines<br />

Files - List of result files which are detected automatically depending on the Type selection.<br />

Graphs - List of result files which are selected for display.<br />

Action<br />

• add ==> - Add result file from Files to Graphs list<br />

• import - Add result file from other projects to the Files list. This is very helpful for displaying results from different<br />

simulation runs or measurements.<br />

• delete - Delete result file from the Graphs list<br />

• delete all - Clear Graphs list<br />

• view - Switch back to Display using the current selections<br />

• reread - Update Files list<br />

• save - Save settings for the selected display mode<br />

• export - Generate a .gif image of the graph<br />

(C) 2006


CHAPTER 16. RESULTS 95<br />

16.1.3 Options<br />

General<br />

• Title - Can be selected from a list (e.g time, date, project folder) or userdefined<br />

• Xlabel - Can be selected from a list or userdefined<br />

• Ylabel - Can be selected from a list or userdefined<br />

• Xaxis unit prefix - Scaling factor for x axis<br />

• Yaxis unit prefix - Scaling factor for y axis<br />

• Legend position - Used for exported images<br />

• Max. file search depth - Autodetection of result files for the Files list. Default is 1.<br />

• Display time axis - If enabled the number of time steps is multiplied by time step size<br />

• Use symbols - Can be used to distinguish curves if colors are insufficient<br />

Screen<br />

Properties of the screen display<br />

• Maximum Number of Data points<br />

• Geometry<br />

• Automatic Update<br />

• Use big crosshair cursor<br />

• Legend in separate window<br />

Export<br />

Properties of the export images<br />

• Maximum Number of Data points<br />

• Format Computer Graphics Meta-file format .cgm output is well suited to be imported in e.g. Word documents and<br />

can be further processed.<br />

• Font Size of characters<br />

• Resolution<br />

• Export color plot black/white or colored lines<br />

• Use dashed lines Dashed lines can be selected for a black/white output<br />

• Landscape output or portrait style<br />

Print<br />

Only used for Linux operation systems. On Windows, the usual printer menu is used.<br />

Smith Chart, Polar<br />

• Char. Impedance - Smith Chart (SC) impedance<br />

• Number of tics - SC Number of internal impedance circles<br />

(C) 2006


CHAPTER 16. RESULTS 96<br />

• Polar Number of angle tics - Number of angle intervals<br />

• Polar Number of radius tics - Number of radius intervals<br />

• Tic factor - SC factor between impedance circles<br />

• Start frequency - SC first frequency to be displayed<br />

• Stop frequency - SC last frequency to be displayed<br />

• Frequency steps - SC Number of steps between Start and Stop frequency<br />

16.2 Advanced Postprocessing<br />

To obtain more advanced results already calculated data can be further processed. This is done in the Advanced display<br />

mode in section Postprocessing<br />

Hint 33: Advanced display mode<br />

The Advanced folder can only be opened if the Convert and Save button<br />

carried out.<br />

has been pressed or a simulation has been<br />

An overview of the subfolder structure and the available data is gathered in the subfolder list.<br />

16.2.1 List of Subfolders<br />

Here, the definitions of the results are displayed by pressing ⊞<br />

sub-i (i is a number of a port which has been excited)<br />

• DFT Definition of frequency transformations<br />

• FDTD Time domain results<br />

• INCREF Calculation of incident and reflected waves 1<br />

• P Available if enabled in General setup<br />

• SPAR Calculation of S-parameters<br />

• USERDEF Userdefined equations<br />

• Z Impedance calculation definition<br />

• Y Available if enabled in General setup<br />

sub-all Result folder for all subdirectories<br />

• USERDEF Userdefined equations<br />

spar Result folder for all S-parameters<br />

• USERDEF Location for S-parameter source files only, e.g. Touchstone files<br />

ypar Result folder for all Y-parameters<br />

• USERDEF Location for S-parameter source files only, e.g. Touchstone files or Spice net lists.<br />

The Delete Selection applies to the USERDEF folders only.<br />

1 lpi is the lumped port impedance<br />

(C) 2006


CHAPTER 16. RESULTS 97<br />

16.2.2 General Setup<br />

Hint 34: Advanced settings<br />

If settings have to be changed or equations have been entered for Postprocessing use the Save button<br />

settings.<br />

to store the<br />

• Power Calculation To be enabled if power of ports shall be calculated<br />

• Admittance Calculation To be enabled if admittance of ports shall be calculated<br />

• Update Update the subfolder list<br />

• Reset Close the subfolder list<br />

16.2.3 Equations<br />

Hint 35: Userdefined equations<br />

Equations can be defined by<br />

1. pressing on one of the USERDEF folders<br />

2. selecting a suitable equation type<br />

3. editing the equation<br />

Time/Frequency domain<br />

Linear Equation<br />

y(t, f ) = a 1 x 1 (t, f ) + a 2 x 2 (t, f ) + ...<br />

Usage<br />

1. press on USERDEF in the desired subfolder sub-i<br />

2. press on Linear equation<br />

3. Enter destination file name<br />

4. Enter factor a 1 and select result file<br />

5. Optionally, press Add button to add more terms<br />

File Copy<br />

y(t, f ) = f olderexpression\x(t)<br />

Usage<br />

1. press on USERDEF in the desired subfolder sub-i<br />

2. press on File Copy<br />

3. Enter destination file name<br />

4. Enter copy expression, e.g. ut3 = ..\\sub − 3\ut1<br />

(C) 2006


CHAPTER 16. RESULTS 98<br />

Frequency Domain<br />

Voltage/Current Processing - Relation<br />

y( f ) = x 1 ( f )/x 2 ( f )<br />

Usage<br />

1. press on USERDEF in the desired subfolder sub-i<br />

2. press on Relation<br />

3. Destination Enter destination file name<br />

4. Terms Enter (complex) frequency domain result files<br />

Voltage/Current Processing - Symbolic Equation<br />

y( f ) = y 1 (x 1 ( f )) + y 2 (x 2 ( f )) + ...<br />

Usage<br />

1. press on USERDEF in the desired subfolder sub-i<br />

2. press on Symbolic equation<br />

3. Enter destination file name<br />

4. Enter source file x 1<br />

5. Optionally, press Add button to add more source files<br />

6. Enter mathematical expression Term<br />

S-Parameter Processing - Loss Calculation<br />

If N is the number of ports:<br />

√<br />

s 0 i = 1 − ∑ N n=1 |s n i| 2<br />

Usage<br />

1. press on USERDEF in the desired subfolder sub-i<br />

2. press on Loss calculation<br />

3. Select Loss Calculation S-Parameters<br />

S-Parameter Processing - Touchstone File<br />

f ile.snp = Touchstone(n × n -S-Matrix)<br />

Usage<br />

1. press on USERDEF in the subfolder spar 2<br />

2. press on Touchstone File<br />

3. Destination Filename<br />

4. Select S Parameter Ports<br />

Y-Parameter Processing - Y and S parameter<br />

f ile.snp = Y PAR(n × n-Y-Matrix)<br />

Usage<br />

2 or ypar if enabled<br />

(C) 2006


CHAPTER 16. RESULTS 99<br />

1. press on USERDEF in the subfolder ypar<br />

2. press on Y and S parameter<br />

3. Destination Filename<br />

4. Select Y/S Parameter Ports<br />

Y-Parameter Processing - Y and S parameter for deembedding<br />

f ile.snp = Y PAR DEEM(n × n-Y-Matrix)<br />

Usage<br />

1. press on USERDEF in the subfolder ypar<br />

2. press on Y and S parameter for deembedding<br />

3. Destination Filename<br />

4. Select Y/S Parameter Ports<br />

Y-Parameter Processing - Spice Model<br />

f ile.net = Y PAR(n × n-Y-Matrix)<br />

Usage<br />

1. press on USERDEF in the subfolder ypar<br />

2. press on Spice Model<br />

3. Destination Filename<br />

4. Select Spice Parameter Ports<br />

• Destination Filename - ending .net<br />

• Spice Parameter Ports - Convention: every odd port i is connected to the even port i+1<br />

• Frequencies Frequency range for fitting spice model<br />

16.2.4 Farfield<br />

This setup is only available if an NF-2-FF box has been defined in the simulation set up and a file called, e.g. nf2ff 1 has<br />

been generated.<br />

Usage To add a Farfield equation<br />

1. Select the subfolder where the far field has to be calculated, e.g. sub-1<br />

2. Press on USERDEF in the subfolder list<br />

3. Press on Far Field Calculation<br />

Farfield Setup<br />

• Near field file - File name which has been used in the NF-to-FF property definition<br />

• Normalization - Select between Directivity, Excitation, Gain, or Maximum<br />

• Sweep Mode - Single angle sweep or sweep over both angles<br />

• Fixed Angle - in degree, for single angle sweep<br />

(C) 2006


CHAPTER 16. RESULTS 100<br />

• Angle Step - in degree, for angle to be swept<br />

• Angle Start - in degree, for angle to be swept<br />

• Angle Stop - in degree, for angle to be swept<br />

• Rotation - used to swap radiation direction to z-axis<br />

• Phase Center Translation - in m, e.g. z 1e − 3 for 1 mm<br />

• Array Setup - linear or rotational array<br />

Selection<br />

• General - Enable transformation - Can be disabled to save time in subsequent postprocessings<br />

• General - Frequency dependent results - Used to generate, e.g. gain vs frequency<br />

• Frequency in Hz - List of frequencies defined in the NF-to-FF property definition<br />

• Output - To select the desired Farfield components<br />

• Misc - RCS calculation - Scattering cross section calculation<br />

• Misc - Power calculation - determined from Poynting vector integration on NF-to-FF box<br />

• Recognize near field at - Can be disabled if radiation in the respective direction can be neglected<br />

• Enable BOUNDARY Mirroring at - To be used if a symmetry plane has been used<br />

• FF BOX Mirroring at - can be used if a symmetry plane should be defined at one side of the NF-to-FF box<br />

16.2.5 Field Path<br />

This setup is only available if a dump box has been defined in the simulation set up and a file called, e.g. fdump 1 has<br />

been generated.<br />

Field Path Setup<br />

• Field Distribution File Name of the field dump defined in structure setup<br />

• Output File Prefix Can be selected to distinguish different result files<br />

• Normalization - Can be normed to 1A if1, 1V uf1, or excitation function ef for absolute value<br />

• Factor weight<br />

• Samples Number of supporting points used in field path<br />

Points (Units)<br />

Points have to inside the respective field dump box.<br />

Usage<br />

1. X Enter x coordinate of start point<br />

2. Y Enter y coordinate of start point<br />

3. Z Enter z coordinate of start point<br />

4. Add Add subsequent points to define a path through the field dump box<br />

5. Delete Delete last entered point<br />

(C) 2006


CHAPTER 16. RESULTS 101<br />

Selection<br />

• General - Calculation can be disabled to save time in subsequent postprocessings<br />

• Frequency in Hz - Frequency points which have been defined in field dump definition<br />

• Output - Select component<br />

• Interpolation - Select or deselect interpolation schemes<br />

(C) 2006


Part III<br />

User Interface Reference<br />

102 (C) 2006


Chapter 17<br />

Actions<br />

17.1 Clear<br />

1 Clear Selections<br />

Shortcut: Esc<br />

All selections will be de-selected.<br />

Pressing this button will clear all stack entries.<br />

Equivalent to ESCAPE key.<br />

17.2 Copy<br />

2 Copy<br />

Operates on Polygon Objects, Solid Objects, Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

Copy selected OBJECT(s) according to the entered ARROW(s).<br />

Selection: OBJECT and ARROW<br />

3 Mirror Constructive<br />

Operates on Polygon Objects, Discretisation Objects, Solid Objects, Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

103 (C) 2006


CHAPTER 17. ACTIONS 104<br />

The selected OBJECTs/GRID lines are mirrored at a 1D ARROW.<br />

The selected OBJECTs/GRID lines are maintained.<br />

Note:<br />

Only 1D arrows are permitted for mirror operation.<br />

Selection: OBJECT/GRID lines and ARROW<br />

4 Copy Assign Arrow<br />

Operates on Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

Creates new BOX(es) with the cross section of the entered ARROW(s).<br />

The height is copied from the selected BOX.<br />

Selection: BOX and ARROW(s)<br />

5 Rotate Constructive<br />

Operates on Polygon Objects, Solid Objects, Box Objects,operand Point Objects.<br />

The selected OBJECTs will be rotated around the<br />

entered POINT which acts as the rotational axis.<br />

The rotation angle is entered positive for counterclockwise<br />

rotation.<br />

Original objects are maintained.<br />

Note:<br />

Angle may be parametric, e.g. a<br />

17.3 Create<br />

6 Create Box (default)<br />

Operates on Arrow Objects.<br />

Creates a BOX from an ARROW.<br />

Forward usage:<br />

- Press Button<br />

- Enter BOX co-ordinates on the left / Enter Arrow<br />

- Press OK<br />

Backward usage:<br />

- Enter an arrow in drawing area (drag left mouse button)<br />

- Press Icon<br />

Note:<br />

The layer height has to be normal to the current view.<br />

(C) 2006


CHAPTER 17. ACTIONS 105<br />

7 Create Cylinder (default Circular)<br />

Operates on Arrow Objects.<br />

Creates a 3D circular cylinder defined by an arrow.<br />

The starting point of the ARROW is the origin of the circle<br />

and the length defines its radius.<br />

Forward usage:<br />

- Press Button<br />

- Enter co-ordinates on the left / Enter an arrow<br />

- Press OK<br />

Backward usage:<br />

- Enter an arrow in drawing area (drag left mouse button)<br />

- Press Icon<br />

Note: The layer height must be normal to the current view.<br />

8 Create Poly<br />

Operates on Point Objects.<br />

Creates a closed POLYgon from a set of POINTS.<br />

Forward usage:<br />

- Press Button<br />

- Enter Point co-ordinates on the left<br />

- optionally, insert points by pressing up/down icons<br />

Backward usage:<br />

- Enter set of points in drawing area (left mouse button)<br />

- Press Icon<br />

Note: The layer height has to be normal to the current view<br />

Note: Each corner can be rounded by<br />

- Open the left list + Structure + Poly<br />

- Select desired Poly<br />

- Enter radius value of each corner<br />

9 Create Bond Wire<br />

Operates on Arrow Objects.<br />

Create a bond wire between the start and end<br />

point of the entered arrow.<br />

The height and slope information is entered afterwards<br />

or can be adjusted in the options menu: Bond wires.<br />

A third-order polynomial will be used as the shape.<br />

10 Insert Port<br />

(C) 2006


CHAPTER 17. ACTIONS 106<br />

Starts the Library wizard for port definition<br />

Inserts a (parallel) PORT into the structure which<br />

- has the direction of a 1D arrow between Point 0 and Point 1<br />

- insertion height is defined by the current layer arrow<br />

Exception:<br />

Perpendicular (lumped) Port<br />

- has the direction of the current layer arrow<br />

- cross section is defined by Point 0 and Point 1<br />

Note:<br />

MSL, CPW and Stripline Ports get the properties of the current layer.<br />

Coaxial and Lumped Ports possess their own properties.<br />

11 Create Discretisation<br />

Starts the Automatic Meshing Engine, to e.g. check the structure<br />

after discretization.<br />

Depending on the entered objects, layer settings, and global<br />

parameters in the Simulation Setup a grid is generated automatically.<br />

This operation is also executed on pressing "Convert and Save" or<br />

"Start simulation" unless the Discretization is set to "<strong>Manual</strong>".<br />

The Autodisc Parameters may be adjusted in the Simulation Setup.<br />

Advanced Autodisc parameters may only be adjusted if the<br />

Discretisation is set to "User-defined"<br />

17.4 DRC<br />

12 Discretize<br />

The structure is discretized using the current grid and<br />

displayed in the 3D rendered mode. To return to the<br />

drawing mode, press ’Draft’ Display.<br />

The original strucutre will not be modified.<br />

Note: Recommended for checking staircase approximation.<br />

17.5 Delete<br />

13 Empty Discretisation<br />

Operates on Discretisation Objects.<br />

Deletes all non-fixed lines on the selected GRID bar.<br />

Non-fixed Lines are thin and red.<br />

Note:<br />

To de-select a GRID bar, press ESC.<br />

14 Empty Fixed<br />

(C) 2006


CHAPTER 17. ACTIONS 107<br />

Operates on Discretisation Objects.<br />

Deletes all lines (fixed and non-fixed) on the selected GRID bar.<br />

Note:<br />

To de-select a GRID bar, press ESC.<br />

Undo will work.<br />

17.6 Display<br />

15 Zoom Extends<br />

Shortcut: z<br />

Displays the drawing to the overall extends.<br />

Note:<br />

Zoom may influence current cursor snap.<br />

16 Return To Last View<br />

Swap between current and last view<br />

17 Zoom Window<br />

Operates on Arrow Objects.<br />

Shortcut: z<br />

Zoom into the region which is marked by the entered ARROW.<br />

18 Redraw<br />

- Updates the drawing with the current database.<br />

- Deletes Snap co-ordinates which have been added<br />

by selecting an object<br />

(C) 2006


CHAPTER 17. ACTIONS 108<br />

17.7 Edit<br />

19 Undo<br />

Shortcut: u<br />

Cancel last action.<br />

Multiple Undos are possible.<br />

20 Redo<br />

Shortcut: r<br />

Recover a cancelled action.<br />

The possible number of redos is equal the numbers of undos.<br />

17.8 Elements<br />

21 Delete Elements<br />

Operates on Polygon Objects.<br />

The active (green) handles of the selected POLY will be deleted.<br />

Note:<br />

Handles can be activated (green) / de-activated (red) by clicking<br />

them with left mouse button. Undo will work.<br />

22 Insert Between<br />

Operates on Polygon Objects,operand Point Objects.<br />

Insert entered POINTS between two green handles.<br />

Selection: POLY and POINTs<br />

(C) 2006


CHAPTER 17. ACTIONS 109<br />

17.9 File<br />

23 Save<br />

Saves the current input data into a the standard<br />

input file with ending .gym<br />

24 Convert & Save<br />

This operation<br />

- starts the automatic discretization if not disabled<br />

- converts the drawing in a suitable data file .acad for simulation<br />

- saves the current input file as .gym.<br />

- checks object properties and grid resolution<br />

Operation needed if the simulation should be started in the<br />

"Advanced" Mode<br />

25 Start Simulation<br />

This operation<br />

- starts the automatic discretization if not disabled<br />

- converts the drawing in a suitable data file .acad for simulation<br />

- saves the current input file as .gym.<br />

- compiles the structure (pre-processing)<br />

- starts the simulation and switches to the Voltage display during simulation<br />

- generates results (post-processing)<br />

- switches to S-Parameter display when data available<br />

It is recommended to press "Convert and Save" to check the structure first.<br />

17.10 Layer<br />

26 Open Current Layer<br />

Adjust Layer settings<br />

Open the current layer for the purpose of<br />

+ Set / Add / change Properties<br />

+ Set layer height<br />

+ Adjust color, style, visibility, ...<br />

+ Create, copy, activate layers<br />

27 Assign To Current Layer’s Arrow<br />

Operates on Geometric Objects.<br />

The selected OBJECTs heights are assigned to the active layer’s height.<br />

28 Copy To Current Layer<br />

(C) 2006


CHAPTER 17. ACTIONS 110<br />

Operates on Geometric Objects.<br />

Copy the selected OBJECTs to the current (active) layer.<br />

17.11 <strong>Manual</strong> Disc<br />

29 Generic Discretisation<br />

Operates on Discretisation Objects.<br />

Detects all edges of BOXes and corners of POLYs and fills<br />

the selected GRID bar with Fixed Lines which are marked<br />

black and bold.<br />

Note: Previous entered lines (also fixed ones) will be deleted.<br />

Selection: GRID bar<br />

Hint: More functionality is available by entering a NUMBER as base spacing.<br />

Undo will work.<br />

30 Smooth Discretisation<br />

Operates on Discretisation Objects.<br />

All Intervals on the selected GRID bars are filled automatically<br />

with non-fixed lines using a special smoothing algorithm.<br />

An interval must be enclosed by a Pair of 2 Fixed Lines<br />

(entered by e.g. middle mouse button on the grid bar)<br />

The algorithm can be used to obtain a smooth transition<br />

from fine to coarse mesh and vice versa.<br />

Selection: GRID bar<br />

Note: Non-fixed lines will be deleted.<br />

Undo will work.<br />

31 Smooth Discretisation Marked<br />

Operates on Discretisation Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 111<br />

Only the marked intervals on the selected GRID bars are filled automatically<br />

using a special smoothing algorithm.<br />

An interval must be enclosed by a Pair of 2 Fixed Lines.<br />

The algorithm can be used to obtain a smooth transition from<br />

fine to coarse mesh.<br />

Note:<br />

To mark an interval press (or drag) left mouse button on GRID bar in the<br />

respective intervals<br />

Note: Non-fixed lines will be deleted.<br />

Undo will work.<br />

17.12 Misc<br />

32 Options<br />

Modify settings, like:<br />

- Background colors for Draft and 3D Mode<br />

- Draft mode (2D) settings<br />

- 3D mode setiings<br />

- Layout and 3D Data Import/Export options<br />

- Default operations<br />

- GUI size and cursor appearance<br />

- Legend and Measurement<br />

- Polygon attributes<br />

- Defaults for Bond wires, Solids, via fences<br />

- Snap and Object selection<br />

- Discretization<br />

33 +/-<br />

Operates on Number Objects.<br />

Shortcut: m<br />

The entered NUMBER is multiplied by -1.<br />

Selection: NUMBER<br />

34 1/x<br />

Operates on Number Objects.<br />

Shortcut: i<br />

The entered NUMBER is replaced by its reciprcial value.<br />

Selection: NUMBER<br />

35 Add Numbers<br />

(C) 2006


CHAPTER 17. ACTIONS 112<br />

Operates on Number Objects,operand Number Objects.<br />

Shortcut: <br />

Adds the last two entered NUMBERs.<br />

Selection: NUMBERs<br />

36 Divide Numbers<br />

Operates on Number Objects,operand Number Objects.<br />

Shortcut: <br />

The last but one NUMBER is divided by the last entered NUMBER.<br />

The result is a integer number.<br />

Selection: NUMBERs<br />

37 Edit<br />

Operates on Point Objects, Arrow Objects, Number Objects.<br />

Edit co-ordinates of entered ARROW/POINT/NUMBER<br />

38 Edit Text<br />

Operates on Geometric Objects,operand Text Objects.<br />

Shortcut: <br />

Sets the current TEXTstring to the object<br />

Selection: OBJECT and TEXT<br />

39 Enter Text String<br />

Operates on Text Objects.<br />

Shortcut: -<br />

Composes a text string for labelling purposes<br />

Usage:<br />

- Press button<br />

- Press the ENTER key<br />

- drag right mouse button from handles to the desired position<br />

Note:<br />

By default the font size is 35 units.<br />

The font size of the text and the distances can be adjusted in:<br />

Options - Vector Font - Font hight (in drawing units)<br />

40 Multiply Numbers<br />

(C) 2006


CHAPTER 17. ACTIONS 113<br />

Operates on Number Objects,operand Number Objects.<br />

Shortcut: <br />

Multiplies the last two entered NUMBERs.<br />

Selection: NUMBERs<br />

41 Push Regular Expression<br />

Operates on Text Objects.<br />

All objects which properties match the entered TEXT are pushed to the stack.<br />

Note:<br />

Replacers (*, ?, []) may be used.<br />

42 Set Coordinate Origin (move All)<br />

Operates on Point Objects.<br />

Move origin to the entered point.<br />

The origin is indicated by green triangles on top<br />

and right grid bars.<br />

43 Set height<br />

Operates on Polygon Objects,operand Arrow Objects.<br />

Shortcut: <br />

Set new height of the selected POLYs defined by the entered ARROW.<br />

The ARROW must be a 1D arrow, perpendicular to the polygon cross section.<br />

Selection: ARROW and POLY(s)<br />

44 Subtract Numbers<br />

Operates on Number Objects,operand Number Objects.<br />

Shortcut: <br />

The last but one NUMBER is substracted by the last NUMBER.<br />

Selection: NUMBERs<br />

45 Toggle Mode<br />

(C) 2006


CHAPTER 17. ACTIONS 114<br />

Operates on Measure Objects.<br />

Shortcut: i<br />

Changes style of outline measurement.<br />

17.13 Mode<br />

46 Change To Poly<br />

Operates on Rotpolygon Objects, Bondwire Objects.<br />

Converts the selected LINPOLY or ROTPOLY to a (closed) POLY<br />

with the current layer height.<br />

47 Change To Rotpoly<br />

Operates on Polygon Objects,operand Arrow Objects.<br />

Shortcut: <br />

Revolves a cross section of a polygon around an axis.<br />

The rotational axis is defined by a 1D ARROW<br />

and the first value of the layer height.<br />

Note:<br />

The entered ARROW must be in the plane of the poly cross section<br />

directed in either x,y, or z direction.<br />

17.14 Modify<br />

48 Move<br />

Operates on Polygon Objects, Solid Objects, Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

