11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Answers</strong> to <strong>Exercises</strong> 61<br />

for some a 3 , . . . , a n ∈ R. Therefore,<br />

⎛ ⎞<br />

−1<br />

1 (<br />

σ1 (⃗v) − σ 2 (⃗v) ) 1<br />

=<br />

0<br />

y − x<br />

⎜ ⎟<br />

⎝ . ⎠<br />

0<br />

is in V . That is, ⃗e 2 − ⃗e 1 ∈ V , where ⃗e 1 , ⃗e 2 , . . . , ⃗e n is the standard basis for R n . Similarly, ⃗e 3 − ⃗e 2 ,<br />

. . . , ⃗e n − ⃗e 1 are all in V . It is easy to see that the vectors ⃗e 2 − ⃗e 1 , ⃗e 3 − ⃗e 2 , . . . , ⃗e n − ⃗e 1 are linearly<br />

independent (that is, form a linearly independent set), so dim V ≥ n − 1.<br />

Finally, we can write<br />

⃗v = x 1 ⃗e 1 + x 2 ⃗e 2 + · · · + x n ⃗e n<br />

= (x 1 + x 2 + · · · + x n )⃗e 1 + x 2 (⃗e 2 − ⃗e 1 ) + · · · + x n (⃗e n − ⃗e 1 )<br />

This shows that if x 1 + x 2 + · · · + x n = 0 then ⃗v is in the span of ⃗e 2 − ⃗e 1 , . . . , ⃗e n − ⃗e 1 (that is, is in<br />

the span of the set of those vectors); similarly, each σ(⃗v) will be in this span, so V will equal this span<br />

and dim V = n − 1. On the other hand, if x 1 + x 2 + · · · + x n ≠ 0 then the above equation shows that<br />

⃗e 1 ∈ V and thus ⃗e 1 , . . . , ⃗e n ∈ V , so V = R n and dim V = n.<br />

Subsection Two.III.3: Vector Spaces and <strong>Linear</strong> Systems<br />

Two.III.3.16<br />

(a)<br />

( ) 2 3<br />

1 1<br />

(b)<br />

( ) 2 1<br />

1 3<br />

(c)<br />

⎛<br />

⎝ 1 6<br />

⎞<br />

4 7⎠ (d) ( 0 0 0 ) (e)<br />

3 8<br />

( ) −1<br />

−2<br />

Two.III.3.17 (a) Yes. To see if there are c 1 and c 2 such that c 1 · (2<br />

1 ) + c 2 · (3<br />

1 ) = ( 1 0 ) we<br />

solve<br />

2c 1 + 3c 2 = 1<br />

c 1 + c 2 = 0<br />

and get c 1 = −1 and c 2 = ( 1. Thus) the vector ( is in ) the row( space. ) ( )<br />

(b) No. The equation c 1 0 1 3 + c2 −1 0 1 + c3 −1 2 7 = 1 1 1 has no solution.<br />

⎛<br />

⎞<br />

⎛<br />

0 −1 −1 1<br />

⎝1 0 2 1⎠ ρ 1↔ρ 2 −3ρ 1 +ρ 2 ρ 2 +ρ 3<br />

−→ −→ −→ ⎝ 1 0 2 1 ⎞<br />

0 −1 −1 1 ⎠<br />

3 1 7 1<br />

0 0 0 −1<br />

Thus, the vector is not in the row space.<br />

Two.III.3.18<br />

(a) No. To see if there are c 1 , c 2 ∈ R such that<br />

( ) ( ) (<br />

1 1 1<br />

c 1 + c<br />

1 2 =<br />

1 3)<br />

we can use Gauss’ method on the resulting linear system.<br />

c 1 + c 2 = 1 −ρ 1 +ρ 2 c −→ 1 + c 2 = 1<br />

c 1 + c 2 = 3<br />

0 = 2<br />

There is no solution and so the vector is not in the column space.<br />

(b) Yes. From this relationship<br />

⎛<br />

c 1<br />

⎝ 1 ⎞ ⎛<br />

2⎠ + c 2<br />

⎝ 3 ⎞ ⎛<br />

0 ⎠ + c 3<br />

⎝ 1 ⎞ ⎛<br />

4⎠ = ⎝ 1 ⎞<br />

0⎠<br />

1 −3 3 0<br />

we get a linear system that, when Gauss’ method is applied,<br />

⎛<br />

⎝ 1 3 1 1<br />

⎞<br />

⎛<br />

2 0 4 0⎠ −2ρ1+ρ2 −ρ 2+ρ 3<br />

−→ −→ ⎝ 1 3 1 1<br />

⎞<br />

0 −6 2 −2⎠<br />

−ρ<br />

1 −3 −3 0 1+ρ 3<br />

0 0 −6 1<br />

yields a solution. Thus, the vector is in the column space.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!