11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Answers</strong> to <strong>Exercises</strong> 173<br />

( ) ( ∣ ∣<br />

T1,1 T<br />

Four.III.1.21 (a)<br />

2,1<br />

t<br />

= 2,2 − ∣ ∣)<br />

( )<br />

∣t 1,2 T 1,2 T 2,2 − ∣ ∣ ∣ ∣ t2,2 −t<br />

∣t 2,1 t 1,1 =<br />

1,2<br />

−t 2,1 t<br />

( )<br />

1,1<br />

t2,2 −t<br />

(b) (1/t 1,1 t 2,2 − t 1,2 t 2,1 ) ·<br />

1,2<br />

−t 2,1 t 1,1<br />

Four.III.1.22 No. Here is a determinant whose value<br />

1 0 0<br />

0 1 0<br />

∣0 0 1∣ = 1<br />

dosn’t equal the result of expanding down the diagonal.<br />

1 · (+1)<br />

∣ 1 0<br />

∣ ∣ ∣∣∣ 0 1∣ + 1 · (+1) 1 0<br />

∣∣∣ 0 1∣ + 1 · (+1) 1 0<br />

0 1∣ = 3<br />

Four.III.1.23 Consider this diagonal matrix.<br />

⎛<br />

⎞<br />

d 1 0 0 . . .<br />

0 d 2 0<br />

D =<br />

0 0 d 3 ⎜<br />

⎝<br />

. ..<br />

⎟<br />

⎠<br />

d n<br />

If i ≠ j then the i, j minor is an (n − 1)×(n − 1) matrix with only n − 2 nonzero entries, because both<br />

d i and d j are deleted. Thus, at least one row or column of the minor is all zeroes, and so the cofactor<br />

D i,j is zero. If i = j then the minor is the diagonal matrix with entries d 1 , . . . , d i−1 , d i+1 , . . . , d n . Its<br />

determinant is obviously (−1) i+j = (−1) 2i = 1 times the product of those.<br />

⎛<br />

⎞<br />

d 2 · · · d n 0 0<br />

0 d 1 d 3 · · · d n 0<br />

adj(D) = ⎜<br />

⎝<br />

. ..<br />

⎟<br />

⎠<br />

d 1 · · · d n−1<br />

By the way, Theorem 1.9 provides a slicker way to derive this conclusion.<br />

Four.III.1.24 Just note that if S = T trans then the cofactor S j,i equals the cofactor T i,j because<br />

(−1) j+i = (−1) i+j and because the minors are the transposes of each other (and the determinant of a<br />

transpose equals the determinant of the matrix).<br />

Four.III.1.25 It<br />

⎛<br />

is false; here is an example.<br />

T = ⎝ 1 2 3<br />

⎞<br />

⎛<br />

⎞<br />

⎛<br />

−3 6 −3<br />

4 5 6⎠ adj(T ) = ⎝ 6 −12 6 ⎠ adj(adj(T )) = ⎝ 0 0 0<br />

⎞<br />

0 0 0⎠<br />

7 8 9<br />

−3 6 −3<br />

0 0 0<br />

Four.III.1.26 (a) An example<br />

⎛<br />

M = ⎝ 1 2 3<br />

⎞<br />

0 4 5⎠<br />

0 0 6<br />

suggests the right answer.<br />

⎛<br />

⎛<br />

adj(M) = ⎝ M ⎞<br />

∣ 4 5<br />

1,1 M 2,1 M 3,1<br />

0 6∣<br />

−<br />

∣ 2 3<br />

0 6∣<br />

∣ 2 3<br />

⎞<br />

4 5∣<br />

⎛<br />

⎞<br />

M 1,2 M 2,2 M 3,2<br />

⎠ =<br />

−<br />

∣ 0 5<br />

M 1,3 M 2,3 M 3,3<br />

⎜ 0 6∣<br />

∣ 1 3<br />

0 6∣<br />

−<br />

∣ 1 3<br />

24 −12 −2<br />

0 5∣<br />

= ⎝ 0 6 −5⎠<br />

⎝<br />

∣ 0 4<br />

0 0∣<br />

−<br />

∣ 1 2<br />

0 0∣<br />

∣ 1 2<br />

⎟<br />

⎠ 0 0 4<br />

0 4∣<br />

The result is indeed upper triangular.<br />

A check of this is detailed but not hard. The entries in the upper triangle of the adjoint are<br />

M a,b where a > b. We need to verify that the cofactor M a,b is zero if a > b. With a > b, row a and<br />

column b of M,<br />

⎛<br />

⎞<br />

m 1,1 . . . m 1,b<br />

m 2,1 . . . m 2,b<br />

.<br />

.<br />

m a,1 . . . m a,b . . . m a,n<br />

⎜<br />

.<br />

⎟<br />

⎝<br />

.<br />

⎠<br />

m n,b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!