Shifts the selected OBJECTs acccording to the entered ARROW.<br />

Selection: OBJECT and ARROW<br />

Forward usage:<br />

+ Press Icon<br />

+ Select object(s)<br />

+ Enter shift arrow<br />

Backward usage:<br />

+ Enter shift arrow<br />

+ Select object(s)<br />

+ Press Icon<br />

(C) 2006


CHAPTER 17. ACTIONS 115<br />

49 Stretch<br />

Operates on Polygon Objects, Solid Objects, Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

The green handles of the selected OBJECTs will be stretched<br />

according to the entered ARROW.<br />

Hint: To select/deselect handles click them with the left mouse button.<br />

Hint: Handles can also be selected in the Draft 3D Iso View<br />

Hint: A group of handles can be selected by operation "Select overlapping"<br />

entering the range arrow from top left to right bottom.<br />

Selection: POLYs and ARROW<br />

Forward usage:<br />

+ Press Icon<br />

+ Select object<br />

+ Select corners/edges to be stretched<br />

+ Enter shift arrow<br />

Backward usage:<br />

+ Select object<br />

+ Select corners/edges to be stretched<br />

+ Enter shift arrow<br />

+ Press Icon<br />

Hint: If the shift arrow starts at one active handle<br />

pressing the icon is obsolete.<br />

50 Mirror Destructive<br />

Operates on Polygon Objects, Discretisation Objects, Solid Objects, Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

The selected OBJECTs/GRID lines are mirrored at a 1D ARROW.<br />

The selected OBJECTs/GRID lines are deleted.<br />

Selection: OBJECT/GRID lines and ARROW<br />

Note: Only 1D arrows are permitted for mirror operation.<br />

51 Assign Arrow<br />

Operates on Box Objects,operand Arrow Objects.<br />

Shortcut: <br />

Modify the cross section of the selected BOX according<br />

to the entered arrow.<br />

If the entered arrow is 1-dimensional the cross section will be<br />

modified in this direction, only.<br />

Selection: BOX and ARROW<br />

52 Edit Parameters<br />

(C) 2006


CHAPTER 17. ACTIONS 116<br />

Operates on Port Objects.<br />

Edit parameters of the selected library elements.<br />

53 Rotate Destructive<br />

Operates on Polygon Objects, Solid Objects, Box Objects,operand Point Objects.<br />

The selected OBJECTs will be rotated around the<br />

entered POINT which acts as the rotational axis.<br />

The rotation angle is entered positive for counterclockwise<br />

rotation.<br />

Original objects are deleted.<br />

Note:<br />

Angle may be entered parametric, e.g. a<br />

54 Set Port Number(s)<br />

Operates on Port Objects,operand Number Objects.<br />

Shortcut: <br />

Changes the Port number of the selected library element<br />

Forward usage:<br />

- Select Port<br />

- Press Button<br />

- Enter new Port number<br />

Backward usage:<br />

- Type number<br />

- OK (or press right mouse button)<br />

- Select Port<br />

- Press Button<br />

17.15 Operate<br />

55 Merge<br />

Operates on Geometric Objects.<br />

An object is created which is defined by the total volume<br />

of the selected OBJECT(s)<br />

Note: If the objects’ type are not equal they will be converted into<br />

Polygons or Solids<br />

(C) 2006


CHAPTER 17. ACTIONS 117<br />

56 Subtract<br />

Operates on Geometric Objects.<br />

The second selected OBJECT will be subtracted from the<br />

first selected OBJECT<br />

Note:<br />

If the objects’ type are not equal they will be converted into<br />

Polygons or Solids<br />

17.16 Select<br />

57 Select Enclosed<br />

Operates on Arrow Objects.<br />

Shortcut: e<br />

Selects all objects which are enclosed by the entered ARROW.<br />

Note:<br />

Objects on a locked or switched-off layer are disregarded.<br />

58 Select Overlapping<br />

Operates on Arrow Objects.<br />

Shortcut: p<br />

Selects all objects which are enclosed or partially lie<br />

inside the region defined by the entered ARROW.<br />

Note:<br />

Objects on a locked or switched-off layer are disregarded.<br />

17.17 Structure<br />

59 Erase<br />

Operates on Geometric Objects.<br />

Shortcut: <br />

All selected objects will be erased.<br />

Undo will work.<br />

(C) 2006


CHAPTER 17. ACTIONS 118<br />

17.18 View<br />

60 Right View<br />

Displays the current drawing from the right.<br />

z and y co-ordinates will be displayed.<br />

Normal direction is + x.<br />

61 Front View<br />

Displays the current drawing from the front.<br />

z and x co-ordinates will be displayed.<br />

Normal direction is - y.<br />

62 Top View<br />

Displays the current drawing from the top.<br />

x and y co-ordinates will be displayed.<br />

Normal direction is + z (standard view).<br />

63 View Iso X<br />

Displays the current drawing in a 3D view.<br />

Lines parallel to the x-axis are displayed as vertical.<br />

64 View Iso Y<br />

Displays the current drawing in a 3D view.<br />

Lines parallel to the y-axis are displayed as vertical.<br />

65 View Iso Z<br />

Displays the current drawing in a 3D view.<br />

Lines parallel to the z-axis are displayed as vertical.<br />

17.19 Advanced<br />

17.19.1 Advanced/Add<br />

66 Add Fixed<br />

Operates on Discretisation Objects,operand Point Objects.<br />

Shortcut: <br />

(C) 2006


CHAPTER 17. ACTIONS 119<br />

The entered POINTs or ARROWs will be added as Fixed Lines<br />

on the selected GRID bar.<br />

Fixed Lines are marked black and bold on GRID bar.<br />

To select press left mouse button on GRID bar.<br />

Selection: POINT or ARROW and GRID<br />

67 Add To Discretisation<br />

Operates on Discretisation Objects,operand Point Objects.<br />

Shortcut: <br />

The entered POINTs or ARROWs will be added as<br />

un-fixed lines on the selected GRID bar.<br />

Non-fixed Lines are marked as red thin lines.<br />

To select press left mouse button on GRID bar.<br />

Selection: POINT or ARROW and GRID<br />

17.19.2 Advanced/Calc<br />

68 User Vertex Transform<br />

Operates on Solid Objects.<br />

Vertices of the selected Solid(s) will be transformed<br />

according to a user defined Python script.<br />

Note: A Python script .py has to be located in the project folder<br />

17.19.3 Advanced/Convert<br />

69 Combine Multibox<br />

Operates on Box Objects.<br />

Combines several BOXes into one MULTIBOX.<br />

Multiboxes must have common TEXT and LAYER attributes.<br />

70 Convert Multibox to Polygon<br />

Operates on Box Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 120<br />

Multibox objects are converted to Polygons.<br />

71 Convert To Poly<br />

Operates on Solid Objects, Box Objects.<br />

If possible, the selected Solid(s) will be transformed<br />

into POLYGON(s).<br />

Note: Only possible if a Solid is cylindrical in one direction<br />

Convert BOX to extruded (closed) POLYgon.<br />

Handles will be placed from edges to corners.<br />

72 Convert To Solid<br />

Operates on Geometric Objects.<br />

Convert OBJECT(s) to Solid(s).<br />

Note:<br />

A Solid is an arbitrary 3D object consisting of triangles.<br />

Handles will be placed at their corners.<br />

73 Explode Library Element<br />

Operates on Port Objects.<br />

The selected library element is exploded into its<br />

basic parts applying the current discretization,<br />

i.e. metal boxes, current and voltage boxes.<br />

The library element can only be recovered using Undo.<br />

Selection: Library element<br />

74 Explode Multibox<br />

Operates on Multibox Objects.<br />

MULTIBOXes will be divided into single BOXes.<br />

Only BOXes may be modified.<br />

75 Show Exploded Library Element<br />

Operates on Port Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 121<br />

The selected library element is maintained. The<br />

basic parts applying the current discretization,<br />

i.e. metal boxes, current and voltage boxes are<br />

shown in addition.<br />

Use redraw to erase the exploded view.<br />

Selection: Library element<br />

17.19.4 Advanced/Copy<br />

76 Multiple Copy<br />

Operates on Geometric Objects.<br />

Copy selected OBJECT(s) according to an array expression:<br />

mcopy(dx=a,dy=b,dz=c,nx=m,ny=l,nz=p)<br />

where a,b,c are the shifts in x,y,z direction<br />

and m,l,p are the numbers of copies in x,y,z direction<br />

Note:<br />

More complex copy operations are possible using a map function, e.g.<br />

’mcopy(dx=45,nx=8,map= lambda x,y,z: (100*cos(x/180*3.1415),100*sin(x/180*3.1415),0))’<br />

copies an object 8 times around a circle with an angle step of 45 degrees<br />

17.19.5 Advanced/Create<br />

77 Create Box<br />

Operates on Arrow Objects.<br />

Creates a 3D BOX which cross section is defined by an arrow<br />

in the current drawing plane.<br />

The height co-ordinates are edited afterwards.<br />

Note:<br />

Arithmetic Error if the entered arrow is parallel to one axis<br />

78 Create Linpoly<br />

Operates on Point Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 122<br />

Creates an unclosed polygon (LINPOLY) after entering a set of points.<br />

At least two points are required.<br />

Unclosed polygons can be used for defining wires.<br />

The third dimension is defined by assigning a tangent or normal arrow<br />

to the LINPOLY in an alternative view.<br />

79 Create Measure<br />

Operates on Point Objects.<br />

Creates a legend with a default text after entering an ARROW.<br />

or<br />

Creates a measurement arrow after entering 3 POINTS.<br />

The first POINT defines the position of the measurement number,<br />

the subsequent POINTS define the measurement distance.<br />

Note:<br />

The first two POINTS should be orthogonal to the measurement line.<br />

Note:<br />

The measurement has no effect on simulation.<br />

80 Legend<br />

Operates on Box Objects,operand Arrow Objects.<br />

Creates a legend to the selected Box with a default text.<br />

This Text can be edited for e.g. documentation purposes.<br />

Note.<br />

The legend has no effect on simulation.<br />

Selection: BOX and ARROW<br />

17.19.6 Advanced/DISC<br />

81 Propose Discretization<br />

Operates on Port Objects,operand Discretisation Objects.<br />

Shortcut: <br />

Adds discretization lines to the selected GRID bar<br />

proposed by the library element.<br />

Note:<br />

The rules for proposing lines can be adjusted with the library wizard.<br />

Note: Use Explode, Discretize to check the right discretization.<br />

Apply Undo to recover library element.<br />

Selection: Library element and GRID bar<br />

(C) 2006


CHAPTER 17. ACTIONS 123<br />

82 Propose Discretization (e/s)<br />

Operates on Port Objects.<br />

Deletes current discretization (x, y, and z) and<br />

inserts discretization lines proposed by the library<br />

wizard.<br />

Selection: GRID bar and Library element<br />

Undo will work.<br />

83 Propose Discretization (local)<br />

Operates on Port Objects,operand Discretisation Objects.<br />

Shortcut: <br />

Locally adds discretization lines to the selected<br />

GRID bar proposed by the library element.<br />

Note:<br />

The rules for proposing lines can be adjusted<br />

with the library wizard.<br />

Note: Use Explode, Discretize to check the right discretization.<br />

Apply Undo to recover library element.<br />

Selection: Library element and GRID bar<br />

17.19.7 Advanced/DRC<br />

84 Check Integrity<br />

Operates on Geometric Objects.<br />

The selected OBJECT is checked if a single volume will<br />

be obtained after discretization using the current grid.<br />

Note: useful to check if current grid density is sufficient<br />

to resolve thin solid objects without generating gaps.<br />

85 Check Symmetry<br />

Operates on Arrow Objects.<br />

Selected objects are checked if they are symmetric<br />

to the entered 1D ARROW.<br />

Objects which are not symmetric remain highlighted.<br />

Selection: OBJECTs and 1D ARROW<br />

86 Copy To Signal Layers<br />

(C) 2006


CHAPTER 17. ACTIONS 124<br />

Operates on Geometric Objects.<br />

This operation performs a connectivity check of the<br />

selected objects and copies the connected line pathes to new layers<br />

("Signal_n" where n is the number of detected siganl path).<br />

If no connection is found the object(s) are copied<br />

to a new layer "Unconnected"<br />

Example<br />

To check a multi-layered printed circuit:<br />

- Select all lines and vias<br />

- Press "Copy to signal layer"<br />

- Switch off all layers and switch on one of the<br />

signal layers to check the detected connection.<br />

87 Copy To Signal Layers (discretized)<br />

Operates on Geometric Objects.<br />

This operation performs a connectivity check of the<br />

selected objects and copies the connected line pathes to new layers<br />

In contrast to usual "Copy to Signal layers" all objects<br />

will be first discretized.<br />

88 Discretize<br />

Operates on Box Objects, Polygon Objects, Solid Objects.<br />

The selected OBJECT(s) are discretized using the current grid.<br />

The original object can be recovered by using UNDO.<br />

Note: Only recommended for checking staircase approximation.<br />

89 Show Discretized<br />

Operates on Geometric Objects.<br />

Displays the discretized shape of the selected OBJECT(s)<br />

The selected OBJECT(s) will not be changed.<br />

Use REDRAW to erase discretized view.<br />

(C) 2006


CHAPTER 17. ACTIONS 125<br />

17.19.8 Advanced/Delete<br />

90 Delete Fixed Range<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

Shortcut: <br />

Delete all lines in the range defined by the entered ARROW<br />

on the selected GRID bar.<br />

Selection: ARROW and GRID<br />

Undo will work.<br />

91 Delete Point<br />

Operates on Discretisation Objects,operand Point Objects.<br />

Shortcut: <br />

Non-fixed GRID lines will be deleted defined by POINTs on<br />

the selected GRID bar.<br />

The GRID bar is selected by clicking it with the left mouse button.<br />

Note:<br />

A GRID line can also be deleted by clicking a line with the middle mouse button.<br />

Selection: POINT or ARROW and GRID bar<br />

92 Delete Range<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

Shortcut: <br />

Non-fixed gird lines will be deleted in the range defined<br />

by ARROWs on the selected DISC bar.<br />

To select press left mouse button on GRID bar.<br />

Note:<br />

A grid line can also be deleted by clicking a line with the middle<br />

mouse button.<br />

Selection: POINT or ARROW and GRID bar<br />

17.19.9 Advanced/Export<br />

93 Extract Points<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 126<br />

Points will be extracted from GRID lines<br />

covered by the entered ARROW.<br />

Those points can be used, e.g. to store a<br />

discretization into a variable (Shift + F1)<br />

for a later re-use (F1 to recall).<br />

17.19.10 Advanced/Layer<br />

94 Move To Current Layer<br />

Operates on Geometric Objects.<br />

Move OBJECT(s) to the current layer.<br />

95 Select Layers’ Objects<br />

Operates on Geometric Objects.<br />

Select all objects of the selected object’s layer<br />

96 Select Object’s Layer<br />

Operates on Geometric Objects.<br />

Shortcut: m<br />

The LAYER of the selected OBJECT will be extracted.<br />

All objects of this Layer will be highlighted.<br />

17.19.11 Advanced/<strong>Manual</strong> Disc<br />

97 Generic Discretisation<br />

Operates on Discretisation Objects,operand Number Objects.<br />

Shortcut: <br />

Detects all edges of BOXes and corners of POLYs and f<br />

ills the selected GRID bar as Fixed Lines.<br />

Additionally, grid lines will be inserted as non-fixed with<br />

a base spacing of the entered NUMBER.<br />

Previous entered lines (also fixed) will be deleted.<br />

Note: The additional line spacing may vary to produce smooth transitions.<br />

Selection: GRID and NUMBER<br />

Undo will work.<br />

(C) 2006


CHAPTER 17. ACTIONS 127<br />

17.19.12 Advanced/Marks<br />

98 Delete Marks<br />

Operates on Discretisation Objects.<br />

Deletes all marks on the selected GRID bar.<br />

Note:<br />

Separate marks can be deleted by clicking<br />

the mark with the left mouse button.<br />

99 Mark All<br />

Operates on Discretisation Objects.<br />

Inserts marks between every two grid lines on the selected GRID bar.<br />

Note:<br />

Separate marks can be inserted by clicking the mark with the left mouse button.<br />

100 Mark Range<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

Shortcut: <br />

All intervals between GRID lines covered by the<br />

entered ARROW will be marked.<br />

Useful for mesh refinement in certain regions,<br />

e.g. enter 2 followed by / adds one grid line<br />

in each marked interval.<br />

17.19.13 Advanced/Misc<br />

101 Arrow (1-2)/3 Metalization Rule<br />

Operates on Arrow Objects,operand Number Objects.<br />

Shortcut: <br />

Generates two arrows according to the metalization rule.<br />

This rule accounts for the edge effect by filling one third of a cell with<br />

metal. The entered ARROW has to be drawn between two edges of<br />

the metal object. The length of the generated arrows is entered by<br />

NUMBER and RETURN (=grid spacing).<br />

The arrows can be used to define the grid lines by activating the grid<br />

bar and pressing Add Fixed.<br />

Note: Grid lines between the new ones have to be deleted.<br />

Selection: ARROW + NUMBER<br />

(C) 2006


CHAPTER 17. ACTIONS 128<br />

102 Arrow = P1-P2<br />

Operates on Point Objects,operand Point Objects.<br />

Shortcut: <br />

Two entered POINTs create an ARROW.<br />

Selection: POINT and POINT<br />

103 Arrow Concat<br />

Operates on Arrow Objects,operand Arrow Objects.<br />

Shortcut: <br />

Combines the entered ARROWs to a resulting one by vectorial addition.<br />

104 Arrow Multiple<br />

Operates on Arrow Objects,operand Number Objects.<br />

Shortcut: <br />

Generates N arrows with the lengths a, a/2, ..., a/N where<br />

a is the length of the entered ARROW.<br />

N is the entered NUMBER<br />

Selection: ARROW + NUMBER<br />

105 Arrow Scale<br />

Operates on Arrow Objects,operand Number Objects.<br />

Shortcut: <br />

Scale the entered ARROW by a factor.<br />

The factor has to be entered as a NUMBER<br />

Selection: ARROW and NUMBER<br />

106 Arrow Subdivide<br />

Operates on Arrow Objects,operand Number Objects.<br />

Shortcut: <br />

Generates N subsequent arrows with the lengths a/N where<br />

a is the length of the entered ARROW<br />

N is the entered NUMBER<br />

Selection: ARROW + NUMBER<br />

107 Edit Coordinates<br />

(C) 2006


CHAPTER 17. ACTIONS 129<br />

Operates on Box Objects.<br />

Edit the co-ordinate values of the box with a number editor.<br />

108 Extract Diag<br />

Operates on Box Objects.<br />

Shortcut: i<br />

Creates an ARROW from the lowest corner (xmin, ymin, zmin)<br />

of the selected BOX to the highest corner (xmax, ymax, zmax)<br />

109 Length Measurement<br />

Operates on Polygon Objects.<br />

Calculates the length of the selected POLYGON between two active (green) handles<br />

110 Negate<br />

Operates on Arrow Objects.<br />

Shortcut: m<br />

Changes tip with origin of the entered ARROW.<br />

111 Set Text<br />

Operates on Geometric Objects,operand Text Objects.<br />

Shortcut: <br />

Sets the current TEXTstring to the object<br />

Selection: OBJECT and TEXT<br />

112 Simplify<br />

Operates on Polygon Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 130<br />

Deletes obsolete points of a POLYGON to reduce the memory requirement<br />

and increase drawing speed.<br />

A point Pn between Pn-1 and Pn+1 is obsolete if it is<br />

part of the line (Pn-1,Pn+1)<br />

113 Zoom Factor<br />

Operates on Number Objects.<br />

According to the entered NUMBER the drawing window is enlarged.<br />

Zooming in: NUMBER > 1, zooming out: NUMBER < 1<br />

Selection: NUMBER<br />

17.19.14 Advanced/Mode<br />

114 Change To Bond Wire<br />

Operates on Polygon Objects.<br />

Create a bond wire between the start and end<br />

point of the selected 2-point POLYGON.<br />

The height and slope information is entered afterwards<br />

or can be adjusted in the options menu: Bond wires.<br />

A third-order polynomial will be used as the shape.<br />

115 Change To Linpoly<br />

Operates on Polygon Objects.<br />

Converts the selected POLY to LINPOLY.<br />

The resulting LINPOLY is open.<br />

By default, its tangent has zero components in the plane perpendicular<br />

to the POLY plane.<br />

116 Change To Linpoly By Script<br />

Operates on Polygon Objects.<br />

Create a bond wire between the start and end<br />

point of the selected 2-point POLYGON.<br />

Converts a two-point POLYGON into a set of points<br />

delivered by a user-defined script.<br />

A Python script called "bondwire.py" has to be<br />

available in the project folder.<br />

(C) 2006


CHAPTER 17. ACTIONS 131<br />

17.19.15 Advanced/Modify<br />

117 Add To Port Number(s)<br />

Operates on Port Objects,operand Number Objects.<br />

Shortcut: <br />

The entered NUMBER will be added to the<br />

Port number of the selected library element.<br />

118 Center<br />

Operates on Geometric Objects,operand Point Objects.<br />

Shortcut: #<br />

The midpoint of the selected BOXes will be centered<br />

to the entered Point<br />

Selection: BOXes and Point<br />

119 Circle Recognition<br />

Operates on Polygon Objects,operand Number Objects.<br />

Converting quasi-circular shapes into real circles<br />

to reduce number of points and speed up the drawing.<br />

Often needed for imported layout data which contain<br />

multiple point polygons as circles.<br />

The entered number defines the tolerance.<br />

Minimum Points (default 8) can be adjusted in:<br />

Options - Poly - Circle recognition min # of Points<br />

120 Copy Marked<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

Shortcut: <br />

GRID lines of marked intervals will be copied<br />

according to the entered 1D ARROW.<br />

The entered arrow acts as the shift vector.<br />

Old grid lines will be maintained.<br />

121 Cycle Elements<br />

(C) 2006


CHAPTER 17. ACTIONS 132<br />

Operates on Polygon Objects,operand Number Objects.<br />

Start and end point of the selected POLYGON(s) will be<br />

cycled according to the entered Number.<br />

122 Fix Range<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

All un-fixed (red) GRID lines covered by the entered<br />

ARROW will be turned into fixed lines (black).<br />

Fixed lines will be maintained.<br />

Selection: GRID bar and ARROW<br />

123 Insert Symmetric<br />

Operates on Discretisation Objects,operand Number Objects.<br />

Shortcut: <br />

Inserts Un-fixed lines in the marked interval with a<br />

spacing of the entered NUMBER on the selected GRID bar.<br />

Note:<br />

The spacing is varied to ensure a symmetric filling.<br />

Selection: NUMBER and GRID bar<br />

Undo will work.<br />

124 Scale To Center<br />

Operates on Polygon Objects, Box Objects,operand Number Objects.<br />

The selected BOX(es) will be scaled according to<br />

the entered NUMBER which acts as a scale factor.<br />

The scaling is referenced to each object’s center.<br />

125 Scale To Origin<br />

Operates on Solid Objects, Geometric Objects,operand Number Objects.<br />

The selected OBJECT(s) will be scaled according to<br />

the entered NUMBER which acts as a scale factor.<br />

The scaling is referenced to the co-ordinate origin<br />

so that all co-ordinate values are multiplied by<br />

the scale factor.<br />

126 Set Parameter By Equation<br />

(C) 2006


CHAPTER 17. ACTIONS 133<br />

Operates on Port Objects,operand Text Objects.<br />

Shortcut: <br />

The respective parameter of the selected Library<br />

Element will be set to the entered equation.<br />

Example:<br />

+ Select Lumped port<br />

+ Press "Modify: Set Parameter by Equation"<br />

+ Enter w=100, OK<br />

+ Press "Esc"<br />

127 Set Radius<br />

Operates on Polygon Objects,operand Number Objects.<br />

The activated (green) corners of the selected POLYGONs<br />

will be rounded according to the entered NUMBER<br />

which defines the radius of the rounding.<br />

To activate/de-activate the corners press the left mouse<br />

button.<br />

128 Set Tangential<br />

Operates on Bondwire Objects,operand Arrow Objects.<br />

Shortcut: <br />

The entered ARROW defines the tangent of the LINPOLY.<br />

The ARROW may not be entered in the Poly’s plane.<br />

Selection: ARROW and LINPOLY<br />

129 Shift Marked<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

Shortcut: <br />

Shift all marked lines according to the entered<br />

ARROW on the selected GRID bar.<br />

The entered arrow acts as the shift vector.<br />

Selection: ARROW and GRID bar<br />

130 Subdivide<br />

Operates on Discretisation Objects,operand Number Objects.<br />

Shortcut: <br />

(C) 2006


CHAPTER 17. ACTIONS 134<br />

Inserts Un-fixed lines in the marked interval.<br />

The region is subdivided into N equal intervals,<br />

where N is the entered NUMBER.<br />

Selection: NUMBER and GRID bar<br />

Undo will work.<br />

131 Subtract From Port Number(s)<br />

Operates on Port Objects,operand Number Objects.<br />

Shortcut: <br />

The Port number of the selected library element<br />

will be subtracted from the entered NUMBER.<br />

132 Unfix Range<br />

Operates on Discretisation Objects,operand Arrow Objects.<br />

Fixed lines (black) will be turned into<br />

un-fixed (red) lines.<br />

Un-fixed lines are maintained.<br />

Selection: ARROW and GRID bar<br />

17.19.16 Advanced/Operate<br />

133 Bisect Polygon<br />

Operates on Polygon Objects.<br />

The selected POLY is split in two along a line defined<br />

by two activated (green) handles.<br />

Note:<br />

Exactly two handles must be active (green).<br />

Selection: POLY<br />

134 Drill Holes<br />

Operates on Geometric Objects.<br />

Selected small OBJECT(s) will be subtracted from selected large OBJECT(s)<br />

The large objects must entirely cover the small ojects.<br />

Note:<br />

If the objects’ type are not equal they will be converted into<br />

Polygons or Solids<br />

(C) 2006


CHAPTER 17. ACTIONS 135<br />

135 Extrude Solid<br />

Operates on Solid Objects,operand Number Objects.<br />

The selected Solid(s) will be extruded in direction of its normal.<br />

The thickness of this extrusion is defined by the entered number.<br />

Selection: OBJECT and NUMBER<br />

Hint:<br />

Useful for unclosed Solids with zero thickness<br />

136 Intersect<br />

Operates on Geometric Objects.<br />

An object will be created which is defined by the common<br />

volume of the selected OBJECT(s).<br />

Note: If the objects’ type are not equal they will be converted into<br />

Polygons or Solids<br />

137 Orient Solid<br />

Operates on Solid Objects.<br />

Change the orientation of the selected Solid(s).<br />

Hint:<br />

Useful for un-closed Solids to<br />

- change extrusion direction<br />

- improve render images<br />

138 Oversize<br />

Operates on Polygon Objects, Box Objects, Solid Objects,operand Number Objects.<br />

