Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf Linear Algebra Exercises-n-Answers.pdf

math.hcmuns.edu.vn
from math.hcmuns.edu.vn More from this publisher
11.04.2014 Views

116 Linear Algebra, by Hefferon Three.IV.3.44 This is how the answer was given in the cited source. No, it does not. Let A and B represent, with respect to the standard bases, these transformations of R 3 . ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ Observe that ⎝ x y z ⎛ ⎞ ⎠ a ↦−→ ⎛ ⎝ x y 0 ⎞ ⎝ x y⎠ ↦−→ abab ⎝ 0 0⎠ z 0 ⎠ but ⎝ x y z ⎛ ⎠ a ↦−→ ⎞ ⎝ 0 x y ⎛ ⎠ ⎞ ⎝ x y⎠ ↦−→ baba ⎝ 0 0⎠ . z x Three.IV.3.45 This is how the answer was given in the cited source. (a) Obvious. (b) If A trans A⃗x = ⃗0 then ⃗y · ⃗y = 0 where ⃗y = A⃗x. Hence ⃗y = ⃗0 by (a). The converse is obvious. (c) By (b), A⃗x 1 ,. . . ,A⃗x n are linearly independent iff A trans A⃗x 1 ,. . . , A trans A⃗v n are linearly independent. (d) We have col rank(A) = col rank(A trans A) = dim {A trans (A⃗x) ∣ all ⃗x} ≤ dim {A trans ⃗y ∣ all ⃗y} = col rank(A trans ). Thus also col rank(A trans ) ≤ col rank(A transtrans ) and so we have col rank(A) = col rank(A trans ) = row rank(A). Three.IV.3.46 This is how the answer was given in the cited source. Let 〈⃗z 1 , . . . , ⃗z k 〉 be a basis for R(A) ∩ N (A) (k might be 0). Let ⃗x 1 , . . . , ⃗x k ∈ V be such that A⃗x i = ⃗z i . Note {A⃗x 1 , . . . , A⃗x k } is linearly independent, and extend to a basis for R(A): A⃗x 1 , . . . , A⃗x k , A⃗x k+1 , . . . , A⃗x r1 where r 1 = dim(R(A)). Now take ⃗x ∈ V . Write A⃗x = a 1 (A⃗x 1 ) + · · · + a r1 (A⃗x r1 ) and so A 2 ⃗x = a 1 (A 2 ⃗x 1 ) + · · · + a r1 (A 2 ⃗x r1 ). But A⃗x 1 , . . . , A⃗x k ∈ N (A), so A 2 ⃗x 1 = ⃗0, . . . , A 2 ⃗x k = ⃗0 and we now know A 2 ⃗x k+1 , . . . , A 2 ⃗x r1 spans R(A 2 ). To see {A 2 ⃗x k+1 , . . . , A 2 ⃗x r1 } is linearly independent, write b k+1 A 2 ⃗x k+1 + · · · + b r1 A 2 ⃗x r1 = ⃗0 A[b k+1 A⃗x k+1 + · · · + b r1 A⃗x r1 ] = ⃗0 and, since b k+1 A⃗x k+1 + · · · + b r1 A⃗x r1 ∈ N (A) we get a contradiction unless it is ⃗0 (clearly it is in R(A), but A⃗x 1 , . . . , A⃗x k is a basis for R(A) ∩ N (A)). Hence dim(R(A 2 )) = r 1 − k = dim(R(A)) − dim(R(A) ∩ N (A)). Subsection Three.IV.4: Inverses Three.IV.4.13 Here is one way to proceed. ⎛ ρ 1 ↔ρ 2 −→ ⎝ 1 0 1 0 1 0 ⎞ ⎛ 0 3 −1 1 0 0⎠ −ρ 1+ρ 3 −→ ⎝ 1 0 1 0 1 0 ⎞ 0 3 −1 1 0 0⎠ 1 −1 0 0 0 1 0 −1 −1 0 −1 1 ⎛ (1/3)ρ 2 +ρ 3 −→ ⎝ 1 0 1 0 1 0 ⎞ ⎛ 0 3 −1 1 0 0⎠ (1/3)ρ 2 −→ ⎝ 1 0 1 0 1 0 ⎞ 0 1 −1/3 1/3 0 0 ⎠ −(3/4)ρ 0 0 −4/3 1/3 −1 1 3 0 0 1 −1/4 3/4 −3/4 ⎛ ⎞ 1 0 0 1/4 1/4 3/4 (1/3)ρ 3 +ρ 2 −→ ⎝0 1 0 1/4 1/4 −1/4⎠ −ρ 3 +ρ 1 0 0 1 −1/4 3/4 −3/4

