11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

160 <strong>Linear</strong> <strong>Algebra</strong>, by Hefferon<br />

and conclude that the matrix is nonsingular if and only if either ah − bg = 0 or af − cd = 0. The<br />

condition ‘ah−bg = 0 or af −cd = 0’ is equivalent to the condition ‘(ah−bg)(af −cd) = 0’. Multiplying<br />

out and using the case assumption that ae − bd = 0 to substitute ae for bd gives this.<br />

0 = ahaf − ahcd − bgaf + bgcd = ahaf − ahcd − bgaf + aegc = a(haf − hcd − bgf + egc)<br />

Since a ≠ 0, we have that the matrix is nonsingular if and only if haf −hcd−bgf +egc = 0. Therefore,<br />

in this a ≠ 0 and ae−bd = 0 case, the matrix is nonsingular when haf −hcd−bgf +egc−i(ae−bd) = 0.<br />

The remaining cases are routine. Do the a = 0 but d ≠ 0 case and the a = 0 and d = 0 but g ≠ 0<br />

case by first swapping rows and then going on as above. The a = 0, d = 0, and g = 0 case is easy —<br />

that matrix is singular since the columns form a linearly dependent set, and the determinant comes<br />

out to be zero.<br />

Four.I.1.10<br />

Figuring the determinant and doing some algebra gives this.<br />

0 = y 1 x + x 2 y + x 1 y 2 − y 2 x − x 1 y − x 2 y 1<br />

(x 2 − x 1 ) · y = (y 2 − y 1 ) · x + x 2 y 1 − x 1 y 2<br />

y = y 2 − y 1<br />

· x + x 2y 1 − x 1 y 2<br />

x 2 − x 1 x 2 − x 1<br />

Note that this is the equation of a line (in particular, in contains the familiar expression for the slope),<br />

and note that (x 1 , y 1 ) and (x 2 , y 2 ) satisfy it.<br />

Four.I.1.11 (a) The comparison with the formula given in the preamble to this section is easy.<br />

(b) While it holds for 2×2 matrices<br />

( )<br />

h1,1 h 1,2 h 1,1<br />

= h<br />

h 2,1 h 2,2 h 1,1 h 2,2 + h 1,2 h 2,1<br />

2,1<br />

−h 2,1 h 1,2 − h 2,2 h 1,1<br />

= h 1,1 h 2,2 − h 1,2 h 2,1<br />

it does not hold for 4×4 matrices. An example is that this matrix is singular because the second<br />

and third rows are equal<br />

⎛<br />

⎞<br />

1 0 0 1<br />

⎜ 0 1 1 0<br />

⎟<br />

⎝ 0 1 1 0⎠<br />

−1 0 0 1<br />

but following the scheme of the mnemonic does not give zero.<br />

⎛<br />

⎞<br />

1 0 0 1 1 0 0<br />

⎜ 0 1 1 0 0 1 1<br />

⎟<br />

⎝ 0 1 1 0 0 1 1⎠ = 1 + 0 + 0 + 0<br />

−(−1) − 0 − 0 − 0<br />

−1 0 0 1 −1 0 0<br />

Four.I.1.12 The determinant is (x 2 y 3 − x 3 y 2 )⃗e 1 + (x 3 y 1 − x 1 y 3 )⃗e 2 + (x 1 y 2 − x 2 y 1 )⃗e 3 . To check perpendicularity,<br />

we check that the dot product with the first vector is zero<br />

⎛<br />

⎝ x ⎞ ⎛<br />

1<br />

x 2<br />

⎠ ⎝ x ⎞<br />

2y 3 − x 3 y 2<br />

x 3 y 1 − x 1 y 3<br />

⎠ = x 1 x 2 y 3 − x 1 x 3 y 2 + x 2 x 3 y 1 − x 1 x 2 y 3 + x 1 x 3 y 2 − x 2 x 3 y 1 = 0<br />

x 3 x 1 y 2 − x 2 y 1<br />

and the dot product with the second vector is also zero.<br />

⎛<br />

⎝ y ⎞ ⎛<br />

1<br />

y 2<br />

⎠ ⎝ x ⎞<br />

2y 3 − x 3 y 2<br />

x 3 y 1 − x 1 y 3<br />

⎠ = x 2 y 1 y 3 − x 3 y 1 y 2 + x 3 y 1 y 2 − x 1 y 2 y 3 + x 1 y 2 y 3 − x 2 y 1 y 3 = 0<br />

y 3 x 1 y 2 − x 2 y 1<br />

Four.I.1.13<br />

(a) Plug and chug: the determinant of the product is this<br />

( ) ( ) ( )<br />

a b w x aw + by ax + bz<br />

det(<br />

) = det(<br />

)<br />

c d y z<br />

cw + dy cx + dz<br />

= acwx + adwz + bcxy + bdyz<br />

−acwx − bcwz − adxy − bdyz<br />

while the product of the determinants is this.<br />

( ) ( )<br />

a b w x<br />

det( ) · det( ) = (ad − bc) · (wz − xy)<br />

c d y z<br />

Verification that they are equal is easy.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!