The selected OBJECTs will be oversized according to the entered NUMBER.<br />

All edges of the OBJECT are shifted to the outside.<br />

Selection: OBJECT and NUMBER<br />

139 Path To Circular Extrusion<br />

Operates on Polygon Objects,operand Number Objects.<br />

Shortcut: <br />

(C) 2006


CHAPTER 17. ACTIONS 136<br />

Create a wire from a path defined by the selected Polygon.<br />

Converts the selected POLY into a LINPOLY with a circular<br />

cross section with a diameter entered by A NUMBER.<br />

Note:<br />

The center of the wire will be placed at the Polygon bottom.<br />

Note:<br />

The diameter has to be resolved by at least 4 cells in<br />

perpendicular direction. Therefore, the NUMBER has to be<br />

larger than 4 cells.<br />

Example: Polygon (0-1000), Diameter 100, requires at least<br />

4 grid lines, e.g. at -50,-30,0,30,50<br />

Selection: POLY and NUMBER<br />

140 Path To Poly<br />

Operates on Polygon Objects,operand Number Objects.<br />

Create a stripline from a path defined by a polygon.<br />

Converts the selected POLY into a LINPOLY with a rectangular<br />

cross section with a width entered by the number and a height<br />

defined by the layer arrow.<br />

141 Path To Poly (Circular Mitering)<br />

Operates on Polygon Objects,operand Number Objects.<br />

Create a stripline from a path defined by a polygon.<br />

Converts the selected POLY into a LINPOLY with a rectangular<br />

cross section with a width entered by the number and a height<br />

defined by the layer arrow.<br />

All corners will be mitred with the diameter of the width size.<br />

142 Rasterize<br />

Operates on Geometric Objects.<br />

The corners and edges of selected OBJECT(s) are mapped<br />

to a grid which is defined by the parameters defined in:<br />

Options - Poly - Poly Rasterize<br />

Note:<br />

This function is often used to get rid of odd co-ordinate<br />

values of imported layout data.<br />

(C) 2006


CHAPTER 17. ACTIONS 137<br />

17.19.17 Advanced/Parameters<br />

143 Parameter Move<br />

Operates on Geometric Objects.<br />

The selected OBJECT(s) will be moved by a parametric value.<br />

Note:<br />

A parametric value is defined by entering a textstring for a coordinate value<br />

and defining range and step size.<br />

144 Parameter Stretch<br />

Operates on Geometric Objects.<br />

Edges or corners of selected OBJECT(s) defined by the active (green)<br />

handles will be stretched by a parametric value.<br />

Note:<br />

A parametric value is defined by entering a textstring for a coordinate value<br />

and defining range and step size.<br />

17.19.18 Advanced/Properties<br />

145 Add Property<br />

Operates on Geometric Objects.<br />

Assigns an additional Property to the selected OBJECT.<br />

The Property string is composed by the Property Editor.<br />

146 Delete Added Property<br />

Operates on Geometric Objects.<br />

Deletes the last Property entry which was bound to the selected object.<br />

147 Delete Properties<br />

Operates on Geometric Objects.<br />

(C) 2006


CHAPTER 17. ACTIONS 138<br />

Deletes all Properties which are bound to the selected OBJECT.<br />

148 Set Properties<br />

Operates on Geometric Objects.<br />

Assigns a Property to the selected object using the Property editor.<br />

Note: Property of the layer will be ignored!<br />

17.19.19 Advanced/Select<br />

149 Select Outside<br />

Operates on Arrow Objects.<br />

Selects all objects which are outside of the<br />

region covered by the entered ARROW.<br />

Note:<br />

Objects on a locked layer are disregarded.<br />

17.19.20 Advanced/Structure<br />

150 Insert<br />

Operates on Geometric Objects.<br />

Inserts objects from the clipboard into the current file.<br />

All layer attributes of the inserted objects will be included.<br />

Usage:<br />

Step 1: Select the objects to be copied<br />

Step 2: Press Ctrl c<br />

Step 3: Open a new or existing file<br />

Step 4: Press Ctrl v<br />

Step 4: Press the button Insert Objects<br />

(C) 2006


Chapter 18<br />

Editor Options<br />

18.1 3D Display<br />

18.1.1 3D Display/General<br />

1 Background Color 3D mode<br />

Choice black, white, grey25, grey50, grey75.<br />

Default white.<br />

Color can be changed at any time<br />

2 Transparency algorithm<br />

Choice fast, accurate hw, accurate hw/sw, accurate sw.<br />

Default fast.<br />

Option depending on graphic card support<br />

For proper display of transparent media switch to accurate.<br />

+ accurate hw fastest, not supported on all graphic cards<br />

+ accurate hw/sw fast, not supported on all graphic cards<br />

+ accurate sw slow, should work in any case<br />

3 Display Mode<br />

Choice fill, wire frame.<br />

Default fill.<br />

Display style of objects in 3D mode<br />

Either Shaded or Wire frame model<br />

139 (C) 2006


CHAPTER 18. EDITOR OPTIONS 140<br />

18.1.2 3D Display/Lights<br />

4 Light 0 Position<br />

Choice off, 1 1 1 0, 1 0 0 0, 0 1 0 0, 0 0 1 0.<br />

Default 0 0 1 0.<br />

Adjust point light source<br />

Light Positions<br />

1000 x=inf<br />

-1000 x=-inf<br />

0100 y=inf<br />

0-100 y=-inf<br />

0010 z=inf<br />

00-10 z=-inf<br />

0001 off<br />

5 Light 0 Ambient<br />

Choice 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.<br />

Default 0.4.<br />

Pointless light source<br />

6 Light 0 Diffuse<br />

Choice 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.<br />

Default 0.8.<br />

Diffuse reflection coefficient<br />

7 Light 1 Position<br />

Choice off, 1 1 1 0, 1 0 0 0, 0 1 0 0, 0 0 1 0.<br />

Default off.<br />

See Light 0<br />

8 Light 1 Ambient<br />

Choice 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.<br />

Default 1.0.<br />

See Light 0<br />

9 Light 1 Diffuse<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 141<br />

Choice 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.<br />

Default 0.2.<br />

See Light 0<br />

10 Light Global Ambient<br />

Choice 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.<br />

Default 0.2.<br />

Pointless light source<br />

18.1.3 3D Display/Advanced<br />

3D Display/Advanced/Animation<br />

11 FD animation duration<br />

Choice 500, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000.<br />

Default 1000.<br />

Adjust speed of animation<br />

This number can be adjusted if animations loops<br />

run too slow or too fast by reducing or increasing<br />

this number, respectively.<br />

12 FD animation linewidth<br />

Choice 1, 2, 3, 4, 5.<br />

Default 3.<br />

Width of grid- or contour lines in animations<br />

13 FD animation pointsize<br />

Choice 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.<br />

Default 10.<br />

Size of points in animations<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 142<br />

3D Display/Advanced/General<br />

14 3D antialiasing<br />

Choice on, off.<br />

Default off.<br />

Improve rendering<br />

If enabled an antialiasing algorithm tries to improve the<br />

appearance of the rendered image.<br />

15 3D export size factor<br />

Choice (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’), (’5’, ’5’), (’6’, ’6’), (’7’, ’7’), (’8’, ’8’), (’9’, ’9’), (’10’, ’10’).<br />

Default 1.<br />

Image enlargement factor<br />

By default the generation of images of the 3D display<br />

mode is done in the monitor resolution.<br />

The resolution can be enhanced (e.g. for high quality<br />

pictures to be used for posters) by increasing this number.<br />

16 Wheel Mouse clip<br />

Choice off, 0.001, 0.01, 0.05.<br />

Default off.<br />

Operates in 3D Clip window<br />

Can be used instaed of the scroll bar if turned to On.<br />

17 Blending Extension<br />

Choice on, off.<br />

Default off.<br />

Transparency for field dumps<br />

Allows automatic update of transparency for field dumps.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 143<br />

3D Display/Advanced/Measure<br />

18 3D Measure Cone size<br />

Choice 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.<br />

Default 50.<br />

Size of tip in 3D mode<br />

19 3D Measure Font size<br />

Choice 10, 12, 14, 18, 20, 24.<br />

Default 14.<br />

Size of Font in 3D Mode<br />

20 3D Measure Line Width<br />

Choice 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.<br />

Default 2.<br />

Line width in 3D mode<br />

21 3D Measure Distance<br />

Choice 100, 200, 300, 400.<br />

Default 100.<br />

Distance between Line and Number<br />

18.2 Bond Wires<br />

22 Height of beginning z0=<br />

Choice 0, 100, 200, 500, 1000.<br />

Default 0.<br />

Start point of the arrow<br />

23 Height of end z1=<br />

Choice 0, 100, 200, 500, 1000.<br />

Default 0.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 144<br />

Tip of the arrow<br />

24 Slope Angle phi=<br />

Choice 40, 50, 60, 70, 80.<br />

Default 50.0.<br />

Anlge at start and end of bond wire<br />

0 < phi < 90 degree<br />

25 Number of Points in Bond Wire<br />

Choice 10, 20, 30, 40.<br />

Default 10.<br />

Increase this number to obtain a smoother wire<br />

N > 2<br />

26 3D Display Linewidth<br />

Choice 1, 2, 3, 4, 5.<br />

Default 5.<br />

Reduce this number if the appearance is too bold in 3D mode<br />

Width in number of Pixels<br />

18.3 Discretization<br />

27 Boundaries in main window<br />

Choice (’off’, ’off’), (’black’, ’black’), (’red’, ’red’), (’grey’, ’grey’), (’grey90’, ’grey90’), (’grey75’, ’grey75’), (’grey50’,<br />

’grey50’), (’grey40’, ’grey40’), (’grey30’, ’grey30’).<br />

Default grey80.<br />

Color of open boundaries<br />

If open boudaries are applied they are diplayed by<br />

dotted lines at the outermost grid lines in a selectable color.<br />

28 Discretization in main window<br />

Choice (’off’, ’off’), (’black’, ’black’), (’red’, ’red’), (’grey’, ’grey’), (’grey80’, ’grey80’), (’grey90’, ’grey90’), (’grey40’,<br />

’grey40’), (’grey30’, ’grey30’).<br />

Default off.<br />

Display grid lines in drawing area<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 145<br />

By default "off" no grid lines are visible inside the<br />

drawing area. Instead they are displayed on the<br />

grid bars on the right and in the bottom.<br />

Displaying can be enabled by selecting one of the colors<br />

29 Flat Box Thickness<br />

Choice 0.001, 0.01, 0.1, 1.<br />

Default 0.001.<br />

Thickness used for Display in 3D mode<br />

Some objects may be mapped on one single gridline,<br />

e.g. metal strips. This value determines the minimum<br />

thickness which is used for discretizing and displaying<br />

these objects.<br />

Can be reduced in case of discretization errors<br />

Note:<br />

Using a smaller drawing unit (e.g. um instead of mm)<br />

is usually recommended in case of small extensions.<br />

30 Min. Disc spacing<br />

Choice 0.001, 0.01, 0.1.<br />

Default 0.001.<br />

Minimum distance between two grid lines<br />

Too small cell spacing should be avoided if possible<br />

to reduce simulation time.<br />

31 Insert Graded Factor<br />

Choice 1.1, 1.2, 1.5, 1.8, 2.<br />

Default 1.5.<br />

Relative step size for graded meshes<br />

18.3.1 Discretization/Advanced<br />

32 Discretization color<br />

Choice (’red’, ’red’), (’green’, ’green’), (’blue’, ’blue’), (’grey’, ’grey’), (’white’, ’white’).<br />

Default red.<br />

Color of non-fixed lines<br />

Non-fixed lines can be erased and replaced by using<br />

automatic meshing routines<br />

33 Fix Mark color<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 146<br />

Choice (’red’, ’red’), (’green’, ’green’), (’blue’, ’blue’), (’grey’, ’grey’), (’white’, ’white’), (’black’, ’black’).<br />

Default black.<br />

Color of fixed lines<br />

Fixed lines will not be erased by automatic meshing<br />

routines<br />

34 Discretization in 3D views<br />

Choice on, off.<br />

Default on.<br />

Switch on-off grid bars in 3D views<br />

18.4 Draft Display<br />

18.4.1 Draft Display/Arrow<br />

35 Arrow Crosshair<br />

Choice on, off.<br />

Default on.<br />

Change Arrow shape<br />

on: Small crosshair at start and end of arrow<br />

off: No crosshair<br />

36 Arrow Text<br />

Choice (’off’, ’off’), (’normal’, ’normal’), (’verbose’, ’verbose’).<br />

Default normal.<br />

Change arrow text display<br />

off: only arrow and rectangle<br />

normal: arrow number<br />

verbose: arrow number and coordinates<br />

37 Arrow color<br />

Choice (’red’, ’red’), (’green’, ’green’), (’blue’, ’blue’), (’grey’, ’grey’), (’white’, ’white’).<br />

Default red.<br />

Should be different to background color<br />

38 Arrow rectangle color<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 147<br />

Choice (’off’, ’off’), (’red’, ’red’), (’green’, ’green’), (’blue’, ’blue’), (’grey’, ’grey’), (’white’, ’white’), (’grey50’,<br />

’grey50’), (’grey30’, ’grey30’), (’grey20’, ’grey20’).<br />

Default grey25.<br />

Fill color of area which is spanned by the entered arrow<br />

18.4.2 Draft Display/Cursor<br />

39 Coordinate number of digits<br />

Choice (’%+7.0f’, ’0’), (’%+9.1f’, ’1’), (’%+10.2f’, ’2’), (’%+11.3f’, ’3’), (’%+12.4f’, ’4’).<br />

Default 2.<br />

Adjust cursor co-ordinate display<br />

By default 2 digits after the decimal point are used<br />

to display the cursor co-ordinate.<br />

40 Cursor size<br />

Choice (’big’, ’Big’), (’10’, ’ 10’), (’25’, ’ 25’), (’50’, ’ 50’), (’75’, ’ 75’), (’100’, ’100’), (’150’, ’150’), (’200’, ’200’).<br />

Default Big.<br />

Length of the cursor crosshair<br />

Default = Big displays the cursor entirely over the drawing area<br />

41 Cursor color<br />

Choice (’white’, ’white’), (’black’, ’black’), (’red’, ’red’), (’grey’, ’grey’), (’grey70’, ’grey70’), (’grey50’, ’grey50’),<br />

(’grey40’, ’grey40’), (’grey30’, ’grey30’), (’grey20’, ’grey20’), (’grey15’, ’grey15’).<br />

Default grey70.<br />

Color of crosshair and cursor numbers<br />

42 Cursor rectangle<br />

Choice on, off.<br />

Default on.<br />

Show rectangle during dragging<br />

When an arrow is entered a rectangle is drawn if<br />

choice is "on" which displays the deltax and deltay<br />

co-ordinates<br />

43 Cursor text<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 148<br />

Choice on, off.<br />

Default on.<br />

Visibility of cursor co-ordinates in main window<br />

Visibility can be disabled, to e.g. accelerate the cursor<br />

movement in case of complex drawings.<br />

Note:<br />

Co-ordinates are still displayed in the bottom line<br />

44 Show discrete coordinates<br />

Choice on, off.<br />

Default off.<br />

Switch cursor display mode<br />

The discrete coordinates are available if a<br />

grid has been generated.<br />

A discrete co-ordinate is the number of grid line<br />

counted from the mimimum boundary.<br />

45 Tick size<br />

Choice (5, ’5.000’), (10, ’10.000’), (15, ’15.000’), (20, ’20.000’), (25, ’25.000’), (30, ’30.000’), (40, ’40.000’), (50,<br />

’50.000’), (80, ’80.000’), (100, ’100.000’), (150, ’150.000’), (200, ’200.000’).<br />

Default 30.000.<br />

Size of Point and Arrow crosses<br />

18.4.3 Draft Display/GUI<br />

46 Arrow and Point Highlighting<br />

Choice on, off.<br />

Default off.<br />

Style of arrows and points in Draft mode<br />

47 Mouse Messages<br />

Choice on, off.<br />

Default on.<br />

Display current mouse button operations<br />

Hints in the bottom left corner can be<br />

switched off for advanced users<br />

48 Preferred icon Size<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 149<br />

Choice (’default’, ’default’), (’16’, ’16’), (’24’, ’24’), (’32’, ’32’).<br />

Default default.<br />

Button Appearance<br />

By default all Operation buttons (icons) have a size<br />

of 24x24 pixels and are optimized for a screen of<br />

1280x1024 size.<br />

49 Wheelmouse Zoom Factor<br />

Choice (’1’, ’1’), (’1.1’, ’1.1’), (’1.2’, ’1.2’), (’1.5’, ’1.5’), (’2’, ’2’).<br />

Default 1.2.<br />

Enlargement / Reduction factor of one wheel turn<br />

Draft mode<br />

wheel backward = zoom out<br />

wheel forward = zoom in<br />

18.4.4 Draft Display/General<br />

50 Background Color Draft mode<br />

Choice (’white’, ’white’), (’grey’, ’grey’), (’black’, ’black’), (’grey75’, ’grey75’), (’grey50’, ’grey50’), (’grey25’,<br />

’grey25’).<br />

Default white.<br />

51 Color correction limit<br />

Choice off, 10, 22, 30, 40, 50.<br />

Default 22.<br />

Contrast to the background<br />

To assure visibility all layer colors can be<br />

automatically redefined depending on the<br />

current background color.<br />

This limit can be used to enlarge the new colors<br />

contrast to the background<br />

18.4.5 Draft Display/Point<br />

52 Point Text<br />

Choice (’off’, ’off’), (’normal’, ’normal’), (’verbose’, ’verbose’).<br />

Default normal.<br />

Change Point text display<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 150<br />

off: only crosshair<br />

normal: point number<br />

verbose: point number and coordinates<br />

53 Point shape<br />

Choice (’big’, ’Big Crosshair’), (’small’, ’Small Crosshair’).<br />

Default Small Crosshair.<br />

Change Point shape display<br />

Big: crosshair covers the whole main window<br />

54 Point color<br />

Choice (’red’, ’red’), (’black’, ’black’), (’green’, ’green’), (’blue’, ’blue’), (’grey’, ’grey’), (’white’, ’white’).<br />

Default red.<br />

Should be different to background color<br />

18.4.6 Draft Display/Advanced<br />

Draft Display/Advanced/Initial<br />

55 Horizontal Screen Fill in %<br />

Choice (20, ’20’), (30, ’30’), (50, ’50’), (60, ’60’), (70, ’70’), (80, ’80’), (90, ’90’), (100, ’100’).<br />

Default 100.<br />

The window size can be adjusted here<br />

The horizontal or vertical size in Pixel can be expressed as<br />

(N_{Pixel}-N_{Pad})Factor_{Screen Fill}/100<br />

56 Vertical Screen Fill in %<br />

Choice (20, ’20’), (30, ’30’), (50, ’50’), (60, ’60’), (70, ’70’), (80, ’80’), (90, ’90’), (100, ’100’).<br />

Default 100.<br />

The window size can be adjusted here<br />

The horizontal or vertical size in Pixel can be expressed as<br />

(N_{Pixel}-N_{Pad})Factor_{Screen Fill}/100<br />

57 Horizontal Pad<br />

Choice (0, ’0’), (5, ’5’), (10, ’10’), (15, ’15’), (20, ’20’), (30, ’30’), (40, ’40’), (50, ’50’), (60, ’60’), (70, ’70’), (80, ’80’),<br />

(90, ’90’), (100, ’100’).<br />

Default 5.<br />

The window position can be adjusted here<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 151<br />

The horizontal or vertical size in Pixel can be expressed as<br />

(N_{Pixel}-N_{Pad})Factor_{Screen Fill}/100<br />

58 Vertical Pad<br />

Choice (0, ’0’), (5, ’5’), (10, ’10’), (15, ’15’), (20, ’20’), (30, ’30’), (40, ’40’), (50, ’50’), (60, ’60’), (70, ’70’), (80, ’80’),<br />

(90, ’90’), (100, ’100’).<br />

Default 60.<br />

The window position can be adjusted here<br />

The horizontal or vertical size in Pixel can be expressed as<br />

(N_{Pixel}-N_{Pad})Factor_{Screen Fill}/100<br />

Draft Display/Advanced/Labels<br />

59 Legend Mode<br />

Choice (’short’, ’short’), (’full’, ’full’), (’all’, ’all’).<br />

Default full.<br />

Display object properties<br />

short Number of object<br />

full Layer name and property<br />

all<br />

Number, Layer and property, and co-ordinates<br />

Usage:<br />

- Select Object<br />

- Enter Label Arrow<br />

- press "Create Legend"<br />

60 Dimensioning Number of Digits<br />

Choice (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6).<br />

Default 0.<br />

Display of dimensioning numbers in Draft mode<br />

Usage:<br />

- Enter starting point of dimensioning line<br />

- Enter point of first object’s edge<br />

- Enter point of second object’s edge<br />

- Press "Create Measure"<br />

61 Dimensioning Scale Factor<br />

Choice (’1e-6’, ’1e-6’), (’1e-3’, ’1e-3’), (1, 1), (’1e3’, ’1e3’), (’1e6’, ’1e6’), (’2.54000e-05’, ’1e-6 * 25.4’), (’2.54000e-<br />

02’, ’1e-3 * 25.4’), (’2.54000e+01’, ’1 * 25.4’), (’2.54000e+04’, ’1e3 * 25.4’), (’2.54000e+07’, ’1e6 * 25.4’),<br />