Answers to Exercises 117 Three.IV.4.14 (a) Yes, it has an inverse: ad − bc = 2 · 1 − 1 · (−1) ≠ 0. (b) Yes. (c) No. ( ) 1 1 −1 Three.IV.4.15 (a) 2 · 1 − 1 · (−1) · = 1 ( ) ( ) 1 −1 1/3 −1/3 1 2 3 · = ( ) ( ) 1 2 1/3 2/3 1 −3 −4 3/4 1 (b) 0 · (−3) − 4 · 1 · = −1 0 1/4 0 (c) The prior question shows that no inverse exists. Three.IV.4.16 ( (a) The ) reduction ( is routine. ) ( ) 3 1 1 0 (1/3)ρ 1 1 1/3 1/3 0 −(1/3)ρ 2 +ρ 1 1 0 1/3 −1/6 −→ −→ 0 2 0 1 (1/2)ρ 2 0 1 0 1/2 0 1 0 1/2 This answer agrees with the answer from the check. ( ) −1 ( ) 3 1 1 2 −1 = 0 2 3 · 2 − 0 · 1 · = 1 ( ) 2 −1 0 3 6 · 0 3 (b) This reduction is easy. ( ) ( ) 2 1/2 1 0 −(3/2)ρ 1 +ρ 2 2 1/2 1 0 −→ 3 1 0 1 0 1/4 −3/2 1 ( (1/2)ρ 1 1 1/4 1/2 0 −→ 4ρ2 0 1 −6 4 ) ( ) −(1/4)ρ 2 +ρ 1 1 0 2 −1 −→ 0 1 −6 4 The check agrees. ( ) ( ) 1 1 −1/2 1 −1/2 2 · 1 − 3 · (1/2) · = 2 · −3 2 −3 2 (c) Trying the Gauss-Jordan ( reduction ) ( ) 2 −4 1 0 (1/2)ρ 1 +ρ 2 2 −4 1 0 −→ −1 2 0 1 0 0 1/2 1 shows that the left side won’t reduce to the identity, so no inverse exists. The check ad − bc = 2 · 2 − (−4) · (−1) = 0 agrees. (d) This produces an inverse. ⎛ ⎝ 1 1 3 1 0 0 ⎞ 0 2 4 0 1 0 −1 1 0 0 0 1 (1/2)ρ 2 −→ −ρ3 ⎛ −→ ⎝ 1 1 3 1 0 0 ⎞ 0 2 4 0 1 0 0 2 3 1 0 1 ⎛ ⎝ 1 1 3 1 0 0 ⎞ 0 1 2 0 1/2 0 0 0 1 −1 1 −1 ⎠ ρ 1+ρ 3 ⎠ −ρ 2+ρ 3 −→ ⎠ −2ρ 3+ρ 2 −→ −3ρ 3 +ρ 1 ⎛ ⎝ 1 1 3 1 0 0 ⎞ 0 2 4 0 1 0⎠ 0 0 −1 1 −1 1 ⎛ ⎝ 1 1 0 4 −3 3 0 1 0 2 −3/2 2 0 0 1 −1 1 −1 ⎛ −ρ 2 +ρ 1 −→ ⎝ 1 0 0 2 −3/2 1 ⎞ 0 1 0 2 −3/2 2 ⎠ 0 0 1 −1 1 −1 (e) This is one way to do the reduction. ⎛ ⎝ 0 1 5 1 0 0 ⎞ ⎛ 0 −2 4 0 1 0⎠ ρ 3↔ρ 1 −→ ⎝ 2 3 −2 0 0 1 ⎞ 0 −2 4 0 1 0⎠ 2 3 −2 0 0 1 0 1 5 1 0 0 ⎛ ⎞ ⎛ ⎞ 2 3 −2 0 0 1 1 3/2 −1 0 0 1/2 (1/2)ρ 2 +ρ 3 −→ ⎝0 −2 4 0 1 0⎠ (1/2)ρ 1 −→ ⎝0 1 −2 0 −1/2 0 ⎠ −(1/2)ρ 0 0 7 1 1/2 0 2 (1/7)ρ 3 0 0 1 1/7 1/14 0 ⎛ ⎞ ⎛ ⎞ 1 3/2 0 1/7 1/14 1/2 1 0 0 −2/7 17/28 1/2 2ρ 3+ρ 2 −→ ⎝0 1 0 2/7 −5/14 0 ⎠ −(3/2)ρ2+ρ1 −→ ⎝0 1 0 2/7 −5/14 0 ⎠ ρ 3+ρ 1 0 0 1 1/7 1/14 0 0 0 1 1/7 1/14 0 (f) There is no ⎛ inverse. ⎞ ⎛ ⎞ 2 2 3 1 0 0 2 2 3 1 0 0 ⎝1 −2 −3 0 1 0⎠ −(1/2)ρ1+ρ2 −→ ⎝0 −3 −9/2 −1/2 1 0⎠ −2ρ 4 −2 −3 0 0 1 1 +ρ 3 0 −6 −9 −2 0 1 ⎛ −2ρ 2 +ρ 3 −→ ⎝ 2 2 3 1 0 0 ⎞ 0 −3 −9/2 −1/2 1 0⎠ 0 0 0 −1 −2 1 ⎞ ⎠

