11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Answers</strong> to <strong>Exercises</strong> 133<br />

apply the Gram-Schmidt process<br />

⎛ ⎞<br />

⃗κ 1 = ⎝ 1 1⎠<br />

0<br />

⎛ ⎞ ⎛ ⎞<br />

⎛<br />

⃗κ 2 = ⎝ −1<br />

⎞ ⎛<br />

0 ⎠ − proj [⃗κ1]( ⎝ −1<br />

⎞ ⎛<br />

0 ⎠) = ⎝ −1<br />

⎞ ⎝ −1<br />

0 ⎠ ⎝ 1 1⎠<br />

⎛<br />

1 0<br />

0 ⎠ − ⎛<br />

1<br />

1 1<br />

⎝ 1 ⎞ ⎛<br />

1⎠<br />

⎝ 1 ⎞ · ⎝ 1 ⎞ ⎛<br />

1⎠ = ⎝ −1<br />

⎞ ⎛<br />

0 ⎠ − −1<br />

2 · ⎝ 1 ⎞ ⎛<br />

1⎠ = ⎝ −1/2<br />

⎞<br />

1/2 ⎠<br />

0 1<br />

0 1<br />

1⎠<br />

0 0<br />

and then normalize.<br />

⎛<br />

〈 ⎝ 1/√ ⎞ ⎛<br />

2<br />

1/ √ −1/ √ ⎞<br />

6<br />

2⎠ , ⎝ 1/ √ 6<br />

0 2/ √ ⎠〉<br />

6<br />

Three.VI.2.12<br />

Reducing the linear system<br />

x − y − z + w = 0<br />

x + z = 0<br />

−ρ 1 +ρ 2<br />

−→<br />

x − y − z + w = 0<br />

y + 2z − w = 0<br />

and paramatrizing gives this description of the subspace.<br />

⎛ ⎞ ⎛ ⎞<br />

−1 0<br />

{ ⎜−2<br />

⎟<br />

⎝ 1 ⎠ · z + ⎜1<br />

⎟<br />

⎝0⎠ · w ∣ z, w ∈ R}<br />

0 1<br />

So we take the basis,<br />

⎛ ⎞ ⎛ ⎞<br />

−1 0<br />

〈 ⎜−2<br />

⎟<br />

⎝ 1 ⎠ , ⎜1<br />

⎟<br />

⎝0⎠ 〉<br />

0 1<br />

go through the Gram-Schmidt process<br />

⎛ ⎞<br />

−1<br />

⃗κ 1 = ⎜−2<br />

⎟<br />

⎝ 1 ⎠<br />

0<br />

⎛ ⎞ ⎛ ⎞<br />

0 −1<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜1<br />

⎟ ⎜−2<br />

⎟<br />

0<br />

0 0 ⎝0⎠<br />

⎝ 1 ⎠<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

−1 0<br />

−1 −1/3<br />

⃗κ 2 = ⎜1<br />

⎟<br />

⎝0⎠ − proj [⃗κ 1 ]( ⎜1<br />

⎟<br />

⎝0⎠ ) = ⎜1<br />

⎟<br />

⎝0⎠ − 1 0<br />

⎛ ⎞ ⎛ ⎞ · ⎜−2<br />

⎟<br />

−1 −1 ⎝ 1 ⎠ = ⎜1<br />

⎟<br />

⎝0⎠ − −2<br />

6 ·<br />

⎜−2<br />

⎟<br />

⎝ 1 ⎠ = ⎜ 1/3<br />

⎟<br />

⎝ 1/3 ⎠<br />

1<br />

1 1<br />

⎜−2<br />

⎟ ⎜−2<br />

0 1<br />

0 1<br />

⎟<br />

⎝ 1 ⎠ ⎝ 1 ⎠<br />

0 0<br />

and finish by normalizing.<br />

⎛<br />

−1/ √ ⎞ ⎛<br />

6<br />

〈 ⎜−2/ √ − √ ⎞<br />

√<br />

3/6<br />

6<br />

⎝ 1/ √ ⎟<br />

6 ⎠ , ⎜ 3/6<br />

√ ⎟<br />

⎝<br />

√ 3/6 ⎠ 〉<br />

0 3/2<br />

Three.VI.2.13 A linearly independent subset of R n is a basis for its own span. Apply Theorem 2.7.<br />

Remark. Here’s why the phrase ‘linearly independent’ is in the question. Dropping the phrase<br />

would require us to worry about two things. The first thing to worry about is that when we do the<br />

Gram-Schmidt process on a linearly dependent set then we get some zero vectors. For instance, with<br />

( ( 1 3<br />

S = { , }<br />

2)<br />

6)<br />

we would get this.<br />

(<br />

1<br />

⃗κ 1 =<br />

2)<br />

⃗κ 2 =<br />

( ( (<br />

3 3 0<br />

− proj<br />

6)<br />

[⃗κ1]( ) =<br />

6)<br />

0)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!