(’3.93701e-08’, ’1e-6 / 25.4’), (’3.93701e-05’, ’1e-3 / 25.4’), (’3.93701e-02’, ’1 / 25.4’), (’3.93701e+01’, ’1e3 / 25.4’),<br />

(’3.93701e+04’, ’1e6 / 25.4’).<br />

Default 1.<br />

By default (1) the numbers are displayed in the selected unit.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 152<br />

62 Dimensioning Tic Size<br />

Choice (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (8, 8), (10, 10), (12, 12), (14, 14), (16, 16), (18, 18).<br />

Default 5.<br />

Distance of dimensioning numbers to lines in Draft mode<br />

63 Arrow Distance<br />

Choice (2, 2), (2.5, 2.5), (3, 3), (3.5, 3.5), (4, 4), (4.5, 4.5), (5, 5), (5.5, 5.5), (6, 6).<br />

Default 4.<br />

64 Arrow Heads<br />

Choice AUTO, 10 10 3, 7 10 3.<br />

Default AUTO.<br />

Shape of labelling arrows in Draft mode<br />

a b c<br />

a tip style<br />

b Length of tip<br />

c width of tip<br />

65 Font Size<br />

Choice (6, 6), (7, 7), (8, 8), (9, 9), (10, 10), (11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (16, 16), (17, 17), (18, 18), (20,<br />

20), (22, 22), (24, 24), (26, 26), (28, 28), (30, 30), (32, 32), (34, 34), (36, 36), (38, 38), (40, 40), (44, 44), (48, 48), (50,<br />

50).<br />

Default 12.<br />

Size of labelling characters in Draft mode<br />

Draft Display/Advanced/Multibox<br />

66 Generation Optimization<br />

Choice on, off.<br />

Default off.<br />

Accelerate Multibox generation<br />

Multiple Boxes can be combined to Multiboxes fore, e.g.<br />

faster selection.<br />

67 2D Display Mode<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 153<br />

Choice (’edges’, ’edges’), (’rectangles’, ’rectangles’), (’polygons’, ’polygons’).<br />

Default rectangles.<br />

Display style of large Multiboxes<br />

68 3D Display Mode<br />

Choice (’edges’, ’edges’), (’rectangles’, ’rectangles’).<br />

Default rectangles.<br />

Display style of large Multiboxes<br />

69 2D Display Optimization<br />

Choice on, off.<br />

Default on.<br />

Accelerate Display of large Multiboxes<br />

70 3D Display Optimization<br />

Choice on, off.<br />

Default off.<br />

Accelerate Display of large Multiboxes<br />

71 2D Polygon Combination<br />

Choice on, off.<br />

Default off.<br />

Draft Display/Advanced/Object Selection<br />

72 Selection Accuracy<br />

Choice (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7).<br />

Default 1.<br />

Distance to Object in Pixels<br />

73 Reselect Distance<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 154<br />

Choice (5, 5), (10, 10), (20, 20), (30, 30), (40, 40), (50, 50), (60, 60), (80, 80), (100, 100).<br />

Default 20.<br />

Distance to Object in Pixels<br />

18.5 Export<br />

74 GDSII scale<br />

Choice 1000, 1.<br />

Default 1000.<br />

Adjust output unit<br />

Usually, GDS input is on a very fine scale, such as nanometers.<br />

If the drawing unit is micron then the scale of 1000<br />

generates an output of nanometers.<br />

75 DXF scale<br />

Choice 1000, 1.<br />

Default 1.<br />

Adjust output unit<br />

If the drawing unit is micron then the scale of 1<br />

generates an output of micrometers.<br />

76 GERBER scale<br />

Choice 1, 1000, 0.001.<br />

Default 0.001.<br />

Adjust output unit<br />

Usually, gerber<br />

input is in millimeters.<br />

If the drawing unit is micron then the scale of 0.001<br />

generates an output of millimeters.<br />

18.5.1 Export/Advanced<br />

77 HPGL scale<br />

Choice 1/25.4, 1000/25.4, 1/(1000*25.4).<br />

Default 1/25.4.<br />

78 GERBER aperture size (mm)<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 155<br />

Choice 0.01, 0.001.<br />

Default 0.001.<br />

79 GERBER float format<br />

Choice 45, 43, 66.<br />

Default 66.<br />

80 CGM geometry<br />

Choice 1024x768, 1280x1024, 3200x2000, 6400x4800, 8000x6000, 10240x7680.<br />

Default 6400x4800.<br />

81 CGM fontsize factor<br />

Choice 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.<br />

Default 0.7.<br />

Export/Advanced/Export EXCELLON<br />

82 Start Coordinates<br />

Choice (0, 0).<br />

Default 0 0.<br />

83 Unit<br />

Choice mm, m, inches, mil.<br />

Default mm.<br />

84 Scaling Factor<br />

Choice 1, 1.0/1000, 1.0/(25.4*1000.0), 1.0/25.4.<br />

Default 1./1000.<br />

85 Output Format<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 156<br />

Choice %.3f, %.4f, %.5f.<br />

Default %.3f.<br />

86 Circle min # points<br />

Choice 12, 16, 20, 32, 64.<br />

Default 12.<br />

87 Circle tolerance<br />

Choice 10, 20, 30, 40, 50, 60.<br />

Default 10.<br />

Export/Advanced/Export MLS<br />

88 Start Coordinates<br />

Choice (0, 0).<br />

Default 0 0.<br />

89 Scale Factor<br />

Choice 1.<br />

Default 1.0.<br />

90 Repetitions<br />

Choice 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.<br />

Default 1.<br />

91 Undersize<br />

Choice 0, 10, 35, 50, 70.<br />

Default 35.<br />

92 Max Circle diameter<br />

Choice 0, 1000, 2000, 3000, 4000, 5000, 6000.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 157<br />

Default 6000.<br />

93 Double Via Holes<br />

Choice on, off.<br />

Default on.<br />

94 Circle min # points<br />

Choice 12, 16, 20, 32, 64.<br />

Default 12.<br />

95 Circle diameter Scale<br />

Choice 160.0/58.0.<br />

Default 160.0/58.0.<br />

96 Circle tolerance<br />

Choice 10, 20, 30, 40, 50, 60.<br />

Default 10.<br />

97 Poly Tolerance<br />

Choice 5, 10, 15, 20, 25, 30, 35, 40.<br />

Default 10.<br />

98 Laser off speed<br />

Choice 200.<br />

Default 200.<br />

99 Laser on speed<br />

Choice 1.<br />

Default 1.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 158<br />

100 Galvo speed<br />

Choice 1.<br />

Default 1.<br />

101 Max instructions per file<br />

Choice 200, 300, 400, 500, 600, 700.<br />

Default 200.<br />

102 Subroutine Optimization<br />

Choice on, off.<br />

Default on.<br />

103 Lamp Current (A)<br />

Choice 20.<br />

Default 19.5.<br />

104 Pulse Frequency (kHz)<br />

Choice 1.5.<br />

Default 1.5.<br />

105 Pulse Length (s)<br />

Choice 1.5.<br />

Default 1.5.<br />

Export/Advanced/Export PS<br />

106 POSTSCRIPT Page Width<br />

Choice 5 mm, 10 mm, 15 mm, 20 mm, 30 mm, 50 mm, 70 mm, 100 mm, 140 mm, 200 mm, 240 mm, 280 mm.<br />

Default 280 mm.<br />

107 PS Layout Scale<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 159<br />

Choice 72.0/25400.0, 72.0/25.4.<br />

Default 72.0/25400.0.<br />

108 PS Layout shift<br />

Choice 0, 100, 1000, 10000, 100000.<br />

Default 10000.<br />

18.6 General<br />

109 Create Backup Files<br />

Choice on, off.<br />

Default on.<br />

Backup files are named file.gym.bak<br />

On every "Save" action the backup file will be updated<br />

To recover backup files, rename file.gym.bak to file.gym<br />

110 Show Conversion Info<br />

Choice on, off.<br />

Default off.<br />

Output after pressing ”Simulation”<br />

The button "Start Simulation" can create conversion info<br />

to check some statistics in an Info window. Can be switched<br />

off for advanced users.<br />

18.6.1 General/Advanced<br />

111 Gym Save mode<br />

Choice compatible, smart.<br />

Default smart.<br />

Compatibility with v2.3 and lower<br />

compatible: Version 2.3 and lower:<br />

- Objects are shrinked to the grid<br />

smart: Version 3.0 and higher:<br />

- Objects are mapped to the nearest grid lines<br />

112 Accuracy<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 160<br />

Choice (1, ’1.000’), (0.10000000000000001, ’0.100’), (0.01, ’0.010’), (0.001, ’0.001’).<br />

Default 0.010.<br />

Drawing limit<br />

Distances below this limit will be disregarded<br />

General/Advanced/Vector Font<br />

113 Font Height<br />

Choice 10, 20, 25, 30, 35, 40, 45, 50, 100.<br />

Default 35.<br />

hight of text string for labelling<br />

Used for character strings in drawings, e.g. layout labels.<br />

114 Rel. Horizontal Distance<br />

Choice 0.3, 0.5, 0.7.<br />

Default 0.3.<br />

115 Rel. Vertical Distance<br />

Choice 1.2, 1.3, 1.4.<br />

Default 1.4.<br />

18.7 Import<br />

116 Separate STL objects<br />

Choice on, off.<br />

Default off.<br />

Importing multiple solids<br />

By default (off) one imported STL file generates one layer<br />

and one solid object.<br />

If the STL file contains several single objects they can be<br />

seperated on multiple layers by switching to (on).<br />

117 GYM/STL import shift (x y z)<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 161<br />

Choice 0 0 0, 1000 1000 0.<br />

Default 0 0 0.<br />

Insertion point of imported objects<br />

Adjust if origin is different<br />

118 Import scale factor<br />

Choice 0.001, 1, 1000.<br />

Default 1.<br />

For STL import only<br />

Adjust if scale is different<br />

119 STL Resolution in Percent<br />

Choice 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.<br />

Default 100.<br />

Simplify 3D objects<br />

Accelerate import of complex 3D structures by<br />

joining surface triangles<br />

18.7.1 Import/Advanced<br />

120 DXF/DSN/GBR/EXC arc resolution (DEG)<br />

Choice 0.1, 0.2, 1, 2, 5, 10.<br />

Default 5.<br />

Subdivision of rounded objects<br />

By default (5 degree) a ciclre is divided into<br />

72 points. In case of a huge amount of single<br />

circles this number can be increased to accelerate<br />

the import.<br />

121 All GERBER/EXCELLON Files in Directory<br />

Choice on, off.<br />

Default off.<br />

Import multiple files<br />

Usually GERBER files are generated for each<br />

different layer and can be numerous. To select<br />

all files by default the switch can be set to "on"<br />

122 EXCELLON decimal digits<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 162<br />

Choice (’2’, ’2’), (’3’, ’3’), (’4’, ’4’), (’5’, ’5’).<br />

Default 4.<br />

123 DXF connection tolerance<br />

Choice 0, 0.1, 0.2, 1, 2, 5, 10.<br />

Default 0.<br />

Combine single lines<br />

In some cases imported polygons consist<br />

of single lines which can be joined by setting<br />

the connection tolerance greater than zero.<br />

124 DXF general tolerance<br />

Choice 0, 0.1, 0.2, 1, 2, 5, 10.<br />

Default 1e-3.<br />

Absolute value in units<br />

If the difference between two co-ordinate values are<br />

below this threshold they will be considered as identical.<br />

Note:<br />

Decrease this limit if necessary or use an import scale<br />

of 1000 (recommended)<br />

125 HPGL pen width<br />

Choice 150, 300, 500.<br />

Default 300.<br />

126 Generate POLYs Only<br />

Choice on, off.<br />

Default off.<br />

127 Set Object’s text<br />

Choice on, off.<br />

Default off.<br />

Compatibilty<br />

This switch can be set to "on" for compatibility purposes<br />

with former AutoCAD input files.<br />

128 Accept flat Rectangles<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 163<br />

Choice on, off.<br />

Default off.<br />

129 Ignore layer in DXF block<br />

Choice on, off.<br />

Default off.<br />

130 Circle Recognition min. # points<br />

Choice 8, 10, 12, 14, 16, 500.<br />

Default 8.<br />

Simplify polygons<br />

Objects can be simplified to (1-point) circles to improve<br />

import and drawing speed.<br />

Note:<br />

To prevent octagons to be recognized as circles<br />

increase this number.<br />

131 Circle Recognition tolerance<br />

Choice 0.001, 0.1, 1, 5, 10, 100.<br />

Default 0.1.<br />

Simplify polygons<br />

To recognize an object to be a cirlce the calculated<br />

distance from midpoint to any point of the object<br />

may not be above this limit (in units)<br />

18.8 Object Snap<br />

132 Horizontal Object Snap<br />

Choice (’off’, ’off’), (’0’, ’0’), (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’).<br />

Default 2.<br />

Cursor snap on object lines<br />

Used for selections, Distance in Pixels<br />

133 Vertical Object Snap<br />

Choice (’ = horizontal’, ’ = horizontal’), (’off’, ’off’), (’0’, ’0’), (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’).<br />

Default = horizontal.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 164<br />

Used for selections, Distance in Pixels<br />

134 3D snap<br />

Choice (’off’, ’off’), (’0’, ’0’), (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’), (’5’, ’5’), (’8’, ’8’), (’10’, ’10’), (’15’, ’15’), (’20’,<br />

’20’), (’25’, ’25’).<br />

Default 15.<br />

Object snap in Draft - iso view<br />

Used for selections, Distance in Pixels<br />

18.9 Operations<br />

135 Default Rotation Angle<br />

Choice -180, -150, -135, -120, -90, -60, -45, -30, 0, 30, 45, 60, 90, 120, 135, 150, 180.<br />

Default 90.<br />

Constructive and destructive point rotation<br />

positive: counter clockwise<br />

negative: clockwise<br />

Note:<br />

Rotation axis = line through point parallel to normal direction<br />

of current draing plane<br />

136 Default Copy Expression<br />

Choice ’mcopy(dx=100,dy=100,dz=0,nx=5,ny=5,nz=0)’, ’mcopy(dx=100,nx=10)’, ’mcopy(dz=100,nz=5)’,<br />

’mcopy(dx=45,nx=8,map=lambda x,y,z: (100*cos(x/180*3.1415),100*sin(x/180*3.1415),0))’.<br />

Default mcopy(dx=100,dy=100,dz=0,nx=5,ny=5,nz=0).<br />

Multiple copy<br />

Copy selected OBJECT(s) according to an array expression:<br />

mcopy(dx=a,dy=b,dz=c,nx=m,ny=l,nz=p)<br />

where a,b,c are the shifts in x,y,z direction<br />

and m,l,p are the numbers of copies in x,y,z direction<br />

18.10 Polygon<br />

137 Poly rasterize<br />

Choice 0, 1, 2, 5, 10.<br />

Default 0.1.<br />

Set raster width<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 165<br />

The corners and edges of selected OBJECT(s) are mapped<br />

to a grid which is defined by this number.<br />

Note:<br />

This function is often used to get rid of odd co-ordinate<br />

values of imported layout data.<br />

138 Circle Resolution (Degrees)<br />

Choice 0, 0, 0, 1, 2, 5, 10, 11, 15, 20, 22, 25, 30, 45.<br />

Default 11.25.<br />

Number of points used to approximate a circle<br />

Usually a circle consists of the data set Midpoint (x0,y0)<br />

and Radius r0. If the circle is merged of subtracted from<br />

other objects the cirlce resolution defines the arc which<br />

is approximated by a line.<br />

Note:<br />

If only a small circle segment is needed, reduce the<br />

circle resolution to e.g. 1 degree<br />

139 Rotpoly Subdivision (Integer)<br />

Choice 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 75, 100.<br />

Default 12.<br />

Number of segments used to approximate a body of revolution<br />

To save drawing time a rotational polygon is displayed<br />

in segments. The more segments are used the better is<br />

the approximation<br />

Note:<br />

If only a small part of the body needed, increase the<br />

number of segments to e.g. 360<br />

140 LINPOLY default width<br />

Choice 0, 1.<br />

Default 0.<br />

Number of cells for discretization<br />

N = 0 - effective diameter appr. 0.2 * delta<br />

N = 1 - effective diameter appr. 1 * delta<br />

141 Circle Recognition min. # Points<br />

Choice 6, 8, 10, 12, 14, 16.<br />

Default 8.<br />

Simplify polygons<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 166<br />

Objects can be simplified to (1-point) circles to improve<br />

import and drawing speed.<br />

Usage:<br />

- Select polygons to be simplified to 1-point circles<br />

- Press "Advanced - Circle recognition"<br />

- Enter tolerance (in units)<br />

Note:<br />

To recognize an object to be a cirlce the calculated<br />

distance from midpoint to any point of the object<br />

may not be above this limit (in units)<br />

Note:<br />

To prevent octagons to be recognized as circles<br />

increase this number.<br />

18.10.1 Polygon/Advanced<br />

142 Poly tolerance<br />

Choice 0, 0, 0, 0.<br />

Default 0.0001.<br />

Tolerance in units<br />

Used in the following operations:<br />

- Path to Poly<br />

- usertransformation<br />

- oversize<br />

- discretize<br />

143 Rotpoly Fast Discretization<br />

Choice on, off.<br />

Default off.<br />

Accelerate Meshing of rotational polygons<br />

144 Show Bounding Box<br />

Choice never, 2d perpendicular, 3d, always.<br />

Default 2d perpendicular.<br />

Display bounding box of polygons<br />

18.11 Print<br />

145 Page Layout<br />

Choice (’Landscape’, ’Landscape’), (’Portrait’, ’Portrait’).<br />

Default Landscape.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 167<br />

18.11.1 Print/Advanced<br />

146 Print Command (UNIX)<br />

Choice lpr.<br />

Default lpr.<br />

18.12 Solid<br />

147 Min. Normal Angle for draft Display<br />

Choice 1, 5, 10, 20, 30, 45, 60, 90.<br />

Default 30.<br />

Threshold for displaying lines of solids<br />

In draft mode all objects are displayed as wire<br />

frame models. Solid objects contain many lines<br />

which can hide other objects.<br />

To reduce the number of lines displayed in<br />

draft mode, the minimum angle can be increased.<br />

148 Warn for improper Objects<br />

Choice on, off.<br />

Default on.<br />

Problems when importing solids<br />

Only solid objects which surface is closed can be<br />

properly processed.<br />

An un-closed solid can be healed by using the operations<br />

"Extrude Solid" or "Orient Solid"<br />

Note:<br />

If a solid object is not closed, some operations can not<br />

be performed.<br />

18.12.1 Solid/Advanced<br />

149 Relative Accuracy<br />

Choice 0.001, 0.0001, 1e-05.<br />

Default 1e-5.<br />

Used for Solid operations<br />

150 2D Draft Display<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 168<br />

Choice min, max, all.<br />

Default all.<br />

Accelerate display by neglecting triangles<br />

18.13 Standard Snap<br />

151 Horizontal<br />

Choice off, small, medium, big, 0, 0, 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000.<br />

Default small.<br />

Behavior of the cursor snap<br />

off<br />

no snap on co-ordinates<br />

small fine auto snap, depending on zoom<br />

medium medium auto snap, depending on zoom<br />

big<br />

coarse auto snap, depending on zoom<br />

value snap at horizontal co-ordinates N*value<br />

152 Horizontal Discretization<br />

Choice (’off’, ’off’), (’0’, ’0’), (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’).<br />

Default off.<br />

Snap on grid lines<br />

If turned on, crosshair snaps to gridlines and changes<br />

color to red.<br />

153 Vertical Snap<br />

Choice = horizontal, off, small, medium, big, 0, 0, 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000.<br />

Default = horizontal.<br />

Behavior of the cursor snap<br />

horizontal - use same setting<br />

off<br />

no snap on co-ordinates<br />

small fine auto snap, depending on zoom<br />

medium medium auto snap, depending on zoom<br />

big<br />

coarse auto snap, depending on zoom<br />

value snap at horizontal co-ordinates N*value<br />

154 Vertical Discretization<br />

Choice (’ = horizontal’, ’ = horizontal’), (’off’, ’off’), (’0’, ’0’), (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’).<br />

Default = horizontal.<br />

Snap on grid lines<br />

If turned on, crosshair snaps to gridlines and changes<br />

color to red.<br />

(C) 2006


CHAPTER 18. EDITOR OPTIONS 169<br />

155 Ortho snap<br />

Choice (’off’, ’off’), (’0’, ’0’), (’1’, ’1’), (’2’, ’2’), (’3’, ’3’), (’4’, ’4’), (’5’, ’5’).<br />

Default 5.<br />

Snap distance in pixel for orthogonal egdes<br />

156 Highlight color<br />

Choice (’red’, ’red’), (’green’, ’green’), (’blue’, ’blue’), (’grey’, ’grey’), (’black’, ’black’), (’#f70’, ’#f70’).<br />

Default #f70.<br />

Cursor color changes<br />

In case of<br />

- grid lines are hit<br />

the cursor co-ordinate values are highlighted<br />

- object lines are hit<br />

the crosshair is highlighted in this color<br />

(C) 2006


Chapter 19<br />

Autodisc Options<br />

19.1 Advanced<br />

157 Use Simplified Grid<br />

Choice (1, ’yes’), (0, ’no’).<br />

Default yes.<br />

For experimental use can be switched off<br />

Yes: Use only important vertices<br />

No: Use all vertices<br />

158 Object Roughness (cells)<br />

Choice 0, 0.001, 0.01, 0.1, 1.<br />

Default 0.<br />

Accounts for drawing inaccuracy<br />

Number in Units can be adjusted for improper drawings.<br />

159 Wedge recognition limit in Degrees<br />

Choice 10, 12, 22, 30, 45.<br />

Default 15.<br />

Changeable only if Discretization set to User defined<br />

Detection of inner edges in polygons and solids<br />

160 Edge accuracy (Percent)<br />

Choice 10, 20, 50, 80, 100.<br />

Default 50.<br />

170 (C) 2006


CHAPTER 19. AUTODISC OPTIONS 171<br />

Changeable only if Discretization set to User defined<br />

Used for the decision to merge grid lines.<br />

If two grid lines with distance dp are located<br />

ds from a visible edge they will be merged if<br />

dp < k/100 * ds, where k is the edge accuracy in percent<br />

19.2 Directions<br />

161 x discretisation in units<br />

Choice off, auto, auto + fixed, 10, 20, 25, 50, 100, 200, 500.<br />

Default auto.<br />

off: Omit this direction for automatic meshing<br />

auto: automatic meshing<br />

auto+fixed automatic meshing keeping fixed lines<br />

(number): equidistant meshing with spacing of (number)<br />

162 y discretisation in units<br />

Choice off, auto, auto + fixed, 10, 20, 25, 50, 100, 200, 500.<br />

Default auto.<br />

off: Omit this direction for automatic meshing<br />

auto: automatic meshing<br />

auto+fixed automatic meshing keeping fixed lines<br />

(number): equidistant meshing with spacing of (number)<br />

163 z discretisation in units<br />

Choice off, auto, auto + fixed, 10, 20, 25, 50, 100, 200, 500.<br />

Default auto.<br />

off: Omit this direction for automatic meshing<br />

auto: automatic meshing<br />

auto+fixed automatic meshing keeping fixed lines<br />

(number): equidistant meshing with spacing of (number)<br />

19.3 General<br />

164 Relative Drawing Accuracy<br />

Choice 1e-06, 1e-05, 0.0001, 0.001.<br />

Default 1e-6.<br />

(C) 2006


CHAPTER 19. AUTODISC OPTIONS 172<br />

Two object lines are considered to have equal<br />

co-ordinates if their distance are below this<br />

relative limit.<br />

The absolute limit is determined by this value<br />

times (max-min), which is the distance between<br />

the boundaries in the respective direction.<br />

165 Relative Limit for Warning<br />

Choice 1e-06, 1e-05, 0.0001, 0.001.<br />

Default 1e-3.<br />

Minimum cell spacing<br />

Very small cell spacing should be avoided if possible<br />

to reduce simulation time.<br />

A warning message is displayed if a cell is detected<br />

which is smaller than 0.001*(max-min) by default,<br />

wehre (max-min) is the distance between the<br />

boundaries in the respective direction.<br />

If these small grid line spacing is intended the<br />

warning messages can be avoided by reducing<br />

this number.<br />

19.4 Options<br />

166 Planar Direction<br />

Choice x, y, z, None.<br />

Default 0.<br />

Changeable if Discretization set to User defined<br />

If Prototype - Discretization is set to planar<br />

this value determies the planar plane.<br />

167 Arc Resolution in Degrees<br />

Choice 10, 12, 22, 30, 45.<br />

Default 12.125.<br />

Changeable if Discretization set to User defined<br />

Value determies the angular step which<br />

is used to discretize arcs and circles.<br />

168 Flat metal Recognition Limit<br />

Choice 0.01, 0.05, 0.1, 0.2.<br />

Default 0.05.<br />

Changeable if Discretization set to User defined<br />

A metal object is considered to be flat<br />

if the ratio between thickness and<br />

cross section is below this limit.<br />

(C) 2006


CHAPTER 19. AUTODISC OPTIONS 173<br />

19.5 Resolution<br />

169 Min Cells per Wavelength<br />

Choice 6, 8, 10, 15, 20, 25, 30, 40, 50.<br />

Default 10.<br />

Changeable if Discretization set to User defined<br />

Spatial sampling of waves<br />

- Minimum: 6 cells / wavelength<br />

- Recommended: 10 cells / wavelenth<br />

- Reduce numerical dispersion: 20 cells / wavelength<br />

Note:<br />

Wavelength is derived from maximum frequency<br />

170 Absolute min resolution in units<br />

Choice 0.1, 1, 10, 0.1 0.2 0.3, 50 50 80.<br />

Default 0.<br />

Changeable if Discretization set to User defined<br />

Distances below this limit will not be recognized.<br />

May be necessary to chang if large units are selected.<br />

Format:<br />

d<br />

dx_dy_dz<br />

Absolute minimum resolution<br />

Absolute minimum resolution in each direction<br />

171 Min Resolution in units<br />

Choice 1, 10, 30, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 50 50 80.<br />

