11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

140 <strong>Linear</strong> <strong>Algebra</strong>, by Hefferon<br />

and so (as in Example 3.5 and 3.6, we can just find the vectors perpendicular to all of the members<br />

of the basis)<br />

( ) ( ) (<br />

M ⊥ u ∣∣ 1 ∣∣ 1<br />

= { −1 · u + 1 · v = 0} = {k · k ∈ R} B<br />

v<br />

1<br />

M ⊥ = 〈 〉<br />

1)<br />

and representing the vector with respect<br />

(<br />

to the concatenation<br />

( ) (<br />

gives this.<br />

1 −1 1<br />

= −2 · − 1 ·<br />

−3)<br />

1 1)<br />

Keeping the M part yields the answer.<br />

( (<br />

1 2<br />

proj M,M ⊥( ) =<br />

−3)<br />

−2)<br />

The third part is also a simple calculation (there is a 1×1 matrix in the middle, and the inverse<br />

of it is also 1×1)<br />

A ( A trans A ) ( ) (<br />

−1<br />

A trans −1 (−1 ) ( )) −1 ( )<br />

−1 ( ) −1 (2 ) −1 ( )<br />

=<br />

1 −1 1 = −1 1<br />

1<br />

1<br />

1<br />

( ) ( ) ( )<br />

−1 (1/2 ) ( ) −1 (−1/2 ) 1/2 −1/2<br />

=<br />

−1 1 = 1/2 =<br />

1<br />

1<br />

−1/2 1/2<br />

which of course gives the same answer.<br />

( ( ) ( (<br />

1 1/2 −1/2 1 2<br />

proj M ( ) =<br />

=<br />

−3)<br />

−1/2 1/2 −3)<br />

−2)<br />

(b) Paramatrization gives this.<br />

⎛<br />

M = {c · ⎝ −1 ⎞<br />

0 ⎠ ∣ c ∈ R}<br />

1<br />

With that, the formula for<br />

⎛<br />

the first way gives this.<br />

⎝ 0 ⎞ ⎛<br />

1⎠<br />

⎝ −1<br />

⎞<br />

0 ⎠ ⎛<br />

2 1<br />

⎛<br />

⎝ −1<br />

⎞ ⎛<br />

0 ⎠ ⎝ −1<br />

⎞ · ⎝ −1<br />

⎞ ⎛<br />

0 ⎠ = 2 2 · ⎝ −1<br />

⎞ ⎛<br />

0 ⎠ = ⎝ −1<br />

⎞<br />

0 ⎠<br />

1<br />

1 1<br />

0 ⎠<br />

1 1<br />

To proceed by the second method<br />

⎛ ⎞<br />

we find M ⊥ ,<br />

⎛ ⎞ ⎛ ⎞<br />

M ⊥ = { ⎝ u v ⎠ ∣ −u + w = 0} = {j · ⎝ 1 0⎠ + k · ⎝ 0 1⎠ ∣ j, k ∈ R}<br />

w<br />

1 0<br />

find the representation of the given vector with respect to the concatenation of the bases B M and<br />

B M ⊥<br />

⎛<br />

⎝ 0 ⎞ ⎛<br />

1⎠ = 1 · ⎝ −1<br />

⎞ ⎛<br />

0 ⎠ + 1 · ⎝ 1 ⎞ ⎛<br />

0⎠ + 1 · ⎝ 0 ⎞<br />

1⎠<br />

2 1 1 0<br />

and retain only the M part.<br />

⎛<br />

proj M ( ⎝ 0 ⎞ ⎛<br />

1⎠) = 1 · ⎝ −1<br />

⎞ ⎛<br />

0 ⎠ = ⎝ −1<br />

⎞<br />

0 ⎠<br />

2<br />

1 1<br />

Finally, for the third method, the matrix calculation<br />

⎛ ⎞<br />

⎛ ⎞<br />

⎛ ⎞<br />

A ( A trans A ) −1<br />

−1<br />

A trans = ⎝ 0 ⎠ (( −1 0 1 ) −1<br />

⎝ 0 ⎠ ) −1 ( )<br />

−1<br />

−1 0 1 = ⎝ 0 ⎠ ( 2 ) −1 ( )<br />

−1 0 1<br />

1<br />

1<br />

1<br />

⎛<br />

= ⎝ −1 ⎞<br />

⎛<br />

0 ⎠ ( 1/2 ) ( −1 0 1 ) = ⎝ −1 ⎞<br />

⎛<br />

⎞<br />

0 ⎠ ( −1/2 0 1/2 ) 1/2 0 −1/2<br />

= ⎝ 0 0 0 ⎠<br />

1<br />

1<br />

−1/2 0 1/2<br />

followed by matrix-vector multiplication<br />

⎛<br />

proj M ( ⎝ 0 ⎞ ⎛<br />

⎞ ⎛<br />

1/2 0 −1/2<br />

1⎠)<br />

⎝ 0 0 0 ⎠ ⎝ 0 ⎞ ⎛<br />

1⎠ = ⎝ −1 ⎞<br />

0 ⎠<br />

2 −1/2 0 1/2 2 1<br />

gives the answer.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!