11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Answers</strong> to <strong>Exercises</strong> 139<br />

(g) Here, M is one-dimensional<br />

⎛<br />

M = {c · ⎝ 0 ⎞<br />

⎛<br />

−1⎠ ∣ c ∈ R} B M = 〈 ⎝ 0 ⎞<br />

−1⎠〉<br />

1<br />

1<br />

and as a result, M ⊥ is two-dimensional.<br />

⎛ ⎞<br />

M ⊥ = { ⎝ u v ⎠ ∣ 0 · u − 1 · v + 1 · w = 0} = {j · ⎝ 1 0⎠ + k · ⎝ 0 1⎠ ∣ j, k ∈ R}<br />

w<br />

0 1<br />

Three.VI.3.12 (a) Paramatrizing the equation leads to this basis for P .<br />

⎛ ⎞ ⎛ ⎞<br />

B P = 〈 ⎝ 1 0⎠ , ⎝ 0 1⎠〉<br />

3 2<br />

(b) Because R 3 is three-dimensional and P is two-dimensional, the complement P ⊥ must be a line.<br />

Anyway, the calculation as in Example 3.5<br />

⎛<br />

P ⊥ = { ⎝ x ⎞<br />

y⎠ ∣ ( ) ⎛ 1 0 3 ⎝ x ⎞<br />

(<br />

y⎠ 0<br />

= }<br />

0 1 2<br />

0)<br />

z<br />

z<br />

gives this basis for P ⊥ .<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

(c) ⎝ 1 1⎠ = (5/14) · ⎝ 1 0⎠ + (8/14) · ⎝ 0 1⎠ + (3/14) ·<br />

2<br />

⎛<br />

3<br />

2<br />

(d) proj P ( ⎝ 1 ⎞ ⎛<br />

1⎠) = ⎝ 5/14 ⎞<br />

8/14 ⎠<br />

2 31/14<br />

(e) The matrix of the projection<br />

⎛<br />

⎝ 1 0<br />

⎞<br />

0 1⎠ (( ) ⎛ 1 0 3<br />

⎝ 1 0<br />

⎞<br />

0 1⎠ ) −1<br />

0 1 2<br />

3 2<br />

3 2<br />

⎛<br />

⎞<br />

B P ⊥ = 〈 ⎝ 3 2 ⎠〉<br />

−1<br />

⎛ ⎞ ⎛ ⎞<br />

⎝ 3 2<br />

−1<br />

⎠<br />

⎛<br />

( ) 1 0 3<br />

=<br />

0 1 2<br />

when applied to the vector, yields the expected result.<br />

⎛<br />

1<br />

⎝ 5 −6 3<br />

⎞ ⎛<br />

−6 10 2 ⎠ ⎝ 1 ⎞<br />

1⎠ =<br />

14<br />

3 2 13 2<br />

Three.VI.3.13<br />

(a) Paramatrizing gives this.<br />

M = {c ·<br />

⎛<br />

( ) −1 ∣∣<br />

c ∈ R}<br />

1<br />

⎞<br />

⎛<br />

⎞<br />

⎝ 1 0<br />

⎞<br />

( ) −1 ( )<br />

0 1⎠<br />

10 6 1 0 3<br />

6 5 0 1 2<br />

3 2<br />

⎛<br />

= 1 ⎝ 5 −6 3<br />

⎞<br />

−6 10 2 ⎠<br />

14<br />

3 2 13<br />

⎛<br />

⎝ 5/14<br />

⎞<br />

8/14 ⎠<br />

31/14<br />

For the first way, we take the vector spanning the line M to be<br />

( ) −1<br />

⃗s =<br />

1<br />

and the Definition 1.1 formula gives this.<br />

( ) ( )<br />

1 −1<br />

( )<br />

1 −3 1<br />

proj [⃗s ] ( ) = ( ) ( ) ·<br />

−3 −1 −1<br />

1 1<br />

For the second way, we fix<br />

( )<br />

−1<br />

B M = 〈 〉<br />

1<br />

( )<br />

−1<br />

= −4<br />

1 2 ·<br />

( ) (<br />

−1 2<br />

=<br />

1 −2)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!