Default 50.<br />

Changeable if Discretization set to User defined<br />

The meshing algorithm will try to aim for this desired minimum resolution.<br />

Format:<br />

d<br />

dx_dy_dz<br />

Desired minimum resolution<br />

Desired minimum resolution in each direction<br />

172 Max Resolution in units<br />

Choice 10, 20, 50, 100, 500, 1000, 2000, 5000, 10000, 1000 1000 100.<br />

Default 1000.<br />

Changeable if Discretization set to User defined<br />

None:<br />

Maximum resolution is determined by upper frequency<br />

d: Maximum resolution<br />

dx_dy_dz: Maximum resolution in respective direction<br />

173 Object cells 1<br />

(C) 2006


CHAPTER 19. AUTODISC OPTIONS 174<br />

Choice 3, 4, 5, 6, 7, 8, 10, 15, 20, 10 10 5.<br />

Default 5.<br />

Changeable if Discretization set to User defined<br />

Value determines:<br />

- Number of cells for gap to the boundaries<br />

- Number of cells used to resolve lumped objects<br />

- Number of grid lines if flat metal discretization is set to 1 cell<br />

174 Object cells 2<br />

Choice 3, 4, 5, 6, 7, 8, 10, 15, 20, 10 10 5.<br />

Default 5.<br />

Changeable if Discretization set to User defined<br />

Value determines:<br />

Number of cells used for basic discretization of objects<br />

(if layer discretization is set to ’basic’, no 1/3rd rule)<br />

175 Object cells 3<br />

Choice 3, 4, 5, 6, 7, 8, 10, 15, 20, 10 10 5.<br />

Default 5.<br />

Changeable if Discretization set to User defined<br />

Currently not in use.<br />

176 Object cells 4<br />

Choice 3, 4, 5, 6, 7, 8, 10, 15, 20, 10 10 5.<br />

Default 2.<br />

Changeable if Discretization set to User defined<br />

Value determines:<br />

Number of cells used to resolve important objects<br />

(If layer discretization is set to ’important’, 1/3rd rule may be used)<br />

177 Refinement ratio<br />

Choice 1.1, 1.2, 1.5, 2, 3, 1.5 1.5 2.<br />

Default 1.5 1.5 3.<br />

Changeable if Discretization set to User defined<br />

Factor for graded meshing, used for the<br />

smooth transition from small cell spacing<br />

to large cell spacing.<br />

default: d(i+1) = 1.8 * d(i)<br />

Can be set for each direction separately, e.g.<br />

1.1_1.4_1.8<br />

(C) 2006


CHAPTER 19. AUTODISC OPTIONS 175<br />

19.6 Simulation Box<br />

19.6.1 Simulation Box/X<br />

178 min<br />

Choice 0.<br />

Default 0.<br />

Set boundary co-ordinate at xmin:<br />

- from structure: derive outermost co-ordinate from structure<br />

- from disc: use current outermost grid line<br />

- (number): Enter/Use value for boundary co-ordinate<br />

179 max<br />

Choice 0.<br />

Default 0.<br />

Set boundary co-ordinate at xmax:<br />

- from structure: derive outermost co-ordinate from structure<br />

- from disc: use current outermost grid line<br />

- (number): Enter/Use value for boundary co-ordinate<br />

19.6.2 Simulation Box/Y<br />

180 min<br />

Choice 0.<br />

Default 0.<br />

Set boundary co-ordinate at ymin:<br />

- from structure: derive outermost co-ordinate from structure<br />

- from disc: use current outermost grid line<br />

- (number): Enter/Use value for boundary co-ordinate<br />

181 max<br />

Choice 0.<br />

Default 0.<br />

Set boundary co-ordinate at ymax:<br />

- from structure: derive outermost co-ordinate from structure<br />

- from disc: use current outermost grid line<br />

- (number): Enter/Use value for boundary co-ordinate<br />

(C) 2006


CHAPTER 19. AUTODISC OPTIONS 176<br />

19.6.3 Simulation Box/Z<br />

182 zmin<br />

Choice 0.<br />

Default 0.<br />

Set boundary co-ordinate at zmin:<br />

- from structure: derive outermost co-ordinate from structure<br />

- from disc: use current outermost grid line<br />

- (number): Enter/Use value for boundary co-ordinate<br />

183 zmax<br />

Choice 0.<br />

Default 0.<br />

Set boundary co-ordinate at zmax:<br />

- from structure: derive outermost co-ordinate from structure<br />

- from disc: use current outermost grid line<br />

- (number): Enter/Use value for boundary co-ordinate<br />

(C) 2006


Chapter 20<br />

Simulation Options<br />

20.1 Boundary Conditions<br />

184 xmin<br />

Choice Electric, Magnetic, Open 4, Open 6, Open 8, Open 12, Open 16, Resistive Sheet 377 Ohms.<br />

Default Open 6.<br />

Electric Etan=0 at boundary (brown line)<br />

Magnetic Htan=0 at boundary (green line)<br />

Open N N=number of perfectly match layers (dotted line)<br />

Sheet 377 Ohm Resistor (dotted line)<br />

185 xmax<br />

Choice Electric, Magnetic, Open 4, Open 6, Open 8, Open 12, Open 16, Resistive Sheet 377 Ohms.<br />

Default Open 6.<br />

Electric Etan=0 at boundary (brown line)<br />

Magnetic Htan=0 at boundary (green line)<br />

Open N N=number of perfectly match layers (dotted line)<br />

Sheet 377 Ohm Resistor (dotted line)<br />

186 ymin<br />

Choice Electric, Magnetic, Open 4, Open 6, Open 8, Open 12, Open 16, Resistive Sheet 377 Ohms.<br />

Default Open 6.<br />

Electric Etan=0 at boundary (brown line)<br />

Magnetic Htan=0 at boundary (green line)<br />

Open N N=number of perfectly match layers (dotted line)<br />

Sheet 377 Ohm Resistor (dotted line)<br />

187 ymax<br />

Choice Electric, Magnetic, Open 4, Open 6, Open 8, Open 12, Open 16, Resistive Sheet 377 Ohms.<br />

Default Open 6.<br />

177 (C) 2006


CHAPTER 20. SIMULATION OPTIONS 178<br />

Electric Etan=0 at boundary (brown line)<br />

Magnetic Htan=0 at boundary (green line)<br />

Open N N=number of perfectly match layers (dotted line)<br />

Sheet 377 Ohm Resistor (dotted line)<br />

188 zmin<br />

Choice Electric, Magnetic, Open 4, Open 6, Open 8, Open 12, Open 16, Resistive Sheet 377 Ohms.<br />

Default Open 6.<br />

Electric Etan=0 at boundary (brown line)<br />

Magnetic Htan=0 at boundary (green line)<br />

Open N N=number of perfectly match layers (dotted line)<br />

Sheet 377 Ohm Resistor (dotted line)<br />

189 zmax<br />

Choice Electric, Magnetic, Open 4, Open 6, Open 8, Open 12, Open 16, Resistive Sheet 377 Ohms.<br />

Default Open 6.<br />

Electric Etan=0 at boundary (brown line)<br />

Magnetic Htan=0 at boundary (green line)<br />

Open N N=number of perfectly match layers (dotted line)<br />

Sheet 377 Ohm Resistor (dotted line)<br />

20.2 Frequency<br />

190 Start Frequency<br />

Choice 0 Hz, 1 MHz, 2 MHz, 3 MHz, 4 MHz, 5 MHz, 8 MHz, 10 MHz, 20 MHz, 30 MHz, 40 MHz, 50 MHz, 80 MHz,<br />

100 MHz, 200 MHz, 300 MHz, 400 MHz, 500 MHz, 800 MHz, 1 GHz, 2 GHz, 3 GHz, 4 GHz, 5 GHz, 8 GHz, 10 GHz,<br />

20 GHz, 30 GHz, 40 GHz, 50 GHz, 80 GHz, 100 GHz, 200 GHz, 300 GHz, 400 GHz, 500 GHz, 800 GHz, 1 THz, 2 THz,<br />

3 THz, 4 THz, 5 THz, 8 THz, 10 THz, 20 THz, 30 THz, 40 THz, 50 THz, 80 THz, 100 THz, 200 THz, 300 THz, 400 THz,<br />

500 THz, 800 THz.<br />

Default 0 Hz.<br />

Can be set to 0 Hz in most cases to obtain<br />

the shortest possible pulse width.<br />

In case of waveguides the start frequency<br />

should be larger than the cut-off frequency.<br />

191 Target Frequency<br />

Choice 0 Hz, 1 MHz, 2 MHz, 3 MHz, 4 MHz, 5 MHz, 8 MHz, 10 MHz, 20 MHz, 30 MHz, 40 MHz, 50 MHz, 80 MHz,<br />

100 MHz, 200 MHz, 300 MHz, 400 MHz, 500 MHz, 800 MHz, 1 GHz, 2 GHz, 3 GHz, 4 GHz, 5 GHz, 8 GHz, 10 GHz,<br />

20 GHz, 30 GHz, 40 GHz, 50 GHz, 80 GHz, 100 GHz, 200 GHz, 300 GHz, 400 GHz, 500 GHz, 800 GHz, 1 THz, 2 THz,<br />

3 THz, 4 THz, 5 THz, 8 THz, 10 THz, 20 THz, 30 THz, 40 THz, 50 THz, 80 THz, 100 THz, 200 THz, 300 THz, 400 THz,<br />

500 THz, 800 THz.<br />

Default 10 GHz.<br />

Narrow band loss calculation<br />

(C) 2006


CHAPTER 20. SIMULATION OPTIONS 179<br />

During simulation the material can be treated<br />

either lossless or lossy for a selectable frequency<br />

band. Here, special algorithms are applied which<br />

have impact on the simulation speed.<br />

The loss calculation frequency band is centered<br />

to the target frequency.<br />

192 End Frequency<br />

Choice 0 Hz, 1 MHz, 2 MHz, 3 MHz, 4 MHz, 5 MHz, 8 MHz, 10 MHz, 20 MHz, 30 MHz, 40 MHz, 50 MHz, 80 MHz,<br />

100 MHz, 200 MHz, 300 MHz, 400 MHz, 500 MHz, 800 MHz, 1 GHz, 2 GHz, 3 GHz, 4 GHz, 5 GHz, 8 GHz, 10 GHz,<br />

20 GHz, 30 GHz, 40 GHz, 50 GHz, 80 GHz, 100 GHz, 200 GHz, 300 GHz, 400 GHz, 500 GHz, 800 GHz, 1 THz, 2 THz,<br />

3 THz, 4 THz, 5 THz, 8 THz, 10 THz, 20 THz, 30 THz, 40 THz, 50 THz, 80 THz, 100 THz, 200 THz, 300 THz, 400 THz,<br />

500 THz, 800 THz.<br />

Default 10 GHz.<br />

The frequency range determines the pulse width.<br />

The upper frequency is also a measure for the<br />

grid accuracy used for the automatic meshing.<br />

20.3 Geometry<br />

193 Drawing Unit<br />

Choice 1 um, —–, 1 nm, 1 mm, 1 m, 1 mil, 1 inch.<br />

Default 1 um.<br />

1 unit in drawing can be set to<br />

1e-9 = 1 nm<br />

1e-6 = 1 um<br />

1e-3 = 1 mm<br />

1 = 1 m<br />

25.4e-6 = 1 mil<br />

25.4e-3 = 1 inch<br />

20.4 Prototype<br />

194 Discretisation<br />

Choice Planar + 3D, Planar, 3D, User Defined, <strong>Manual</strong>.<br />

Default Planar + 3D.<br />

Mode selection<br />

Planar Autodisc is optimized for planar structures, e.g. one-3rd rule<br />

Planar + 3D Mixed mode<br />

3D Autodisc is optimized for structures without flat metalization<br />

User defined Autodisc Parameters can be set by the user<br />

<strong>Manual</strong> No Automatic Discretization<br />

195 Resolution<br />

(C) 2006


CHAPTER 20. SIMULATION OPTIONS 180<br />

Choice Coarse, Medium, Fine, Very Fine.<br />

Default Medium.<br />

Measure for grid accuracy<br />

e.g. Line resolution<br />

Coarse 3 cells<br />

Medium 4 cells<br />

Fine 5 cells<br />

Very fine 6 cells<br />

196 Structure Type<br />

Choice (’IND5’, ’Inductor (n


CHAPTER 20. SIMULATION OPTIONS 181<br />

Conductors can be treated either lossless or lossy<br />

for a selectable frequency band.<br />

Special algorithms are applied which have impact on<br />

the simulation speed. The loss calculation frequency band<br />

is centered to the target frequency.<br />

199 Flat metal thickness<br />

Choice (’0’, ’thin’), (’1’, ’1 cell’).<br />

Default thin.<br />

Grid resolution of flat metal<br />

If flat metals are detected this option<br />

determines if they are resolved by one<br />

or two grid lines.<br />

(C) 2006


Part IV<br />

Theoretical Background<br />

182 (C) 2006


Chapter 21<br />

General Description<br />

The <strong>EMPIRE</strong> XCcel TM simulator is a tool for solving Maxwell’s equations, especially for radio frequency (RF) applications.<br />

It is based on the Finite Difference Time Domain method (FDTD), which means that the equations are discretized<br />

in space and time. This is accomplished by mapping the structure of interest onto a rectangular grid where the unknown<br />

field components are located in each cell.<br />

Because of the nature of the electromagnetic problem 1 , an initial value problem has to be solved. This means that the<br />

unknown field for a certain time is calculated from the field values before. The FDTD method employs an efficient time<br />

stepping algorithm, known as the Yee’s leapfrog scheme [1], which will be explained in this chapter, to solve the initial<br />

value problem. The size of the time steps is related to the size of the grid for stability reasons and can not, therefore,<br />

be defined independently. So the definition of a suitable grid is an important task for efficient simulation and will be<br />

described later in more detail.<br />

The duration of a simulation run is proportional to the number of time steps needed. It strongly depends on the quality<br />

factor of the system, which can not easily be determined. In certain cases, even instabilities can occur before reaching<br />

the steady state. The reasons for this and some rules to overcome this kind of problems are explained in Chapter 24.<br />

Due to the limited memory resource of a computer, only a finite number of cells can be processed. Therefore, the calculation<br />

area has to be terminated with boundary conditions. The <strong>EMPIRE</strong> XCcel TM software employs several truncations<br />

of the mesh which will be explained in Chapter 23.<br />

Most of the problems encountered in analyzing and designing high frequency elements are due to the unknown electromagnetic<br />

field behavior. Often these problems are called ”parasitics” or ”coupling effects”. The reason for the inability<br />

to predict the electromagnetic field behavior is that Maxwells equations can not be solved analytically for any practical 2<br />

structure. Therefore, one often has to deal with approximations which have limitations in applicability. One method to<br />

solve Maxwell’s equations with very few approximations is the Finite Difference Time Domain method, which will be<br />

explained in this chapter.<br />

21.1 Assumptions<br />

The aim of the FDTD method is to solve Maxwell’s equations and its associated material relations for a given structure<br />

and boundary conditions. Those equations yield<br />

1 Maxwells equations can be reformulated as hyperbolic partial differential equations<br />

2 with the exception of some academic examples<br />

∇ × ⃗H = ⃗D ˙ + ⃗J, (21.1)<br />

∇ × ⃗E = −⃗B, ˙<br />

(21.2)<br />

⃗D = ε⃗E, (21.3)<br />

⃗B = µ⃗H, (21.4)<br />

⃗J = σ⃗E, (21.5)<br />

183 (C) 2006


CHAPTER 21. GENERAL DESCRIPTION 184<br />

where ⃗E and ⃗H are the electric and magnetic field vectors, ⃗D and ⃗B are the electric and magnetic flux density vectors and<br />

ε, µ, and σ are permittivity, permeability, and conductivity of the material, respectively. Some assumptions have to be<br />

made to derive the algorithm to solve these equation with numerical methods:<br />

• Passivity<br />

The structure does not contain any active element. These elements can not be described by Maxwell’s equations<br />

and, therefore, have to be excluded from the simulation. A method to include those elements as lumped elements<br />

connected at inner ports using the so called compression approach will be explained in chapter 27.<br />

• Linearity<br />

Non-linear elements, like semi-conductors and some dielectric or permeable materials, need special treatment in<br />

the algorithm, which is not considered here.<br />

• No remedy effects<br />

Hysteresis effects, which can occur in highly permeable materials, are not considered in the simulator.<br />

• Isotropy<br />

Anisotropic materials can be taken into account in the algorithm as long the material tensor can be described<br />

by a diagonal matrix which must coincide with the co-ordinate system of the grid. Because of higher memory<br />

requirements, this feature is not implemented yet.<br />

• Absence of free charges<br />

Free charges can be accelerated by electromagnetic fields and, therefore, have to be calculated with a combined set<br />

of Maxwell’s equations and movement equations, which is often implemented in so called Particle in Cell Codes.<br />

• Frequency independent materials<br />

For the applied algorithm, the material properties are assumed to be independent of frequency, because often a<br />

whole frequency range is covered by exciting with Gaussian-like pulses. If the frequency dependence can be<br />

described by simple differential equations in the time domain it can be considered but the algorithm has to be<br />

changed for those regions.<br />

21.2 The Yee algorithm<br />

No assumptions have to be made for the shape and material distribution of the structure. The only limitation is that the<br />

structure has to be subdivided into cells in which the material properties are constant. For the Finite Difference scheme,<br />

these cells are formed by intersecting planes of a Cartesian co-ordinate system. The basic idea of the algorithm is to place<br />

the unknown field components in a certain position of each cell so that every electrical field component ⃗E is surrounded<br />

by four circulating magnetic field components ⃗H and vice versa, as shown in Figure 21.1, and to approximate Maxwell’s<br />

differential equations by central differences.<br />

For example, the corresponding approximate equation for the Ḃ x component gives<br />

Ḃ x = E y(x,y,z + δz<br />

2 ) − E y(x,y,z − δz<br />

2 ) − E z(x,y + δy<br />

2 ,z) − E z(x,y − δy<br />

2 ,z)<br />

δz<br />

δy<br />

Also the time derivative is approximated by central differences and arranged in such a way, that the computed values for<br />

⃗B and ⃗E are shifted for a half step in time, yielding the well-known leapfrog scheme. For any component A, a numbering<br />

according to<br />

A(x,y,z,t) = A<br />

(<br />

∑<br />

i<br />

δx i ,∑<br />

j<br />

(21.6)<br />

)<br />

δy j ,∑δz k ,nδt<br />

k<br />

ˆ=A n i, j,k (21.7)<br />

(C) 2006


CHAPTER 21. GENERAL DESCRIPTION 185<br />

Figure 21.1. Arrangement of field components in a Yee cell<br />

is introduced. The FDTD scheme can then be written as:<br />

1 − σ ⎛<br />

i jkδt<br />

E n+1<br />

2ε i jk<br />

2<br />

x =<br />

i + , j,k<br />

1 + σ E n ε δt<br />

i jk<br />

i jkδt x + ⎝ Hn+1/2 z − H n+1/2<br />

i + , j + ,k z H n+1/2<br />

i + , j − ,k y − ⎞<br />

i + , j,k + Hn+1/2 y i + , j,k −<br />

i + , j,k<br />

2ε i jk<br />

1 + σ −<br />

⎠ (21.8)<br />

i jkδt δy j + δy j−1 δz k + δz k−1<br />

2ε i jk<br />

1 − σ ⎛<br />

i jkδt<br />

E n+1<br />

2ε i jk<br />

2<br />

y =<br />

i, j + ,k<br />

1 + σ E n ε δt<br />

i jk<br />

i jkδt y + ⎝ Hn+1/2 x − ⎞<br />

i, j + ,k + Hn+1/2 x H n+1/2<br />

i, j + ,k − z − H n+1/2<br />

i + , j + ,k z i − , j + ,k<br />

i, j + ,k<br />

2ε i jk<br />

1 + σ −<br />

⎠ (21.9)<br />

i jkδt δz k + δz k−1 δx i + δx i−1<br />

2ε i jk<br />

1 − σ ⎛<br />

i jkδt<br />

E n+1<br />

z = 2ε i jk<br />

2<br />

i, j,k +<br />

1 + σ E n<br />

i jkδt z + ε δt<br />

i jk<br />

⎝ Hn+1/2 y − i + , j,k + Hn+1/2 y H n+1/2<br />

i − , j,k + x − ⎞<br />

i, j + ,k + Hn+1/2 x i, j − ,k +<br />

i, j,k +<br />

2ε i jk<br />

1 + σ −<br />

⎠ (21.10)<br />

i jkδt δx i + δx i−1 δy j + δy j−1<br />

2ε i jk<br />

⎛<br />

H n+1/2<br />

x = i, j + ,k + Hn−1/2 x + δt ⎝ En+1/2 y − E n+1/2<br />

i, j + ,k+1 y E n+1/2<br />

i, j + ,k z − ⎞<br />

i, j+1,k + En+1/2 z i, j,k +<br />

−<br />

⎠ (21.11)<br />

i, j + ,k +<br />

µ i jk<br />

δz k<br />

δy j<br />

⎛<br />

H n+1/2<br />

y = i + , j,k + Hn−1/2 y + δt ⎝ En+1/2 z − ⎞<br />

i+1, j,k + En+1/2 z E n+1/2<br />

i, j,k + x − E n+1/2<br />

i + , j,k+1 x i + , j,k<br />

−<br />

⎠ (21.12)<br />

i + , j,k +<br />

µ i jk<br />

δx i<br />

δz k<br />

⎛<br />

⎞<br />

H n+1/2<br />

z = H n−1/2<br />

i + , j + ,k z + δt ⎝ En+1/2 x − E n+1/2<br />

i + , j+1,k x E n+1/2<br />

i + , j,k y − E n+1/2<br />

i+1, j + ,k y i, j + ,k<br />

−<br />

⎠ (21.13)<br />

i + , j + ,k µ i jk<br />

δy j<br />

δx i<br />

Here, the superscripts i ± denote a spatial shift of half a cell size. The discrete material parameters σ i jk ,ε i jk ,µ i jk are<br />

obtained from the continuous ones by a special averaging scheme. They are stored in an efficient way, so that the<br />

memory requirement is approximately limited to the 6 components.<br />

These equations can now be solved recursively if initial values ⃗E 0 and ⃗H 1/2 and proper boundary conditions are given.<br />

The field values are updated in each time step and lost, if they are not explicitly saved as done when recording voltages,<br />

currents or field plots. As can be seen, no matrix inversion is needed and so the calculation with numbers having medium<br />

