Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf Linear Algebra Exercises-n-Answers.pdf

math.hcmuns.edu.vn
from math.hcmuns.edu.vn More from this publisher
11.04.2014 Views

26 Linear Algebra, by Hefferon One.III.1.8 Use ( Gauss-Jordan ) reduction. ( ) ( ) (a) −(1/2)ρ 1+ρ 2 2 1 (1/2)ρ 1 1 1/2 −(1/2)ρ 2 +ρ 1 1 0 −→ −→ −→ 0 5/2 (2/5)ρ 2 0 1 0 1 ⎛ (b) −2ρ 1+ρ 2 −→ ⎝ 1 3 1 ⎞ ⎛ 0 −6 2 ⎠ −(1/6)ρ 2 −→ ⎝ 1 3 1 ⎞ ⎛ 0 1 −1/3⎠ (1/3)ρ 3+ρ 2 −→ ⎝ 1 3 0 ⎞ ⎛ 0 1 0⎠ −3ρ 2+ρ 1 −→ ⎝ 1 0 0 ⎞ 0 1 0⎠ ρ 1 +ρ 3 −(1/2)ρ 0 0 −2 3 −ρ 0 0 1 3 +ρ 1 0 0 1 0 0 1 (c) ⎛ −ρ 1 +ρ 2 −→ ⎝ 1 0 3 1 2 ⎞ ⎛ 0 4 −1 0 3 ⎠ −ρ 2+ρ 3 −→ ⎝ 1 0 3 1 2 ⎞ 0 4 −1 0 3 ⎠ −3ρ 1 +ρ 3 0 4 −1 −2 −4 0 0 0 −2 −7 ⎛ (1/4)ρ 2 −→ ⎝ 1 0 3 1 2 ⎞ ⎛ 0 1 −1/4 0 3/2⎠ −ρ 3+ρ 1 −→ ⎝ 1 0 3 0 −3/2 ⎞ 0 1 −1/4 0 3/2 ⎠ −(1/2)ρ 3 0 0 0 1 7/2 0 0 0 1 7/2 (d) ⎛ ρ 1 ↔ρ 3 −→ ⎝ 1 5 1 5 ⎞ ⎛ 0 0 5 6⎠ ρ 2↔ρ 3 −→ ⎝ 1 5 1 5 ⎞ ⎛ 0 1 3 2⎠ (1/5)ρ 3 −→ ⎝ 1 5 1 19/5 ⎞ 0 1 3 2 ⎠ 0 1 3 2 0 0 5 6 0 0 1 6/5 ⎛ ⎞ ⎛ ⎞ 1 3 0 −6/5 1 0 0 59/5 −3ρ 3 +ρ 2 −→ ⎝0 1 0 −8/5⎠ −5ρ 2+ρ 1 −→ ⎝0 1 0 −8/5⎠ −ρ 3 +ρ 1 0 0 1 6/5 0 0 1 6/5 One.III.1.9 For the “Gauss” halves, see the answers to Exercise 19. (a) The “Jordan” half goes ( this way. ) ( ) (1/2)ρ 1 1 1/2 −1/2 1/2 −(1/2)ρ 2 +ρ 1 1 0 −1/6 2/3 −→ −→ −(1/3)ρ 2 0 1 −2/3 −1/3 0 1 −2/3 −1/3 The solution set is this ⎛ { ⎝ 2/3 ⎞ ⎛ −1/3⎠ + ⎝ 1/6 ⎞ 2/3⎠ z ∣ z ∈ R} 0 1 (b) The second half is ⎛ ρ 3+ρ 2 −→ ⎝ 1 0 −1 0 1 ⎞ 0 1 2 0 3⎠ 0 0 0 1 0 so the solution is this. ⎛ ⎞ ⎞ 1 1 ⎜3⎟ ⎜−2⎟ ⎛ { ⎜ ⎟ ⎝ ⎠ + ⎜ ⎝ 0 0 1 0 ⎟ ⎠ z ∣ z ∈ R} (c) This Jordan half ⎛ ⎞ 1 0 1 1 0 ρ 2 +ρ 1 −→ ⎜0 1 0 1 0 ⎟ ⎝0 0 0 0 0⎠ 0 0 0 0 0 gives ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 0 −1 −1 { ⎜0 ⎟ ⎝0⎠ + ⎜ 0 ⎟ ⎝ 1 ⎠ z + ⎜−1 ⎟ ⎝ 0 ⎠ w ∣ z, w ∈ R} 0 0 1 (of course, the zero vector could be omitted from the description). (d) The “Jordan” half ( ) −(1/7)ρ 2 1 2 3 1 −1 1 −→ 0 1 8/7 2/7 −4/7 0 ( −2ρ 2+ρ 1 1 0 5/7 3/7 1/7 1 −→ 0 1 8/7 2/7 −4/7 0 ends with this solution ⎛ set. ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 1 −5/7 −3/7 −1/7 0 { ⎜0 ⎟ ⎝0⎠ + −8/7 ⎜ 1 ⎟ ⎝ 0 ⎠ c + −2/7 ⎜ 0 ⎟ ⎝ 1 ⎠ d + 4/7 ⎜ 0 ⎟ ⎝ 0 ⎠ e ∣ c, d, e ∈ R} 0 0 0 1 )

