11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

96 <strong>Linear</strong> <strong>Algebra</strong>, by Hefferon<br />

and, as<br />

Rep B (1 − 3x + 2x 2 ) =<br />

the matrix-vector multiplication calculation gives this.<br />

⎛ ⎞<br />

1 1 0<br />

Rep D (h(1 − 3x + 2x 2 )) = ⎜1 2 1<br />

⎟<br />

⎝0 0 0 ⎠<br />

0 0 −1<br />

⎛<br />

⎞<br />

⎝ 1 −3⎠<br />

2<br />

B,D<br />

⎛<br />

B<br />

⎞<br />

⎝ 1 −3⎠<br />

2<br />

B<br />

⎛ ⎞<br />

−2<br />

= ⎜−3<br />

⎟<br />

⎝ 0 ⎠<br />

−2<br />

Thus, h(1 − 3x + 2x 2 ) = −2 · 1 − 3 · x + 0 · x 2 − 2 · x 3 = −2 − 3x − 2x 3 , as above.<br />

Three.III.1.15 Again, as recalled in the subsection, with respect to E i , a column vector represents<br />

itself.<br />

(a) To represent h with respect to E 2 , E 3 we take the images of the basis vectors from the domain,<br />

and represent them with respect to the basis for the codomain.<br />

⎛ ⎞ ⎛ ⎞<br />

⎛ ⎞ ⎛ ⎞<br />

2<br />

Rep E3<br />

( h(⃗e 1 ) ) = Rep E3<br />

( ⎝2⎠) =<br />

0<br />

These are adjoined to make the matrix.<br />

(b) For any ⃗v in the domain R 2 ,<br />

and so<br />

is the desired representation.<br />

⎝ 2 2<br />

0<br />

⎠ Rep E3<br />

( h(⃗e 2 ) ) = Rep E3<br />

(<br />

Rep E2,E 3<br />

(h) =<br />

⎛<br />

⎝ 2 0<br />

⎞<br />

2 1 ⎠<br />

0 −1<br />

( ) ( )<br />

v1 v1<br />

Rep E2<br />

(⃗v) = Rep E2<br />

( ) =<br />

v 2 v 2<br />

Rep E3<br />

( h(⃗v) ) =<br />

⎛<br />

⎝ 2 0<br />

⎞<br />

( )<br />

2 1 ⎠ v1<br />

v<br />

0 −1 2<br />

⎛<br />

= ⎝ 2v ⎞<br />

1<br />

2v 1 + v 2<br />

⎠<br />

−v 2<br />

D<br />

0<br />

⎝ 1 ⎠) =<br />

−1<br />

⎝ 0 1<br />

−1<br />

Three.III.1.16 (a) We must first find the image of each vector from the domain’s basis, and then<br />

represent that image with respect to the codomain’s basis.<br />

⎛ ⎞<br />

⎛ ⎞<br />

⎛ ⎞<br />

⎛ ⎞<br />

0<br />

1<br />

0<br />

0<br />

Rep B ( d 1<br />

dx ) = ⎜0<br />

⎟<br />

⎝0⎠<br />

Rep B( d x<br />

dx ) = ⎜0<br />

⎟<br />

⎝0⎠<br />

Rep B( d x2<br />

dx ) = ⎜2<br />

⎟<br />

⎝0⎠<br />

Rep B( d x3<br />

dx ) = ⎜0<br />

⎟<br />

⎝3⎠<br />

0<br />

0<br />

0<br />

0<br />

Those representations are then adjoined to make the matrix representing the map.<br />

⎛<br />

⎞<br />

0 1 0 0<br />

Rep B,B ( d<br />

dx ) = ⎜0 0 2 0<br />

⎟<br />

⎝0 0 0 3⎠<br />

0 0 0 0<br />

(b) Proceeding as in the prior item, we represent the images of the domain’s basis vectors<br />

⎛ ⎞<br />

⎛ ⎞<br />

⎛ ⎞<br />

⎛ ⎞<br />

0<br />

1<br />

0<br />

0<br />

Rep B ( d 1<br />

dx ) = ⎜0<br />

⎟<br />

⎝0⎠<br />

Rep B( d x<br />

dx ) = ⎜0<br />

⎟<br />

⎝0⎠<br />

Rep B( d x2<br />

dx ) = ⎜1<br />

⎟<br />

⎝0⎠<br />

Rep B( d x3<br />

dx ) = ⎜0<br />

⎟<br />

⎝1⎠<br />

0<br />

0<br />

0<br />

0<br />

and adjoin to make the matrix.<br />

⎛ ⎞<br />

0 1 0 0<br />

Rep B,D ( d<br />

dx ) = ⎜0 0 1 0<br />

⎟<br />

⎝0 0 0 1⎠<br />

0 0 0 0<br />

Three.III.1.17 For each, we must find the image of each of the domain’s basis vectors, represent<br />

each image with respect to the codomain’s basis, and then adjoin those representations to get the<br />

matrix.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!