(C) 2006


CHAPTER 21. GENERAL DESCRIPTION 186<br />

precision (4 Bytes) is sufficient for most applications, thus leading to a very low memory requirement (appr. 24 Bytes<br />

per cell) for the simulation.<br />

(C) 2006


Chapter 22<br />

Discretization<br />

The structure to be analyzed has to be mapped onto the FDTD grid. Even more general grids could be constructed to<br />

be used for the Finite Difference scheme, the Cartesian grid 1 has proven to be the most efficient and versatile one and is<br />

applied in the <strong>EMPIRE</strong> XCcel TM software.<br />

22.1 Grids<br />

To maintain second order accuracy of the FDTD scheme, an equidistant spacing should be preferred. But to reduce<br />

memory requirements, it is sometimes advisable to change the spacing of the grid lines according to the expected change<br />

of field strength.<br />

Hint 36:<br />

The spacing of the grid lines should fulfill the following conditions.<br />

• The space has to be resolved in such way, that the smallest wavelength is sampled properly, i.e. δx < λ/10.<br />

• If the field values are changing rapidly in a region, the resolution of the space should be chosen in a way that the<br />

desired accuracy is obtained.<br />

While the first item can be deduced from the Nyquist theorem, the second item needs some Remarks:<br />

• In the region of edges and corners the field values tend to infinity. So these regions should be resolved by a fine<br />

discretization.<br />

• It is often sufficient, to model substrate metalization as a film with zero thickness.<br />

• Strips and gaps should be resolved with at least one cell.<br />

Hint 37:<br />

It is recommended to preview the discretized structure of all objects. This can be done by selecting the object(s) and<br />

select the function DRC - Discretize. Use Undo to obtain the original object.<br />

1 formed by intersecting planes of Cartesian co-ordinates<br />

187 (C) 2006


Chapter 23<br />

Boundary Conditions<br />

The calculation area has to be truncated by applying boundary conditions at the outer grid cells. Due to the specified<br />

condition, special algorithms have to be applied to the field components.<br />

23.1 Electric Wall<br />

Applying this condition will force the tangential electric field components at the outer plane to be zero. In other words,<br />

only normal electric field components exist, so the electric field is perpendicular to this wall. There are two types of<br />

application for using an electric wall:<br />

• The boundary is covered by a perfect conductor<br />

• The structure and the excitation have a symmetry plane on which the electric field is perpendicular.<br />

23.2 Magnetic Wall<br />

Applying this condition, it will force the tangential magnetic field components at the outer plane to be zero. In other<br />

words, only normal magnetic field components exist, so the magnetic field is perpendicular to this wall. The only<br />

application for this boundary condition is a symmetry plane where the magnetic field is perpendicular. Due to the<br />

locations of the tangential magnetic field components in the grid, the magnetic wall can only be placed in the middle of<br />

the first cell as illustrated in Figure 23.1.<br />

Hint 38:<br />

• The plane of symmetry for a magnetic wall lies between the two outermost grid lines of the mesh.<br />

• The field values behind the magnetic wall can not be accessed.<br />

• A weighting factor of two has to be defined within a current integration path definition, if a conductor is halved by<br />

a magnetic wall to give a proper impedance value.<br />

188 (C) 2006


CHAPTER 23. BOUNDARY CONDITIONS 189<br />

Figure 23.1. Position of electric and magnetic walls in the grid<br />

23.3 Transversal Absorbing Wall<br />

This boundary condition (trans_abs) is well suited for TEM-like waves propagating towards the wall where the wave<br />

should be passed through with low reflection. The working principle is that the field at the grid boundary can be calculated<br />

from the field of the neighboring cell, if the phase velocity of the wave is known. This number has to be entered within<br />

the parameter setup as the effective permittivity ε eff , where the following relations (23.1) are useful.<br />

√<br />

εeff = c 0<br />

v ph<br />

= c 0<br />

∆t<br />

∆l<br />

(23.1)<br />

where c 0 is the velocity of light in free space, v ph is the phase velocity of the TEM-like wave, which travels the distance<br />

∆l during the period ∆t. <strong>EMPIRE</strong> XCcel TM features a super-absorption algorithm to minimize reflections. Here, the field<br />

at the grid boundary is calculated from the fields of the two subsequent cells. To apply this, it is necessary that the grid<br />

spacing of the two cells before the boundary are the same.<br />

Hint 39:<br />

The boundary condition trans_abs can not be combined with the Perfectly Matched Layer (pml) boundary condition.<br />

23.4 Longitudinal Absorbing Wall<br />

This is the complementary boundary condition (trans_abs) to the transversal absorbing wall if the structure is open.<br />

Here, it is assumed that the wave is propagating parallel to the wall.<br />

Hint 40:<br />

The boundary condition long_abs can not be combined with the Perfectly Matched Layer (pml) boundary condition.<br />

(C) 2006


CHAPTER 23. BOUNDARY CONDITIONS 190<br />

23.5 Simple absorbing wall<br />

If the propagation direction cannot be determined or does not coincide with a Cartesian coordinate, a simple absorption<br />

algorithm can be applied which is often referred to first order Mur [2]. In specifying a certain value for ε eff , the absorption<br />

for a certain angle of propagation can be optimized.<br />

Hint 41:<br />

The boundary condition mur can not be combined with the Perfectly Matched Layer (pml) boundary condition.<br />

23.6 Perfectly Matched Layer<br />

This boundary condition is well suited for absorbing outgoing waves having arbitrary directions of propagation. It is<br />

realized by employing gradual electric and magnetic conductivities at the outer walls. The quality of the absorption can<br />

be improved by enlarging the conducting thickness. The thickness of the conducting area can be chosen by specifying<br />

the number of layers in the parameter setup.<br />

Hint 42:<br />

The boundary condition pml can not be combined with other absorbing boundary conditions, like<br />

trans_abs, long_abs, mur.<br />

Hint 43:<br />

As a rule of thumb, the distance between a radiating source and an absorbing wall with pml boundary conditions should<br />

be at least a quarter of a wavelength. Therefore, its usage is not recommended for low frequency applications.<br />

Hint 44:<br />

The boundary employing pml boundary conditions may be inhomogeneous (e.g. layered dielectrics), but the material<br />

may not be lossy.<br />

(C) 2006


Chapter 24<br />

Stability Conditions<br />

An undesired property of the explicit time integration scheme in the FDTD method is the possibility of an unlimited<br />

growth in time of the computed values. In general, this can be overcome by selecting a proper value for the time step δt.<br />

24.1 Uniform grid<br />

To ensure stability of the Yee-algorithm for a uniform grid with homogeneous material distribution, a proper time step<br />

can be derived from an eigenvalue analysis of the discrete differential operators in both space and time which yields<br />

δt ≤<br />

1<br />

c 0<br />

√<br />

1<br />

(δx) 2 + 1<br />

(δy) 2 + 1<br />

(δz) 2 . (24.1)<br />

As can be seen, if the grid spacing is chosen very dense, the time step has to be very small which leads to long simulation<br />

runs. Equation (24.1) can also be applied to inhomogeneous regions, since it represents the worst case.<br />

24.2 Non-uniform grid<br />

If the grid spacing is varying an exact stability criterion can not be derived and, therefore, an empirical upper bound for<br />

the time step is applied as displayed in (24.2).<br />

δt ≤<br />

1<br />

c 0 max i, j,k<br />

( √<br />

1<br />

ε xi jk<br />

(δx i ) 2 +<br />

1<br />

ε yi jk<br />

(δy j ) 2 +<br />

1<br />

ε zi jk<br />

(δz k ) 2 ) (24.2)<br />

24.3 Open boundaries<br />

As for the non-uniform grid, stability conditions can not be derived, especially for artificial boundaries, like absorbing<br />

boundary conditions. In fact, instabilities have been reported in [3] when applying open boundary conditions, like Mur<br />

1st order, transversal, longitudinal or PML to layered dielectrics.<br />

Some empirical rules can be given for avoiding instabilities:<br />

191 (C) 2006


CHAPTER 24. STABILITY CONDITIONS 192<br />

Hint 45:<br />

• equidistantly spaced grid lines before the boundary<br />

• at least λ 8<br />

distance from a source to a boundary<br />

• use an Increased Stability Reserve within the parameter set-up<br />

(C) 2006


Chapter 25<br />

Excitations<br />

For solving the initial value boundary problem, the excitation type and shape must be given for the whole simulation<br />

time.<br />

25.1 Types of excitation<br />

Although it might be possible to impress the initial field arbitrary, only physically reasonable excitations lead to the<br />

desired results.<br />

25.1.1 Matched source excitation<br />

This excitation type assumes a TEM-like propagation of the wave at an excitation port. So, the structure in the port plane<br />

is extended to a certain length L source (25.1) where at the beginning the field is impressed according to the excite definition.<br />

Naturally, the impressed field is not the physical mode, but as the wave propagates along the line the desired physical<br />

mode will be established in the port plane.<br />

L source = n source b dis (25.1)<br />

Here, the parameter n source is entered in the parameter setup and b dis is defined by the first grid spacing at the excitation<br />

plane.<br />

Hint 46:<br />

As a rule of thumb, the length of the matched source should be more than twice the diameter of the effective field cross<br />

section.<br />

When using the ”trans_abs” or ”mur” boundary condition (see 23.3), the phase velocity has to be given for the wave.<br />

This is accomplished by entering the effective permittivity ε eff parameter. Some useful relations for the parameter are<br />

given in equation (23.1). This number is obsolete when using ”pml” boundary conditions.<br />

193 (C) 2006


CHAPTER 25. EXCITATIONS 194<br />

Figure 25.1. Plane wave excitation<br />

25.1.2 Plane wave excitation<br />

The excitation by plane waves is realized as a compact source, where outside the source only the scattered field exists as<br />

depicted in Figure 25.1.<br />

Inside the source both incident waves and scattered fields are present. One electric boundary may be applied 1 when<br />

plane waves are used.<br />

Hint 47:<br />

For plane wave excitation the scattering objects must lie inside the excitation box. Objects lying outside or intersect the<br />

excitation box will lead to unphysical results.<br />

The plane wave may have arbitrary direction of propagation which is specified by the spherical co-ordinates θ and ϕ and<br />

arbitrary polarization, specified by E θ and E ϕ .<br />

More than one plane wave can be excited for exploiting interference effects. With this feature, elliptical polarizations or<br />

standing waves can be simulated. By default, the shape of the excitation is the Gaussian pulse. The shape may be varied<br />

according to section ??.<br />

To specify the desired values in spherical co-ordinates which are given in Cartesian co-ordinates, the following conversion<br />

formulas are useful.<br />

( ) (<br />

Eθ cos(ϕ)cos(θ)<br />

=<br />

E ϕ −sin(ϕ)<br />

sin(ϕ)cos(θ)<br />

cos(ϕ)<br />

−sin(θ)<br />

0<br />

The following table can be used if the propagation direction coincides with one of the Cartesian axis.<br />

direction polarization θ ϕ E θ E ϕ<br />

ˆx ŷ 90 ◦ 0 0 E 0<br />

ˆx ẑ 90 ◦ 0 −E 0 0<br />

ŷ ˆx 90 ◦ 90 ◦ 0 −E 0<br />

ŷ ẑ 90 ◦ 90 ◦ −E 0 0<br />

ẑ ˆx 0 0 E 0 0<br />

ẑ ŷ 0 90 ◦ E 0 0<br />

1 to simulate a ground plane<br />

⎛<br />

)<br />

· ⎝ E ⎞<br />

x<br />

E y<br />

⎠ (25.2)<br />

E z<br />

(C) 2006


CHAPTER 25. EXCITATIONS 195<br />

25.1.3 Waveguide excitation<br />

Hollow waveguides can be excited by TE- or TM-modes which are pre-calculated by a two-dimensional eigenvalue<br />

solver. The cross-section may be arbitrary but must be enclosed by metal. Magnetic boundary condition may be applied<br />

to exploit symmetry. The cross-section may be homogeneously filled by a dielectric material. The frequency range may<br />

be arbitrary but propagation of the exciting mode is only possible if the frequency is above the mode’s cut-off. The<br />

dispersion relation 25.3 of a dielectric filled waveguide is known.<br />

Here, f c is the cut-off frequency of the hollow waveguide.<br />

β = 2π<br />

c 0<br />

√<br />

ε r f 2 0 − f 2 c (25.3)<br />

25.2 Time signals<br />

By default, the time signal of the structure excitation is the Gaussian pulse where the modulation frequency f 0 and the<br />

bandwidth 2 f c is defined by the user.<br />

( )<br />

exc(t) = cos[2π f 0 (t −t 0 )]e − t−t0 2<br />

τ<br />

(25.4)<br />

This definition leads to the following properties of the pulse:<br />

• The amplitudes in frequency domain at the borders f 0 ± f c are −20dB of the amplitude of the center frequency f 0 .<br />

• The amplitude in time domain at the first step t = 0 is −100dB.<br />

• The time duration for the incident pulse is 2t 0 .<br />

(C) 2006


Chapter 26<br />

Ports and S-matrices<br />

Some of the most important results when analyzing RF elements with a field simulator are scattering parameters, representing<br />

reflected and transmitted waves at the ports. When the structure is closed and the ports are defined unique, the<br />

whole passive structure can be described by a frequency dependent scattering matrix as depicted in Figure 26.1.<br />

Figure 26.1. Multiple port scattering matrix<br />

The elements of the scattering matrix are obtained by exciting the structure N times with the wave quantities a n ,n =<br />

1...N, under the condition that all ports are terminated by a matched load.<br />

s i, j = b i<br />

a j<br />

∣ ∣∣∣ak<br />

=0∀k≠ j<br />

(26.1)<br />

If radiation can occur, as it does for open structures, the leakage of radiated power can be evaluated applying the law of<br />

energy conservation.<br />

P loss = 1 2<br />

N<br />

∑<br />

n=1<br />

|a n | 2 − |b n | 2 (26.2)<br />

Note, that for the definition of the scattering matrix 26.1 no reference impedance has been given. This is due to the fact<br />

that the type of waves are not specified yet.<br />

196 (C) 2006


CHAPTER 26. PORTS AND S–MATRICES 197<br />

26.1 Port definition<br />

A port can be defined as a plane, where incident and reflected waves can be represented by complex wave quantities a<br />

and b, respectively.<br />

26.1.1 Quasi-TEM ports<br />

The most common ports for analyzing passive structures are single mode waveguides 1 where voltages and currents can<br />

be uniquely defined. Then the wave quantities can be obtained by<br />

a n = uinc n ( f )<br />

√ = i inc<br />

n ( f ) √ Z n (26.3)<br />

Zn<br />

b n = uref n ( f )<br />

√ = i ref<br />

n ( f ) √ Z n (26.4)<br />

Zn<br />

Z n = uinc n ( f )<br />

i inc n ( f ) = uref n ( f )<br />

i ref n ( f )<br />

(26.5)<br />

Here, Z n is the characteristic impedance of the line at port n. To define a port, both incident and reflected voltages and<br />

currents have to be sampled during the simulation. Here, <strong>EMPIRE</strong> XCcel TM features a matched source excitation where<br />

the possibly dispersive mode is excited correctly over the whole frequency range. Additionally, the matched source<br />

delivers the incident voltage and current, while the evaluation in the analyzed structure gives the sum of incident and<br />

reflected voltage and current. In Figure 26.2, a microstrip port is depicted as an example. The voltage is obtained by<br />

Figure 26.2. Illustration of an outer microstrip port<br />

integrating numerically the corresponding electrical field vectors located on the grid lines along the path specified by the<br />

box at i = 0 and j = 5.<br />

Z h<br />

5<br />

u(t) = E z dz ≈ ∑ E nδt<br />

z 0,5,k<br />

δz k (26.6)<br />

0<br />

1 Hollow waveguides need a special treatment<br />

k=0<br />

(C) 2006


CHAPTER 26. PORTS AND S–MATRICES 198<br />

The current is obtained in a similar way by integrating numerically the magnetic field along the conductor, where the path<br />

of integration is specified by the box at i = 1/2 and k = 5:<br />

I<br />

i(t) = ⃗H · d⃗l<br />

C<br />

≈<br />

−<br />

7<br />

∑ H (n+1/2)δt<br />

y 0, j,5<br />

j=3<br />

7<br />

∑ H (n+1/2)δt<br />

y 0, j,4<br />

j=3<br />

δy j + δy j−1<br />

2<br />

δy j + δy j−1<br />

2<br />

−<br />

H (n+1/2)δt<br />

y 0,7,5<br />

δz 5 + δz 4<br />

2<br />

+ H (n+1/2)δt<br />

y 0,3,5<br />

δz 5 + δz 4<br />

2<br />

(26.7)<br />

26.1.2 Inner ports<br />

Another type of port is featured by <strong>EMPIRE</strong> XCcel TM which is called inner port. At the inner port, embedded devices, such<br />

as diodes or transistors, can be excluded from the analysis and be connected at the scattering port in a circuit simulator<br />

after the simulation runs. This can be useful, when the environment of the embedded devices has to be characterized in<br />

order to evaluate parasitic effects caused by e.g. bond wire or lead inductances of packaged devices. For this, a port can<br />

be defined in a similar way as done for the outer ports as depicted in Figure 26.3.<br />

Figure 26.3. Illustration of an inner port<br />

By default, the characteristic reference impedances are set to 50Ω.<br />

26.1.3 Waveguide ports<br />

To simulate waveguide ports, the modes have to be pre-calculated by running a two-dimensional eigenvalue solver. The<br />

shape may be arbitrary but must be homogeneously filled with material as depicted in Figure 26.4.<br />

Magnetic may not be used for waveguide port calculation.<br />

Hint 48:<br />

(C) 2006


CHAPTER 26. PORTS AND S–MATRICES 199<br />

Figure 26.4. Illustration of a waveguide port<br />

An eigenvalue solver calculates a set of orthogonal eigenvectors which are normalized. For example, modes in the plane<br />

x min can be expressed as<br />

ê n j,k<br />

=<br />

⃗e n j,k<br />

√<br />

∑ j ∑ k ⃗e n j,k ·⃗e n j,k<br />

δy j δz k<br />

(26.8)<br />

ĥ n j,k<br />

=<br />

⃗h n j,k<br />

√<br />

∑ j ∑ k<br />

⃗h n j,k ·⃗h n j,k<br />

δy j δz k<br />

(26.9)<br />

Although voltages and currents can not be uniquely defined for waveguides, it is convenient to record the following<br />

expressions:<br />

u n (t) = ∑<br />

j<br />

i n (t) = ∑<br />

j<br />

∑⃗E n t 0, j,k · ê n j,k<br />

δy j δz k (26.10)<br />

k<br />

∑<br />

⃗H n+1/2<br />

t 0, j,k<br />

· ĥ n j,k<br />

δy j δz k (26.11)<br />

k<br />

Here, the subscript t denotes the transverse field values. According to the specific mode n, equivalent voltages and<br />

currents are recorded during the simulation run. After a discrete Fourier transformation, (26.3,26.4) can be applied to get<br />

the desired wave quantities.<br />

26.2 Time signals<br />

During the simulation run, currents and voltages are recorded. It is possible to obtain the values for every time step. But<br />

for some reason the signals can be highly oversampled 2 . Thus, before the simulation run, a proper sampling factor n sample<br />

will be determined, and only the necessary number of values are stored.<br />

2 if the time step is extremely small compared to the period of the upper frequency limit<br />

u(t) = u(n data n sample δt) (26.12)<br />

(C) 2006


CHAPTER 26. PORTS AND S–MATRICES 200<br />

where n data is the actual data point in the data file ut.<br />

As an example, for a 3 port simulation, excited at port 1 with a matched source, the following time signals will be<br />

obtained:<br />

26.3 Discrete Fourier Transformation of signals<br />

u inc<br />

1 (t) u 1(t) u 2 (t) u 3 (t) (26.13)<br />

i inc<br />

1 (t) i 1(t) i 2 (t) i 3 (t) (26.14)<br />

After the simulation run, the DFT of the time signals can be carried out to get the desired quantities in frequency domain.<br />

In example for the voltages the following relation is applied.<br />

N data<br />

u( f ) =<br />

∑<br />

n=0<br />

u(t)e −2π f nn sampleδt δt (26.15)<br />

As an example, for a 3 port simulation, excited at port 1, the following frequency dependent parameters will be generated<br />

automatically by a DFT with the data file names:<br />

26.4 Impedances<br />

u inc<br />

1 ( f ) uref 1 ( f ) u 1( f ) u 2 ( f ) u 3 ( f ) (26.16)<br />

i inc<br />

1 ( f ) i 1( f ) i 2 ( f ) i 3 ( f ) (26.17)<br />

According to (26.5), the impedances will be calculated. As an example, for a 3 port simulation, excited at port 1, the<br />

impedances are obtained by:<br />

26.5 Wave quantities<br />

Z 1 = uinc 1 ( f )<br />

i inc<br />

1 ( f ) (26.18)<br />

Z 2 = u 2( f )<br />

i 2 ( f )<br />

(26.19)<br />

Z 3 = u 3( f )<br />

i 3 ( f )<br />

(26.20)<br />

According to (26.4), the wave quantities will be calculated. As an example, for a 3 port simulation, excited at port 1, the<br />

following values are generated:<br />

The incident wave quantities are set to:<br />

b 1 = uref 1 ( f ) √<br />

Z1<br />

(26.21)<br />

b 2 = u 2( f )<br />

√<br />

Z2<br />

(26.22)<br />

b 3 = u 3( f )<br />

√<br />

Z3<br />

(26.23)<br />

a 1 = 1 (26.24)<br />

a 2 = 0 (26.25)<br />

a 3 = 0 (26.26)<br />

(C) 2006


CHAPTER 26. PORTS AND S–MATRICES 201<br />

26.6 Scattering parameters<br />

According to (26.1), the scattering parameters will be calculated. As an example, for a 3 port simulation, excited at port<br />

1, one column of the scattering matrix is generated:<br />

s 11 = b 1<br />

a 1<br />

(26.27)<br />

s 21 = b 2<br />

a 1<br />

(26.28)<br />

s 31 = b 3<br />

a 1<br />

(26.29)<br />

For a complete matrix, the simulation has to be carried out as many times as ports exist. This will be done automatically.<br />

(C) 2006


Chapter 27<br />

Specials<br />

This chapter deals with some theoretical background of special features of the <strong>EMPIRE</strong> XCcel TM program.<br />

27.1 Hollow Waveguides<br />

For a given frequency f , only a finite number of modes can propagate inside a homogeneously filled conducting cylinder<br />

with arbitrary cross section. This number increases with the frequency, implying that every hollow waveguide mode has<br />

a cut-off frequency f c . Below f c the mode is evanescent and above f c the mode can propagate along the cylinder having a<br />

well known propagation characteristic (25.3), where, c 0 denotes the velocity in free space. Two types of waveguide modes<br />

can be distinguished, transversal electric (TE) modes and transversal magnetic (TM) modes, having only a magnetic and<br />

an electric component in propagation direction, respectively. They fulfill the two-dimensional Helmholtz equation (27.1).<br />

( ) 2π 2 fc<br />

∆ t H z + H z = 0 (27.1)<br />

c 0<br />

( ) 2π 2 fc<br />

∆ t E z + E z = 0 (27.2)<br />

c 0<br />

By discretizing equations (27.1) according to the Finite Difference scheme and employing the appropriate boundary<br />

conditions, the eigenvalue problem for f c can be solved numerically using a two-dimensional Finite Difference Frequency<br />

Domain (FDFD) solver, and eigenvectors can be found for H z and E z for TE-modes and TM-modes, respectively. The<br />

transversal structure functions for these modes, which are independent of frequency for homogeneously filled waveguides,<br />

can be derived from the longitudinal components H z and E z , leading to the desired eigenfunctions (27.3).<br />

⃗e ni, j<br />

= ∇ t H z (27.3)<br />

⃗h ni, j<br />

= ∇ t E z (27.4)<br />

27.2 Near to Far Field Transformation<br />

The near-field around a radiator or a scatterer can be sampled and saved for a set of frequency points during the simulation<br />

run. After simulation the field can be transformed to the far-field resulting in radiation pattern of mono-static (RCS) or<br />

bi-static cross section.<br />

By introducing electric and magnetic current densities (27.5) derived from the field values on the near-field to far-field<br />

box the integrals in (27.7) are solved numerically in the required observation direction.<br />

⃗S = ˆn × ⃗H (27.5)<br />

⃗M = − ˆn × ⃗E (27.6)<br />

202 (C) 2006


CHAPTER 27. SPECIALS 203<br />

N θ =<br />

N φ =<br />

L θ =<br />

L φ =<br />

Z Z<br />

(S x cosθcosφ + S y cosθsinφ − S z sinθ)e jkr′ cosΨ ds ′ (27.7)<br />

ZZ<br />

(−S x sinφ + S y cosφ)e jkr′ cosΨ ds ′ (27.8)<br />

Z Z<br />

(M x cosθcosφ + M y cosθsinφ − M z sinθ)e jkr′ cosΨ ds ′ (27.9)<br />

Z Z<br />

(−M x sinφ + M y cosφ)e jkr′ cosΨ ds ′ (27.10)<br />

In these equations Ψ is the angle between observation point and source point.<br />