<strong>Answers</strong> to <strong>Exercises</strong> 117<br />

Three.IV.4.14 (a) Yes, it has an inverse: ad − bc = 2 · 1 − 1 · (−1) ≠ 0. (b) Yes.<br />

(c) No.<br />

( )<br />

1 1 −1<br />

Three.IV.4.15 (a)<br />

2 · 1 − 1 · (−1) · = 1 ( ) ( )<br />

1 −1 1/3 −1/3<br />

1 2 3 · =<br />

( ) ( )<br />

1 2 1/3 2/3<br />

1 −3 −4 3/4 1<br />

(b)<br />

0 · (−3) − 4 · 1 ·<br />

=<br />

−1 0 1/4 0<br />

(c) The prior question shows that no inverse exists.<br />

Three.IV.4.16<br />

(<br />

(a) The<br />

)<br />

reduction<br />

(<br />

is routine.<br />

)<br />

( )<br />

3 1 1 0 (1/3)ρ 1 1 1/3 1/3 0 −(1/3)ρ 2 +ρ 1 1 0 1/3 −1/6<br />

−→<br />

−→<br />

0 2 0 1 (1/2)ρ 2<br />

0 1 0 1/2<br />

0 1 0 1/2<br />

This answer agrees with the answer from the check.<br />

( ) −1 ( )<br />

3 1<br />

1 2 −1<br />

=<br />

0 2 3 · 2 − 0 · 1 · = 1 ( ) 2 −1<br />

0 3 6 · 0 3<br />

(b) This reduction is easy.<br />

( )<br />

( )<br />

2 1/2 1 0 −(3/2)ρ 1 +ρ 2 2 1/2 1 0<br />

−→<br />

3 1 0 1<br />

0 1/4 −3/2 1<br />

(<br />

(1/2)ρ 1 1 1/4 1/2 0<br />

−→<br />

4ρ2 0 1 −6 4<br />

)<br />

( )<br />

−(1/4)ρ 2 +ρ 1 1 0 2 −1<br />

−→<br />

0 1 −6 4<br />

The check agrees.<br />

( ) ( )<br />

1 1 −1/2 1 −1/2<br />

2 · 1 − 3 · (1/2) ·<br />

= 2 ·<br />

−3 2 −3 2<br />

(c) Trying the Gauss-Jordan<br />

(<br />

reduction<br />

)<br />

( )<br />

2 −4 1 0 (1/2)ρ 1 +ρ 2 2 −4 1 0<br />

−→<br />

−1 2 0 1<br />

0 0 1/2 1<br />

shows that the left side won’t reduce to the identity, so no inverse exists. The check ad − bc =<br />