Answers to Exercises 27 One.III.1.10 Routine Gauss’ method gives one: ⎛ −3ρ 1+ρ 2 −→ ⎝ 2 1 1 3 ⎞ 0 1 −2 −7 −(1/2)ρ 1 +ρ 3 0 9/2 1/2 7/2 ⎠ −(9/2)ρ2+ρ3 −→ and any cosmetic change, like multiplying the bottom row by 2, ⎛ ⎝ 2 1 1 3 ⎞ 0 1 −2 −7⎠ 0 0 19 70 gives another. ⎛ ⎝ 2 1 1 3 ⎞ 0 1 −2 −7⎠ 0 0 19/2 35 One.III.1.11 In the cases listed below, we take a, b ∈ R. Thus, some canonical forms listed below actually ( include ) ( infinitely ) ( many) cases. ( In) particular, they includes the cases a = 0 and b = 0. 0 0 1 a 0 1 1 0 (a) , , , 0 0 0 0 0 0 0 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 1 a b 0 1 a 0 0 1 1 0 a 1 a 0 0 1 0 (b) , , , , , , ⎛ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 b 0 0 1 0 0 1 (c) ⎝ 0 0 ⎞ ⎛ 0 0⎠, ⎝ 1 a ⎞ ⎛ 0 0⎠, ⎝ 0 1 ⎞ ⎛ 0 0⎠, ⎝ 1 0 ⎞ 0 1⎠ 0 0 0 0 0 0 0 0 ⎛ (d) ⎝ 0 0 0 ⎞ ⎛ 0 0 0⎠, ⎝ 1 a b ⎞ ⎛ 0 0 0⎠, ⎝ 0 1 a ⎞ ⎛ 0 0 0⎠, ⎝ 0 0 1 ⎞ ⎛ 0 0 0⎠, ⎝ 1 0 a ⎞ ⎛ 0 1 b⎠, ⎝ 1 a 0 ⎞ ⎛ 0 0 1⎠, ⎝ 1 0 0 ⎞ 0 1 0⎠ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 One.III.1.12 A nonsingular homogeneous linear system has a unique solution. So a nonsingular matrix must reduce to a (square) matrix that is all 0’s except for 1’s down the upper-left to lower-right diagonal, e.g., ⎛ ( ) 1 0 , or ⎝ 1 0 0 ⎞ 0 1 0⎠ , etc. 0 1 0 0 1 One.III.1.13 (a) The ρ i ↔ ρ i operation does not change A. (b) For instance, ( ) ( ) ( ) 1 2 −ρ 1+ρ 1 0 0 ρ 1+ρ 1 0 0 −→ −→ 3 4 3 4 3 4 leaves the matrix changed. (c) If i ≠ j then ⎛ ⎞ . . a i,1 · · · a i,n . ⎜ ⎝a j,1 · · · a j,n ⎟ ⎠ . kρ i +ρ j −→ −kρ i +ρ j −→ ⎛ ⎞ . . a i,1 · · · a i,n . ⎜ ⎝ka i,1 + a j,1 · · · ka i,n + a j,n ⎟ ⎠ . ⎛ . . a i,1 · · · a i,n . ⎜ ⎝−ka i,1 + ka i,1 + a j,1 · · · −ka i,n + ka i,n + a j,n ⎟ ⎠ . does indeed give A back. (Of course, if i = j then the third matrix would have entries of the form −k(ka i,j + a i,j ) + ka i,j + a i,j .) ⎞ Subsection One.III.2: Row Equivalence One.III.2.11 Bring each to reduced echelon form and compare.