The far-field is then obtained using (27.11).<br />

Ē θ (θ,ϕ) =<br />

Ē ϕ (θ,ϕ) =<br />

k<br />

√ 8πPZ0<br />

(L ϕ + Z 0 N θ ) (27.11)<br />

k<br />

√ 8πPZ0<br />

(L θ − Z 0 N ϕ ) (27.12)<br />

The value for P is chosen depending on the kind of normation:<br />

• Maximum normation. All values are divided by the maximum.<br />

• Directivity normation. P is the radiated power from the source, evaluated by Poynting vector integration over the<br />

near-field.<br />

• For RCS calculations, P is the power of the incident plane wave.<br />

27.3 SAR and Current Density<br />

The distribution of the specific absorption rate SAR and current density ⃗S are determined by the distribution of the electric<br />

field ⃗E, the mass density ρ and the electric conductivity σ.<br />

⃗J = σ⃗E (27.13)<br />

SAR = σ| ⃗E| 2<br />

ρ<br />

(27.14)<br />

The SAR and current density values are important field quantities, especially in the field of safety issues and numerical<br />

dose assessment. Numerous national and international standards and guidelines in the field of human exposure to<br />

electromagnetic fields claim for the compliance with so-called basic restrictions. In the high-frequency range this basic<br />

restrictions are given in terms of specific absorption rates and in the low-frequency range this basic restrictions are given<br />

in terms of current densities. As far as dose assessment is concerned the evaluation of compliance with standards and<br />

limits is assisted by the software. For this the local SAR and current density values are averaged and the maximums are<br />

determined. The SAR is averaged over a mass of 1 g or 10 g. The current density is averaged over an area of 1 cm 2 or<br />

100 cm 2 .<br />

(C) 2006


CHAPTER 27. SPECIALS 204<br />

27.4 Low-Frequency Algorithm<br />

In the field of human exposure to low-frequency electromagnetic fields (e.g. power line frequency) the determination<br />

of induced electric fields inside the human body is of great importance. The application of the FDTD-method in the<br />

calculation of low-frequency fields inside the human body results in long runtime. Therefore an algorithm presented in<br />

the literature is applied in order to calculate the induced fields more efficiently.<br />

The implemented algorithm has been proposed by O.P. Gandhi and is capable of calculating induced currents in lossy<br />

dielectric material on condition, that the displacement current density is negligible (ωε ≪ σ). Considering this prerequisite<br />

the simulation is performed with a permittivity of free space (ε r = 1) in order to reduce the simulation time. The<br />

propagation speed of an electromagnetic wave inside the human body decreases with increasing ε r . Therefore, a high<br />

permittivity would result in a low propagation speed and long runtime.<br />

The algorithm of O.P. Gandhi takes advantage of the quasi-static nature of low-frequency fields. As a result the actual<br />

simulation is performed at a higher frequency (with the quasi-static approximation being still valid) and the induced fields<br />

are scaled to the frequency of interest after the higher frequency FDTD-simulation has been finished. For typical tissue<br />

parameters and dimensions of the human body the upper limit is about 5 MHz to 10 MHz. The calculation of the induced<br />

low-frequency fields down to 10 Hz is accomplished by scaling the high-frequency results. The method makes use of the<br />

boundary condition of the electric field in the air ⃗E Air and the electric field inside the human body ⃗E Body<br />

jωε 0 ⃗n⃗E Air = (σ + jωε)⃗n⃗E Body (27.15)<br />

and the approximation of a normal orientation of the electric field on the surface of a conducting body. The induced<br />

electric field for the angular frequency of interest ω is determined by the scaled results at an angular frequency of ω ′ .<br />

27.5 Dielectric Properties of Biological Tissue<br />

⃗E Body (ω) = ω σ ′ + jω ′ ε ′<br />

ω ′ σ + jωε ⃗ E Body (ω ′ ) (27.16)<br />

In order to consider the frequency-dependent dielectric properties of biological tissue a parametric model from literature 1<br />

has been implemented. The model provides the relative permittivity ε r and the electric conductivity σ of 42 different<br />

human tissue types in the frequency range from 10 Hz up to 100 GHz.<br />

The complex permittivity is expressed by the following equation (27.17). The coefficients are summarized in the cited<br />

literature.<br />

ε(ω) = ε ∞ +<br />

4<br />

∑<br />

n=1<br />

∆ε n<br />

1 + ( jωτ n ) 1−α + σ<br />

(27.17)<br />

n jωε 0<br />

The parametric model has been integrated in the user interface in order to consider the relevant dielectric parameters in<br />

the simulation model in an easy way.<br />

1 S. Gabriel, R. W. Lau, C. Gabriel. The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues. Phys.<br />

Med. Biol., Vol. 41, p. 2271-2293, 1996.<br />

(C) 2006


Part V<br />

Literature<br />

205 (C) 2006


Bibliography<br />

[1] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,”<br />

IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302–307, 1966.<br />

[2] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagneticfield<br />

equations,” IEEE Trans. Electromagn. Compat., vol. EMC-23, pp. 377–382, 1981.<br />

[3] R. Mittra and U. Pekel, “A new look at the Perfectly Matched Layer (PML) concept for the reflectionless absorption<br />

of electromagnetic waves,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 84–86, 1995.<br />

206 (C) 2006


Part VI<br />

Index<br />

207 (C) 2006


Keyword index<br />

ACD/SAR<br />

—Cube Interpolation, 65<br />

—Max Surface Distance, 65<br />

—Target Frequency, 65<br />

Accuracy<br />

—Relative Drawing, 82<br />

Action, 219, 103, 28, 65, 94<br />

Actions, 219, 103, 28<br />

Add,<br />

—Fixed, 84<br />

—Optimization, 88<br />

—Processor, 90<br />

Additional, 27, 47, 48, 92<br />

Admin, iv, 91<br />

Advanced,<br />

—Parameters, 62, 74, 76, 77, 78, 80<br />

Air<br />

—Wave In, 39<br />

Algorithm<br />

—Low-Frequency, 204<br />

—Yee, 184<br />

All<br />

—Deselect, 88<br />

—Kill, 87<br />

—Select, 52, 87, 88<br />

Amplitude, 66, 195<br />

Anchor, 68<br />

Angle<br />

—Degrees, 93<br />

—Fixed, 99<br />

—Start, 100<br />

—Step, 100<br />

—Stop, 100<br />

Animation<br />

—Loop, 64, 66<br />

Anyname, 49, 70, 94<br />

Apply, 58, 82, 85<br />

Arc<br />

—Resolution, 47, 83<br />

Area<br />

—Length Of Source, 40<br />

Array<br />

—Setup, 100<br />

Arrow<br />

—Assign, 55, 58<br />

—Copy Assign, 55, 58<br />

—Field Plot, 64<br />

—Size, 64<br />

Assign<br />

—Arrow, 55, 58<br />

Assumptions, 183<br />

At<br />

—Enable BOUNDARY Mirroring, 100<br />

—FF BOX Mirroring, 100<br />

—Recognize Near Field, 100<br />

Auto, 170<br />

Autodisc<br />

—Hints, 70<br />

Automatic<br />

—Update, 95<br />

Autoscale, 92<br />

Availability, 90<br />

BOX, 100<br />

Bars<br />

—Tool, 26<br />

Basic, 60, 28, 59, 61, 70, 72, 85<br />

Batch<br />

—Delete, 87<br />

Bisect<br />

—Polygon, 45<br />

Borders, 66, 195<br />

Bottom<br />

—Height, 78, 79<br />

Boundaries<br />

—Open, 191<br />

Boundary<br />

—Conditions, 36, 37, 177, 188, 38, 39<br />

Box, i<br />

—Create, 42<br />

—Current, 68, 72<br />

—Excitation, 69, 72<br />

—Field Dump, 83, 100<br />

—Metal, 66<br />

—Voltage, 68<br />

Broad<br />

—Band Lossy, 36<br />

Bulk, 61, 70<br />

208 (C) 2006


209<br />

Busy, 90<br />

Calculation<br />

—Restrict, 65<br />

—Sequential Subdir, 89<br />

Capacitor<br />

—Lumped, 62<br />

Cells<br />

—Min Number Of Neighbor, 65<br />

—Object, 83<br />

Center, 54, 57, 75, 100<br />

Change<br />

—To ROTPOLY, 46<br />

Char.<br />

—Impedance, 95<br />

Checksum<br />

—Decrement, 38, 39, 85, 86<br />

Circle<br />

—Recognition, 47<br />

Clear, 103, 86, 88, 94<br />

—Log, 86, 88<br />

Clip<br />

—Region, 68<br />

Close,<br />

—Idle, 41, 87, 89<br />

—Idle Processors, 41<br />

Coarse, 35<br />

Color<br />

—Line, 64, 66<br />

Common<br />

—Template Feature, 30<br />

Components<br />

—Field, 62, 64, 69, 100<br />

Concentrated<br />

—Port Parameters, 74, 75, 78, 80<br />

Conditions<br />

—Boundary, 36, 37, 177, 188, 38, 39<br />

—Stability, 191<br />

Conducting<br />

—Sheet, 67<br />

Conductivity, 36, 60, 61, 66, 67, 68, 70<br />

—Electric, 67, 70<br />

—Fixed, 68<br />

—Magnetic, 67, 70<br />

Conductor<br />

—Width Of, 78, 79<br />

—Width Of CPW Center, 75<br />

Conductors<br />

—Width Of CPW Outer, 75<br />

Connectors<br />

—Length Of Metal, 77<br />

Constructive<br />

—Mirror, 56<br />

Copy, ii, 54, 103, 121, 55, 58, 59, 92, 97<br />

—Assign Arrow, 55, 58<br />

—Object, 54, 55<br />

—Objects, 54, 55<br />

—To Current Layer, 55<br />

Create<br />

—Box, 42<br />

—Linpoly, 44<br />

—Poly, 43, 48<br />

Criteria<br />

—End, 38, 36<br />

Current,<br />

—Box, 68, 72<br />

—Layer, 55, 28, 53, 59<br />

—Source, 68, 72, 74, 75, 77, 78, 80<br />

—Weight Factor, 74, 76, 77, 78, 80<br />

Cursor<br />

—Use Big Crosshair, 95<br />

Curved<br />

—Objects, 47<br />

DB<br />

—Magnitude, 93<br />

DB/angle<br />

—Magnitude, 93<br />

DFT, 200, 96<br />

DISC, 122<br />

DXF<br />

—Connection Tolerance, 47<br />

Database, 60, 61<br />

Decay<br />

—Step Factor, 89<br />

Decrement<br />

—Checksum, 38, 39, 85, 86<br />

Defined<br />

—User, 49, 27, 35, 60, 61, 92, 94, 95, 96<br />

Definition<br />

—End Port, 74, 76, 79, 80<br />

—Port, 197, 74, 76, 79, 80<br />

—Start Port, 74, 76, 79, 80<br />

Degree, 46, 68, 69, 93, 99, 100<br />

Degrees<br />

—Angle, 93<br />

Delay<br />

—Excitation, 74, 76, 77, 78, 80<br />

—Group, 93<br />

Delete,<br />

—Batch, 87<br />

—Point, 43, 45<br />

—Range, 84<br />

—Subdirs, 89<br />

Delta<br />

—Tangent, 60<br />

(C) 2006


210<br />

Density<br />

—SAR And Current, 203<br />

Depth<br />

—Search, 87, 95<br />

Description<br />

—General, 183<br />

Deselect<br />

—All, 88<br />

Destination, 97, 98, 99<br />

—Filename, 98, 99<br />

Destructive<br />

—Mirror, 53<br />

Diameter<br />

—Dielectric, 74<br />

—Inner, 74<br />

—Outer, 74<br />

Dielectric<br />

—Diameter, 74<br />

—Disc, 74<br />

—Priority, 74<br />

—Properties Of Biological Tissue, 204<br />

Diode<br />

—Direction Of The, 71<br />

Direction<br />

—Of The Diode, 71<br />

—Planar, 83<br />

Disc, 81, 170, 187<br />

—Dielectric, 74<br />

—Inner, 74<br />

—Longitudinal, 74, 76, 79, 80<br />

—Max, 76, 78, 79, 80<br />

—Met Thickness, 76, 79, 80<br />

—Min, 76, 78, 80<br />

—Outer, 74<br />

—Perpendicular, 79, 80<br />

—Perpendicular Big, 79, 80<br />

—Perpendicular Max, 76, 79, 80<br />

Discretization, 81, 187<br />

—Generic, 83<br />

—Parameters, 74, 76, 78, 80<br />

Discretize, 44, 83<br />

Display,<br />

—Length Unit For, 68<br />

—Min Conductivity For, 68<br />

—Min Permittivity For, 68<br />

Distance<br />

—ACD/SAR Max Surface, 65<br />

—Port, 74, 75, 78, 80<br />

Domain, 97, 98, 62, 63, 64, 71, 96, 195<br />

Draft, 146, 147, 148, 149, 150, 151, 152, 153, 26<br />

Drill, 58<br />

Dump<br />

—Field, 64, 65, 83, 100, 101<br />

Duration<br />

—Excitation, 39<br />

<strong>EMPIRE</strong>, 22<br />

Edit, 108, 139, 28, 35, 51, 54, 55, 59, 82, 97<br />

Editor<br />

—Options, 139, 28, 54, 55<br />

Effect<br />

—Thickness For Skin, 61<br />

Effective<br />

—Permittivity, 39<br />

Electric,<br />

—Conductivity, 67, 70<br />

—Resonance, 70<br />

—Wall, 188<br />

Empire,<br />

Enable<br />

—BOUNDARY Mirroring At, 100<br />

End<br />

—Criteria, 38, 36<br />

—Excitation Port Number, 69<br />

—Port Definition, 74, 76, 79, 80<br />

—Port Excitation, 74, 76, 79, 80<br />

—Port Number, 69<br />

—Port Type, 74, 76, 79, 80<br />

Erase, 45, 68<br />

—Start Points, 68<br />

Example, 33, 9, 22<br />

Excitation, 193<br />

—Box, 69, 72<br />

—Delay, 74, 76, 77, 78, 80<br />

—Duration, 39<br />

—End Port, 74, 76, 79, 80<br />

—Function, 77<br />

—Matched Source, 193, 40<br />

—Normalization, 41<br />

—Plane Wave, 69, 194<br />

—Types Of, 193<br />

—Waveguide, 195, 40<br />

—Weight Factor, 74, 76, 77, 78, 80<br />

Excitations, 193, 69, 74, 76, 77, 78, 80<br />

Export, 125, 154, 155, 156, 158, 28, 65, 94, 95<br />

—Color Plot, 95<br />

—Options, 28<br />

FDTD, 40, 96<br />

FF<br />

—BOX Mirroring At, 100<br />

Factor,<br />

—Current Weight, 74, 76, 77, 78, 80<br />

—Excitation Weight, 74, 76, 77, 78, 80<br />

—Initial Step, 89<br />

—Oversampling, 40<br />

—Sample, 39<br />

(C) 2006


211<br />

—Tic, 96<br />

—Voltage Weight, 74, 76, 77, 78, 80<br />

—Weight, 65, 74, 76, 77, 78, 80<br />

Farfield, 63, 65, 99, 27, 92, 93, 100<br />

Feature<br />

—Common Template, 30<br />

Field<br />

—Components, 62, 64, 69, 100<br />

—Distribution File, 100<br />

—Dump, 64, 65, 83, 100, 101<br />

—Dump Box, 83, 100<br />

—MAX Value, 65<br />

—Recording, 27<br />

Fielddump<br />

—Fill Mode, 65<br />

—Move, 65<br />

—Name Of, 64<br />

—Scaling, 64<br />

—Subsampling, 65<br />

—Type, 65<br />

File<br />

—Field Distribution, 100<br />

—Near Field, 99<br />

Filename, 66, 94, 98, 99<br />

—Destination, 98, 99<br />

Files,<br />

Filesearch<br />

—Stop, 88<br />

Filter<br />

—HO, 36<br />

—LO, 36<br />

Fine,<br />

—Very, 35<br />

Fixed<br />

—Add, 84<br />

—Angle, 99<br />

—Conductivity, 68<br />

—Permittivity, 68<br />

Flat<br />

—Metal Recognition Limit, 83<br />

Folder,<br />

Font<br />

—Size, 95<br />

Frequencies, 62, 64, 66, 99, 100<br />

Frequency,<br />

—ACD/SAR Target, 65<br />

—Gabriel Target, 68<br />

—In Hz, 100, 101<br />

—Minimum Recommended, 39<br />

—Start, 96<br />

—Steps, 96<br />

—Stop, 96<br />

Frequency/Time<br />

—Selection, 64<br />

Function<br />

—Excitation, 77<br />

Gabriel<br />

—Target Frequency, 68<br />

Gap<br />

—Width Of CPW, 75<br />

Gauss, 40<br />

—Attenuation At Start, 40<br />

General, 183<br />

—Description, 183<br />

—Setting, 30<br />

—Setup, 97, 93, 96<br />

Generic<br />

—Discretization, 83<br />

Geometry, 34, 179, 74, 75, 78, 79, 95<br />

Get<br />

—Hosts, 90<br />

Graphs, 93, 94<br />

Grid<br />

—Non-uniform, 191<br />

—Uniform, 191<br />

Grids, 187<br />

Groundplane, 61<br />

Group<br />

—Delay, 93<br />

HO<br />

—Filter, 36<br />

Height<br />

—Bottom, 78, 79<br />

—Perpendicular, 76<br />

—Top, 78, 79<br />

Hints<br />

—Autodisc, 70<br />

Hollow<br />

—Waveguides, 202<br />

Host, 41, 88, 89, 90, 91<br />

Hosts<br />

—Get, 90<br />

Hz<br />

—Frequency In, 100, 101<br />

I(f), 50<br />

I(t), 139, 188, 191, 193<br />

Idle<br />

—Close, 41, 87, 89<br />

Im, 85, 177<br />

Impedance,<br />

—Char., 95<br />

—Ref., 74, 75, 77, 78, 80<br />

Impedances, 200<br />

Import<br />

(C) 2006


212<br />

—Shift, 47<br />

Impressed<br />

—Electric Field Source, 68<br />

Increased<br />

—Stability Reserve, 41, 192<br />

Inductor<br />

—Lumped, 62<br />

Info, 20, 28, 60, 61, 68, 75, 78, 79, 91<br />

—Store Voxel, 68<br />

Initial<br />

—Step Factor, 89<br />

Inner<br />

—Diameter, 74<br />

—Disc, 74<br />

—Port, 198<br />

—Ports, 198<br />

—Priority, 74<br />

Insert, 7, 43, 68, 72, 83, 84<br />

Installation<br />

—On Windows PC, 7<br />

—Procedure, 7<br />

—Requirements For PC, 7<br />

Interpolation, 65, 101<br />

—ACD/SAR Cube, 65<br />

Intersect, 52, 58, 60, 61, 67, 70, 74<br />

Job<br />

—Limit, 90<br />

Jobs, 41, 87, 88, 90, 91<br />

Keys<br />

—Legend, 64, 66<br />

Kill, 86, 87<br />

—All, 87<br />

LO<br />

—Filter, 36<br />

Landscape<br />

—Output, 95<br />

Layer<br />

—Copy To Current, 55<br />

—Current, 55, 28, 53, 59<br />

—Perfectly Matched, 190, 36, 38<br />

Layers, 83, 28, 36, 38, 47, 59, 70<br />

Legend, 64, 66, 94, 95<br />

—In Separate Window, 95<br />

—Keys, 64, 66<br />

—Position, 95<br />

Length<br />

—Of Metal Connectors, 77<br />

—Of Source Area, 40<br />

—Unit For Display, 68<br />

Level<br />

—Log, 88<br />

—Output, 85<br />

License<br />

—Wait For, 41<br />

Limit<br />

—Flat Metal Recognition, 83<br />

—Job, 90<br />

—Process Number, 90<br />

Lin<br />

—Magnitude, 93<br />

Lin/angle<br />

—Magnitude, 93<br />

Line<br />

—Color, 64, 66<br />

—Type, 28, 64<br />

Lines<br />

—Use Dashed, 95<br />

Linpoly<br />

—Create, 44<br />

Lock, 15, 18, 23, 59<br />

Log<br />

—Clear, 86, 88<br />

—Level, 88<br />

—Save, 86, 89<br />

Longitudinal<br />

—Absorbing Wall, 189<br />

—Disc, 74, 76, 79, 80<br />

Loop<br />

—Animation, 64, 66<br />

Losses<br />

—Speed Optimization Of, 41<br />

Lossless, 36<br />

Lossy<br />

—Broad Band, 36<br />

—Medium Band, 36<br />

—Narrow Band, 36<br />

Low-Frequency<br />

—Algorithm, 204<br />

Lpi, 96<br />

Lumped<br />

—Capacitor, 62<br />

—Inductor, 62<br />

—Resistor, 62<br />

Magnetic,<br />

—Conductivity, 67, 70<br />

—Resonance, 70<br />

—Wall, 188, 69<br />

Magnitude<br />

—DB, 93<br />

—DB/angle, 93<br />

—Lin, 93<br />

—Lin/angle, 93<br />

(C) 2006


213<br />

<strong>Manual</strong>, iv, 83, 110, 126, i, 27, 35, 60, 61<br />

Marker, 93<br />

Matched<br />

—Source Excitation, 193, 40<br />

Material,<br />

Max<br />

—Disc, 76, 78, 79, 80<br />

—Parameter, 89<br />

Maximum<br />

—Number Of Data Points, 95<br />

—Runlength, 40<br />

Medium, 35, 36<br />

—Band Lossy, 36<br />

—Response, 36<br />

Merge, 45, 58<br />

Met<br />

—Thickness, 75, 76, 78, 79, 80<br />

—Thickness Disc, 76, 79, 80<br />

Metal,<br />

—Box, 66<br />

Metalization, 67, 36, 78, 79, 187<br />

Min<br />

—Cells Per Wavelength, 83<br />

—Conductivity For Display, 68<br />

—Disc, 76, 78, 80<br />

—Number Of Neighbor Cells, 65<br />

—Parameter, 89<br />

—Permittivity For Display, 68<br />

Min.<br />

—Resolution In Units, 83<br />

Minimum<br />

—Recommended Frequency, 39<br />

Minutes<br />

—Time Delay In, 40<br />

Mirror, 53, 56, 100<br />

—Constructive, 56<br />

—Destructive, 53<br />

Mode<br />

—Fielddump Fill, 65<br />

—Poly Fill, 66<br />

—Sweep, 99<br />

Model<br />

—Shade, 65<br />

Move, 53, 52, 55, 57, 59, 65, 66<br />

—Fielddump, 65<br />

—Object, 52, 53<br />

—Objects, 52, 53<br />

Multiple<br />

—Timestepping, 40<br />

Name,<br />

—Of Fielddump, 64<br />

Narrow<br />

—Band Lossy, 36<br />

Near<br />

—Field File, 99<br />

—To Far Field Transformation, 202<br />

New<br />

—Select, 87<br />

Non-uniform<br />

—Grid, 191<br />

None, 74, 76, 79, 80, 83<br />

Normalization, 41, 64, 99, 100<br />

—Excitation, 41<br />

Number,<br />

—End Excitation Port, 69<br />

—End Port, 69<br />

—Of End Port, 74, 76, 79, 80<br />

—Of Start Port, 74, 76, 79, 80<br />

—Of Threads, 40<br />

—Of Tics, 95<br />

—Of Timesteps, 40, 85<br />

—Port, 69, 77<br />

—Start Excitation Port, 69<br />

—Start Port, 69<br />

Numbers, 82, 83<br />

Object<br />

—Cells, 83<br />

—Copy, 54, 55<br />

—Move, 52, 53<br />

—Properties, 60, 59<br />

—Select, 52, 45, 53, 54, 55, 56, 57<br />

—Stretch, 56<br />

Objects<br />

—Copy, 54, 55<br />

—Curved, 47<br />

—Move, 52, 53<br />

—Separate STL, 48<br />

—Stretch, 56<br />

Off,<br />

—Switch, 35, 59<br />

On, 7, 18, 25, 42, 50, 51, 81, 85, 103, 139, 170, 177, 183,<br />

187, 188, 191, 193<br />

—Switch, 59, 64, 66<br />

Open<br />

—Boundaries, 191<br />

Operations, 58, 164, 51, 54, 55<br />

Optimization<br />

—Add, 88<br />

Optimizer, 89<br />

Options, 139, 170, 177<br />

—Editor, 139, 28, 54, 55<br />

—Export, 28<br />

Outer<br />

—Diameter, 74<br />

(C) 2006


214<br />

—Disc, 74<br />

—Port, 68<br />

—Priority, 74<br />

Output, 85, 86, 88, 95, 100, 101<br />

—File Prefix, 100<br />

—Landscape, 95<br />

—Level, 85<br />

—Sync, 86<br />

Oversampling<br />

—Factor, 40<br />

PC<br />

—Installation On Windows, 7<br />

POLY, 46<br />

Page<br />

—Start, 86<br />

Parameter<br />

—Max, 89<br />

—Min, 89<br />

—Set-up, 34, 192<br />

—Tolerance, 40<br />

Parameters,<br />

—Advanced, 62, 74, 76, 77, 78, 80<br />

—Concentrated Port, 74, 75, 78, 80<br />

—Discretization, 74, 76, 78, 80<br />

—Port, 74, 75, 77, 78, 80<br />

—Scattering, 201<br />

—Simulation, 37, 27<br />

—Special, 40<br />

Perfectly<br />

—Matched Layer, 190, 36, 38<br />

Performance, 86, 90<br />

Permeability<br />

—Relative, 70<br />

Permittivity<br />

—Effective, 39<br />

—Fixed, 68<br />

—Relative, 70<br />

Perpendicular<br />

—Big Disc, 79, 80<br />

—Disc, 79, 80<br />

—Height, 76<br />

—Max Disc, 76, 79, 80<br />

Phase<br />

—Center Translation, 100<br />

Planar, 75, 35, 83<br />

—Direction, 83<br />

Plane,<br />

—Wave, 69, 194, 40, 203<br />

—Wave Excitation, 69, 194<br />

Plot<br />

—Arrow Field, 64<br />

—Export Color, 95<br />

Point<br />

—Delete, 43, 45<br />

Points,<br />

—Erase Start, 68<br />

—Maximum Number Of Data, 95<br />

Polar<br />

—Number Of Angle Tics, 96<br />

—Number Of Radius Tics, 96<br />

Poly<br />

—Create, 43, 48<br />

—Fill Mode, 66<br />

Polygon<br />

—Bisect, 45<br />

Port<br />

—Definition, 197, 74, 76, 79, 80<br />

—Distance, 74, 75, 78, 80<br />

—Inner, 198<br />

—Load Size, 75<br />

—Number, 69, 77<br />

—Number Of End, 74, 76, 79, 80<br />

—Number Of Start, 74, 76, 79, 80<br />

—Outer, 68<br />

—Parameters, 74, 75, 77, 78, 80<br />

—Waveguide, 69, 198<br />

—Width Of, 77<br />

Ports, 196<br />

—Inner, 198<br />

—Quasi-TEM, 197<br />

—Spice Parameter, 99<br />

—Waveguide, 198<br />

Position<br />

—Legend, 95<br />

Postprocessing, 96, 87, 88, 93, 100, 101<br />

Prefix<br />

—Output File, 100<br />

—Xaxis Unit, 95<br />

—Yaxis Unit, 95<br />

Print, 166, 167, 92<br />

Priority, 60, 61, 66, 70, 74<br />

—Dielectric, 74<br />

—Inner, 74<br />

—Outer, 74<br />

Procedure<br />

—Installation, 7<br />

Process<br />

—Number Limit, 90<br />

Processor<br />

—Add, 90<br />

Processors<br />

—Close Idle, 41<br />

Properties<br />

—Object, 60, 59<br />

(C) 2006


215<br />

Quantities<br />

—Wave, 200<br />

Quasi-TEM<br />

—Ports, 197<br />

ROTPOLY, 46<br />

—Change To, 46<br />

Range<br />

—Delete, 84<br />

Ratio<br />

—Refinement, 83<br />

Re, i, 42, 81, 92, 187<br />

Re/Im, 93<br />

Recognition<br />

—Circle, 47<br />

Recognize<br />

—Near Field At, 100<br />

Recording<br />

—Field, 27<br />

Rect,<br />

Ref.<br />

—Impedance, 74, 75, 77, 78, 80<br />

Reference, i, 72, 74, 75, 78, 79, 80, 89<br />

Refinement<br />

—Ratio, 83<br />

Refresh, 88, 90<br />

Region<br />

—Clip, 68<br />

Relative<br />

—Drawing Accuracy, 82<br />

—Limit For Warning, 82<br />

—Permeability, 70<br />

—Permittivity, 70<br />

Replace, 42, 43, 45, 94<br />

Requirements, 7, 22<br />

—For PC Installation, 7<br />

Reserve<br />

—Increased Stability, 41, 192<br />

Reset, 92, 97<br />

Resistive<br />

—Sheet, 36<br />

Resistor<br />

—Lumped, 62<br />

—Sheet, 67<br />

Resolution, 83, 173, 7, 46, 47, 48, 76, 79, 80, 95<br />

—Arc, 47, 83<br />

—STL, 48<br />

Resonance<br />

—Electric, 70<br />

—Magnetic, 70<br />

Response<br />

—Medium, 36<br />

—Short, 36<br />

Restrict<br />

—Calculation, 65<br />

Rotation, 46, 54, 56, 68, 100<br />

Roughness<br />

—Surface, 61<br />

Runlength<br />

—Maximum, 40<br />

S(f), 63, 200, 202, 96, 100<br />

SAR<br />

—And Current Density, 203<br />

SPAR, 96<br />

STL<br />

—Resolution, 48<br />

Sample<br />

—Factor, 39<br />

Samples, 100<br />

Save,<br />

—Log, 86, 89<br />

—Memory During Set Up, 41<br />

—Settings, 94<br />

—Zoom, 92<br />

Scale, 57, 92<br />

Scaling, 46, 47, 64, 66, 95<br />

—Fielddump, 64<br />

Scattering<br />

—Parameters, 201<br />

Search<br />

—Depth, 87, 95<br />

Select<br />

—All, 52, 87, 88<br />

—New, 87<br />

—Object, 52, 45, 53, 54, 55, 56, 57<br />

Selection<br />

—Frequency/Time, 64<br />

—Subdirectory, 88<br />

Separate, 40, 48, 75, 78, 79, 92, 95<br />

—STL Objects, 48<br />

Sequential<br />

—Subdir Calculation, 89<br />

Set<br />

—Tangential, 44<br />

Set-up<br />

—Parameter, 34, 192<br />

Setting<br />

—General, 30<br />

Settings<br />

—Save, 94<br />

Setup<br />

—Array, 100<br />

—General, 97, 93, 96<br />

—Simulation, 28, 83<br />

Shade<br />

(C) 2006


216<br />

—Model, 65<br />

Sheet<br />

—Conducting, 67<br />

—Resistive, 36<br />

—Resistor, 67<br />

Shift<br />

—Import, 47<br />

Short<br />

—Response, 36<br />

Sign,<br />

Signals<br />

—Time, 195, 199, 72, 92<br />

Simple<br />

—Absorbing Wall, 190<br />

Simulation, 85, 177<br />

—Parameters, 37, 27<br />

—Setup, 28, 83<br />

—Start, 85<br />

Size<br />

—Arrow, 64<br />

—Font, 95<br />

—Port Load, 75<br />

Small<br />

—Size Structure, 39<br />

Source<br />

—Current, 68, 72, 74, 75, 77, 78, 80<br />

—Impressed Electric Field, 68<br />

—Voltage, 68<br />

Special<br />

—Parameters, 40<br />

Specials, 202<br />

Speed<br />

—Optimization Of Losses, 41<br />

Spice<br />

—Parameter Ports, 99<br />

Stability<br />

—Conditions, 191<br />

Start,<br />

—Angle, 100<br />

—Excitation Port Number, 69<br />

—Frequency, 96<br />

—Gauss Attenuation At, 40<br />

—Page, 86<br />

—Port Definition, 74, 76, 79, 80<br />

—Port Number, 69<br />

—Port Type, 74, 76, 79, 80<br />

—Simulation, 85<br />

Status<br />

—Update, 90<br />

Step<br />

—Angle, 100<br />

—Factor Decay, 89<br />

—Time, 36, 38, 39, 40, 62, 64, 85, 86, 93, 95<br />

Steps,<br />

—Frequency, 96<br />

Stop, 88, 94, 96, 100<br />

—Angle, 100<br />

—Filesearch, 88<br />

—Frequency, 96<br />

Store<br />

—Voxel Info, 68<br />

Stretch, 56, 57<br />

—Object, 56<br />

—Objects, 56<br />

Structure,<br />

—Small Size, 39<br />

—Zero Size, 39<br />

Subdirectory<br />

—Selection, 88<br />

Subdirs<br />

—Delete, 89<br />

Subdivide, 46<br />

Subsampling<br />

—Fielddump, 65<br />

Substrate, 75, 78, 79, 187<br />

Subtract, 58<br />

Surface<br />

—Roughness, 61<br />

Sweep<br />

—Mode, 99<br />

Switch<br />

—Off, 35, 59<br />

—On, 59, 64, 66<br />

Symbols<br />

—Use, 95<br />

Sync<br />

—Output, 86<br />

Tangent<br />

—Delta, 60<br />

Tangential<br />

—Set, 44<br />

Terms, 89, 97, 98<br />

Thickness<br />

—For Skin Effect, 61<br />

—Met, 75, 76, 78, 79, 80<br />

Thin, 20, 36, 62, 188, 192<br />

Threads<br />

—Number Of, 40<br />

Tic<br />

—Factor, 96<br />

Tics<br />

—Number Of, 95<br />

—Polar Number Of Angle, 96<br />

—Polar Number Of Radius, 96<br />

Time,<br />

—Delay In Minutes, 40<br />

(C) 2006


217<br />

—Signals, 195, 199, 72, 92<br />

—Step, 36, 38, 39, 40, 62, 64, 85, 86, 93, 95<br />

Timestepping<br />

—Multiple, 40<br />

Timesteps<br />

—Number Of, 40, 85<br />

Tissue<br />

—Dielectric Properties Of Biological, 204<br />

Tissues<br />

—Not Zero, 65<br />

Title, 95<br />

Tolerance<br />

—DXF Connection, 47<br />

—Parameter, 40<br />

Tool<br />

—Bars, 26<br />

Top<br />

—Height, 78, 79<br />

Transformation<br />

—Near To Far Field, 202<br />

Translation<br />

—Phase Center, 100<br />

Transversal<br />

—Absorbing Wall, 189<br />

Transverse<br />

—Disc Width, 78, 80<br />

Type, 72<br />

—End Port, 74, 76, 79, 80<br />

—Fielddump, 65<br />

—Line, 28, 64<br />

—Start Port, 74, 76, 79, 80<br />

Types<br />

—Of Excitation, 193<br />

U(f), 95, 100, 187<br />

U(t), 170<br />

USERDEF, 96, 97, 98, 99<br />

Uniform<br />

—Grid, 191<br />

Units, 47, 74, 75, 76, 78, 79, 80, 83<br />

—Min. Resolution In, 83<br />

Up<br />

—Save Memory During Set, 41<br />

Update, 90, 92, 94, 95, 97<br />

—Automatic, 95<br />

—Status, 90<br />

Use<br />

—Big Crosshair Cursor, 95<br />

—Dashed Lines, 95<br />

—Symbols, 95<br />

User<br />

—Defined, 49, 27, 35, 60, 61, 92, 94, 95, 96<br />

Userbase, 60, 61<br />

Users, 28, 91<br />

VSWR, 93<br />

Value<br />

—Field MAX, 65<br />

Very<br />

—Fine, 35<br />

Voltage,<br />

—Box, 68<br />

—Source, 68<br />

—Weight Factor, 74, 76, 77, 78, 80<br />

Wait<br />

—For License, 41<br />

Wall<br />

—Electric, 188<br />

—Longitudinal Absorbing, 189<br />

—Magnetic, 188, 69<br />

—Simple Absorbing, 190<br />

—Transversal Absorbing, 189<br />

Warning<br />

—Relative Limit For, 82<br />

Wave<br />

—In Air, 39<br />

—Plane, 69, 194, 40, 203<br />

—Quantities, 200<br />

Waveguide<br />

—Excitation, 195, 40<br />

—Port, 69, 198<br />

—Ports, 198<br />

Waveguides<br />

—Hollow, 202<br />

Wavelength<br />

—Min Cells Per, 83<br />

Weight, 65, 69, 74, 76, 77, 78, 80, 89, 100, 188<br />

—Factor, 65, 74, 76, 77, 78, 80<br />

Width<br />

—Of CPW Center Conductor, 75<br />

—Of CPW Gap, 75<br />

—Of CPW Outer Conductors, 75<br />

—Of Conductor, 78, 79<br />

—Of Port, 77<br />

—Transverse Disc, 78, 80<br />

Window<br />

—Legend In Separate, 95<br />

Xaxis<br />

—Unit Prefix, 95<br />

Xgrid, 94<br />

Xlabel, 95<br />

Xstart, 94<br />

Xstop, 94<br />

(C) 2006


218<br />

Yaxis<br />

—Unit Prefix, 95<br />

Yee<br />

—Algorithm, 184<br />

Ygrid, 94<br />

Ylabel, 95<br />

Ystart, 94<br />

Ystop, 94<br />

Zero<br />

—Size Structure, 39<br />

—Tissues Not, 65<br />

Zoom, 92, 93<br />

—Save, 92<br />

(C) 2006


219<br />

List of Actions<br />

+/- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

1/x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

Add Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Add Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

Add Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Add To Discretisation . . . . . . . . . . . . . . . . . . . . . . . 119<br />

Add To Port Number(s) . . . . . . . . . . . . . . . . . . . . . 131<br />

Arrow (1-2)/3 Metalization Rule . . . . . . . . . . . . . 127<br />

Arrow = P1-P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Arrow Concat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Arrow Multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Arrow Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Arrow Subdivide . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Assign Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

Assign To Current Layer’s Arrow . . . . . . . . . . . . 109<br />

Bisect Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Change To Bond Wire . . . . . . . . . . . . . . . . . . . . . . 130<br />

Change To Linpoly . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Change To Linpoly By Script . . . . . . . . . . . . . . . . 130<br />

Change To Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

Change To Rotpoly . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

Check Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

Check Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

Circle Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Clear Selections . . . . . . . . . . . . . . . . . . 103<br />

Combine Multibox . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

Convert Multibox to Polygon . . . . . . . . . . . . . . . . 119<br />

Convert To Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

Convert To Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

Convert & Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

Copy Assign Arrow . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

Copy Marked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Copy To Current Layer . . . . . . . . . . . . . . . . . . . . . 109<br />

Copy To Signal Layers . . . . . . . . . . . . . . . . . . . . . . 123<br />

Copy To Signal Layers (discretized) . . . . . . . . . . 124<br />

Create Bond Wire . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

Create Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Create Box (default) . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

Create Cylinder (default Circular) . . . . . . . . . . . . 105<br />

Create Discretisation . . . . . . . . . . . . . . . . . . . . . . . 106<br />

Create Linpoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Create Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

Create Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

Cycle Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Delete Added Property . . . . . . . . . . . . . . . . . . . . . . 137<br />

Delete Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

Delete Fixed Range . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

Delete Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

Delete Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

Delete Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Delete Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

Discretize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

Discretize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

Divide Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Drill Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Edit Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Edit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

Edit Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Empty Discretisation . . . . . . . . . . . . . . . . . . . . . . . 106<br />

Empty Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

Enter Text String . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Explode Library Element . . . . . . . . . . . . . . . . . . . 120<br />

Explode Multibox . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

Extract Diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Extract Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

Extrude Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

Fix Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Generic Discretisation . . . . . . . . . . . . . . . . . . . . . . 110<br />

Generic Discretisation . . . . . . . . . . . . . . . . . . . . . . 126<br />

Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

Insert Between . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

Insert Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

Insert Symmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

Length Measurement . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Mark All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

Mark Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

(C) 2006


220<br />

Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

Mirror Constructive . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

Mirror Destructive . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

Move To Current Layer . . . . . . . . . . . . . . . . . . . . . 126<br />

Multiple Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Multiply Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Negate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Open Current Layer . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

Orient Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

Oversize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

Parameter Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Parameter Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Path To Circular Extrusion . . . . . . . . . . . . . . . . . . 135<br />

Path To Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Path To Poly (Circular Mitering) . . . . . . . . . . . . . 136<br />

Propose Discretization . . . . . . . . . . . . . . . . . . . . . . 122<br />

Propose Discretization (e/s) . . . . . . . . . . . . . . . . . 123<br />

Propose Discretization (local) . . . . . . . . . . . . . . . 123<br />

Push Regular Expression . . . . . . . . . . . . . . . . . . . . 113<br />

Rasterize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Redo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

Redraw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

Return To Last View . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

Right View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Rotate Constructive . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

Rotate Destructive . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Scale To Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Scale To Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Select Enclosed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Select Layers’ Objects . . . . . . . . . . . . . . . . . . . . . . 126<br />

Select Object’s Layer . . . . . . . . . . . . . . . . . . . . . . . 126<br />

Select Outside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

Select Overlapping . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Set Coordinate Origin (move All) . . . . . . . . . . . . 113<br />

Set Parameter By Equation . . . . . . . . . . . . . . . . . . 132<br />

Set Port Number(s) . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

Set Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

Set Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Set Tangential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Set Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Set height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

Shift Marked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Show Discretized . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

Show Exploded Library Element . . . . . . . . . . . . . 120<br />

Simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Smooth Discretisation . . . . . . . . . . . . . . . . . . . . . . 110<br />

Smooth Discretisation Marked . . . . . . . . . . . . . . . 110<br />

Start Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

Subdivide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Subtract From Port Number(s) . . . . . . . . . . . . . . . 134<br />

Subtract Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

Toggle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Undo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

Unfix Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

User Vertex Transform . . . . . . . . . . . . . . . . . . . . . . 119<br />

View Iso X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

View Iso Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

View Iso Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Zoom Extends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

Zoom Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Zoom Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

List of Options<br />

2D Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

2D Display Optimization . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

2D Draft Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

2D Polygon Combination . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

3D Display Linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

3D Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

3D Display Optimization . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

3D Measure Cone size . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

3D Measure Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

3D Measure Font size . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

3D Measure Line Width . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

3D antialiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

3D export size factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

3D snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

Accept flat Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

All GERBER/EXCELLON Files in Directory . . . . . 161<br />

(C) 2006


221<br />

Arrow Crosshair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

Arrow Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

Arrow Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

Arrow Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

Arrow and Point Highlighting . . . . . . . . . . . . . . . . . . . . 148<br />

Arrow color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

Arrow rectangle color . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

Background Color 3D mode . . . . . . . . . . . . . . . . . . . . . 139<br />

Background Color Draft mode . . . . . . . . . . . . . . . . . . . 149<br />

Blending Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

Boundaries in main window . . . . . . . . . . . . . . . . . . . . . 144<br />

CGM fontsize factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

CGM geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Circle Recognition min. # Points . . . . . . . . . . . . . . . . . 165<br />

Circle Recognition min. # points . . . . . . . . . . . . . . . . . 163<br />

Circle Recognition tolerance . . . . . . . . . . . . . . . . . . . . . 163<br />

Circle Resolution (Degrees) . . . . . . . . . . . . . . . . . . . . . . 165<br />

Circle diameter Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Circle min # points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Circle min # points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Circle tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Circle tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Color correction limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

Coordinate number of digits . . . . . . . . . . . . . . . . . . . . . 147<br />

Create Backup Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Cursor color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

Cursor rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

Cursor size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

Cursor text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

DXF connection tolerance . . . . . . . . . . . . . . . . . . . . . . . 162<br />

DXF general tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

DXF scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

DXF/DSN/GBR/EXC arc resolution (DEG) . . . . . . . 161<br />

Default Copy Expression . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

Default Rotation Angle . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

Dimensioning Number of Digits . . . . . . . . . . . . . . . . . . 151<br />

Dimensioning Scale Factor . . . . . . . . . . . . . . . . . . . . . . 151<br />

Dimensioning Tic Size . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

Discretization color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

Discretization in 3D views . . . . . . . . . . . . . . . . . . . . . . . 146<br />

Discretization in main window . . . . . . . . . . . . . . . . . . . 144<br />

Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Double Via Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

EXCELLON decimal digits . . . . . . . . . . . . . . . . . . . . . . 161<br />

FD animation duration . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

FD animation linewidth . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

FD animation pointsize . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

Fix Mark color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

Flat Box Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

Font Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

Font Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

GDSII scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

GERBER aperture size (mm) . . . . . . . . . . . . . . . . . . . . 154<br />

GERBER float format . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

GERBER scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

GYM/STL import shift (x y z) . . . . . . . . . . . . . . . . . . . 160<br />

Galvo speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

Generate POLYs Only . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

Generation Optimization . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

Gym Save mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

HPGL pen width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

HPGL scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Height of beginning z0= . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Height of end z1= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Highlight color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br />

Horizontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

Horizontal Discretization . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

Horizontal Object Snap . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

Horizontal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

Horizontal Screen Fill in % . . . . . . . . . . . . . . . . . . . . . . 150<br />

Ignore layer in DXF block . . . . . . . . . . . . . . . . . . . . . . . 163<br />

Import scale factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

Insert Graded Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

LINPOLY default width . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Lamp Current (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

Laser off speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Laser on speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Legend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

Light 0 Ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Light 0 Diffuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Light 0 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Light 1 Ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Light 1 Diffuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Light 1 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Light Global Ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

Max Circle diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Max instructions per file . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

Min. Disc spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

Min. Normal Angle for draft Display . . . . . . . . . . . . . 167<br />

Mouse Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Number of Points in Bond Wire . . . . . . . . . . . . . . . . . . 144<br />

Ortho snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br />

Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

POSTSCRIPT Page Width . . . . . . . . . . . . . . . . . . . . . . . 158<br />

PS Layout Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

PS Layout shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Page Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

Point Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

Point color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

Point shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

Poly Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Poly rasterize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

Poly tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

Preferred icon Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Print Command (UNIX) . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

Pulse Frequency (kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

Pulse Length (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

Rel. Horizontal Distance . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

(C) 2006


222<br />

Rel. Vertical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

Repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Reselect Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

Rotpoly Fast Discretization . . . . . . . . . . . . . . . . . . . . . . 166<br />

Rotpoly Subdivision (Integer) . . . . . . . . . . . . . . . . . . . . 165<br />

STL Resolution in Percent . . . . . . . . . . . . . . . . . . . . . . . 161<br />

Scale Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Scaling Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Selection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

Separate STL objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

Set Object’s text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

Show Bounding Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

Show Conversion Info . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Show discrete coordinates . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Slope Angle phi= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Start Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Start Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Subroutine Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

Tick size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Transparency algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Undersize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Vertical Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

Vertical Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

Vertical Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

Vertical Object Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

Vertical Screen Fill in % . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

Warn for improper Objects . . . . . . . . . . . . . . . . . . . . . . . 167<br />

Wheel Mouse clip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

Wheelmouse Zoom Factor . . . . . . . . . . . . . . . . . . . . . . . 149<br />

max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

x discretisation in units . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

y discretisation in units . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

z discretisation in units . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

zmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

zmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

List of Simulation Options<br />

Conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

Drawing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

End Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

Flat metal thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

Start Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

Structure Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

Target Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

xmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177<br />

xmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177<br />

ymax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177<br />

ymin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177<br />

zmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

zmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

List of Autodisc Options<br />

Absolute min resolution in units . . . . . . . . . . . . . . . . . 173<br />

Arc Resolution in Degrees . . . . . . . . . . . . . . . . . . . . . . . 172<br />

Edge accuracy (Percent) . . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

Flat metal Recognition Limit . . . . . . . . . . . . . . . . . . . . 172<br />

Max Resolution in units . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

Min Cells per Wavelength . . . . . . . . . . . . . . . . . . . . . . . 173<br />

Min Resolution in units . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

Object Roughness (cells) . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

Object cells 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

Object cells 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

Object cells 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

Object cells 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

Planar Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br />

Refinement ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

Relative Drawing Accuracy . . . . . . . . . . . . . . . . . . . . . . 171<br />

Relative Limit for Warning . . . . . . . . . . . . . . . . . . . . . . 172<br />

Use Simplified Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

Wedge recognition limit in Degrees . . . . . . . . . . . . . . . 170<br />

(C) 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!