26 <strong>Linear</strong> <strong>Algebra</strong>, by Hefferon<br />

One.III.1.8 Use ( Gauss-Jordan ) reduction. ( )<br />

( )<br />

(a) −(1/2)ρ 1+ρ 2 2 1 (1/2)ρ 1 1 1/2 −(1/2)ρ 2 +ρ 1 1 0<br />

−→ −→<br />

−→<br />

0 5/2 (2/5)ρ 2<br />

0 1<br />

0 1<br />

⎛<br />

(b) −2ρ 1+ρ 2<br />

−→ ⎝ 1 3 1 ⎞ ⎛<br />

0 −6 2 ⎠ −(1/6)ρ 2<br />

−→ ⎝ 1 3 1 ⎞ ⎛<br />

0 1 −1/3⎠ (1/3)ρ 3+ρ 2<br />

−→ ⎝ 1 3 0 ⎞ ⎛<br />

0 1 0⎠ −3ρ 2+ρ 1<br />

−→ ⎝ 1 0 0 ⎞<br />

0 1 0⎠<br />

ρ 1 +ρ 3<br />

−(1/2)ρ<br />

0 0 −2<br />

3 −ρ<br />

0 0 1<br />

3 +ρ 1<br />

0 0 1<br />

0 0 1<br />

(c)<br />

⎛<br />

−ρ 1 +ρ 2<br />

−→ ⎝ 1 0 3 1 2<br />

⎞ ⎛<br />

0 4 −1 0 3 ⎠ −ρ 2+ρ 3<br />

−→ ⎝ 1 0 3 1 2<br />

⎞<br />

0 4 −1 0 3 ⎠<br />

−3ρ 1 +ρ 3<br />

0 4 −1 −2 −4<br />

0 0 0 −2 −7<br />

⎛<br />

(1/4)ρ 2<br />

−→ ⎝ 1 0 3 1 2<br />

⎞ ⎛<br />

0 1 −1/4 0 3/2⎠ −ρ 3+ρ 1<br />

−→ ⎝ 1 0 3 0 −3/2<br />

⎞<br />

0 1 −1/4 0 3/2 ⎠<br />

−(1/2)ρ 3<br />

0 0 0 1 7/2<br />

0 0 0 1 7/2<br />

(d)<br />

⎛<br />

ρ 1 ↔ρ 3<br />

−→ ⎝ 1 5 1 5<br />

⎞ ⎛<br />

0 0 5 6⎠ ρ 2↔ρ 3<br />

−→ ⎝ 1 5 1 5<br />

⎞ ⎛<br />

0 1 3 2⎠ (1/5)ρ 3<br />

−→ ⎝ 1 5 1 19/5<br />

⎞<br />

0 1 3 2 ⎠<br />

0 1 3 2 0 0 5 6 0 0 1 6/5<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

1 3 0 −6/5<br />

1 0 0 59/5<br />

−3ρ 3 +ρ 2<br />

−→ ⎝0 1 0 −8/5⎠ −5ρ 2+ρ 1<br />

−→ ⎝0 1 0 −8/5⎠<br />

−ρ 3 +ρ 1<br />

0 0 1 6/5<br />

0 0 1 6/5<br />

One.III.1.9 For the “Gauss” halves, see the answers to Exercise 19.<br />

(a) The “Jordan” half goes ( this way. )<br />

( )<br />

(1/2)ρ 1 1 1/2 −1/2 1/2 −(1/2)ρ 2 +ρ 1 1 0 −1/6 2/3<br />

−→<br />

−→<br />

−(1/3)ρ 2<br />

0 1 −2/3 −1/3<br />

0 1 −2/3 −1/3<br />

The solution set is this<br />

⎛<br />

{ ⎝ 2/3 ⎞ ⎛<br />

−1/3⎠ + ⎝ 1/6 ⎞<br />

2/3⎠ z ∣ z ∈ R}<br />

0 1<br />

(b) The second half is<br />

⎛<br />

ρ 3+ρ 2<br />

−→ ⎝ 1 0 −1 0 1<br />

⎞<br />

0 1 2 0 3⎠<br />

0 0 0 1 0<br />

so the solution is this.<br />

⎛ ⎞ ⎞<br />

1 1<br />

⎜3⎟<br />

⎜−2⎟<br />

⎛<br />

{ ⎜ ⎟<br />

⎝ ⎠ + ⎜<br />

⎝<br />

0<br />

0<br />

1<br />

0<br />

⎟<br />

⎠ z ∣ z ∈ R}<br />

(c) This Jordan half<br />

⎛<br />

⎞<br />

1 0 1 1 0<br />

ρ 2 +ρ 1<br />

−→ ⎜0 1 0 1 0<br />

⎟<br />

⎝0 0 0 0 0⎠<br />

0 0 0 0 0<br />

gives<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

0 −1 −1<br />

{ ⎜0<br />

⎟<br />

⎝0⎠ + ⎜ 0<br />

⎟<br />

⎝ 1 ⎠ z + ⎜−1<br />

⎟<br />

⎝ 0 ⎠ w ∣ z, w ∈ R}<br />

0 0 1<br />

(of course, the zero vector could be omitted from the description).<br />

(d) The “Jordan” half ( )<br />

−(1/7)ρ 2 1 2 3 1 −1 1<br />

−→<br />

0 1 8/7 2/7 −4/7 0<br />

(<br />

−2ρ 2+ρ 1 1 0 5/7 3/7 1/7 1<br />

−→<br />

0 1 8/7 2/7 −4/7 0<br />

ends with this solution ⎛ set. ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

1 −5/7 −3/7 −1/7<br />

0<br />

{<br />

⎜0<br />

⎟<br />

⎝0⎠ + −8/7<br />

⎜ 1<br />

⎟<br />

⎝ 0 ⎠ c + −2/7<br />

⎜ 0<br />

⎟<br />

⎝ 1 ⎠ d + 4/7<br />

⎜ 0<br />

⎟<br />

⎝ 0 ⎠ e ∣ c, d, e ∈ R}<br />

0 0<br />

0<br />

1<br />

)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!