2 · 2 − (−4) · (−1) = 0 agrees.<br />

(d) This produces an inverse.<br />

⎛<br />

⎝ 1 1 3 1 0 0 ⎞<br />

0 2 4 0 1 0<br />

−1 1 0 0 0 1<br />

(1/2)ρ 2<br />

−→<br />

−ρ3<br />

⎛<br />

−→ ⎝ 1 1 3 1 0 0 ⎞<br />

0 2 4 0 1 0<br />

0 2 3 1 0 1<br />

⎛<br />

⎝ 1 1 3 1 0 0 ⎞<br />

0 1 2 0 1/2 0<br />

0 0 1 −1 1 −1<br />

⎠ ρ 1+ρ 3<br />

⎠ −ρ 2+ρ 3<br />

−→<br />

⎠ −2ρ 3+ρ 2<br />

−→<br />

−3ρ 3 +ρ 1<br />

⎛<br />

⎝ 1 1 3 1 0 0 ⎞<br />

0 2 4 0 1 0⎠<br />

0 0 −1 1 −1 1<br />

⎛<br />

⎝ 1 1 0 4 −3 3<br />

0 1 0 2 −3/2 2<br />

0 0 1 −1 1 −1<br />

⎛<br />

−ρ 2 +ρ 1<br />

−→ ⎝ 1 0 0 2 −3/2 1 ⎞<br />

0 1 0 2 −3/2 2 ⎠<br />

0 0 1 −1 1 −1<br />

(e) This is one way to do the reduction.<br />

⎛<br />

⎝ 0 1 5 1 0 0<br />

⎞ ⎛<br />

0 −2 4 0 1 0⎠ ρ 3↔ρ 1<br />

−→ ⎝ 2 3 −2 0 0 1<br />

⎞<br />

0 −2 4 0 1 0⎠<br />

2 3 −2 0 0 1<br />

0 1 5 1 0 0<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

2 3 −2 0 0 1<br />

1 3/2 −1 0 0 1/2<br />

(1/2)ρ 2 +ρ 3<br />

−→ ⎝0 −2 4 0 1 0⎠ (1/2)ρ 1<br />

−→ ⎝0 1 −2 0 −1/2 0 ⎠<br />

−(1/2)ρ<br />

0 0 7 1 1/2 0<br />

2<br />

(1/7)ρ 3<br />

0 0 1 1/7 1/14 0<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

1 3/2 0 1/7 1/14 1/2<br />

1 0 0 −2/7 17/28 1/2<br />

2ρ 3+ρ 2<br />

−→ ⎝0 1 0 2/7 −5/14 0 ⎠ −(3/2)ρ2+ρ1<br />

−→ ⎝0 1 0 2/7 −5/14 0 ⎠<br />

ρ 3+ρ 1<br />

0 0 1 1/7 1/14 0<br />

0 0 1 1/7 1/14 0<br />

(f) There is no<br />

⎛<br />

inverse.<br />

⎞<br />

⎛<br />

⎞<br />

2 2 3 1 0 0<br />

2 2 3 1 0 0<br />

⎝1 −2 −3 0 1 0⎠ −(1/2)ρ1+ρ2<br />

−→ ⎝0 −3 −9/2 −1/2 1 0⎠<br />

−2ρ<br />

4 −2 −3 0 0 1<br />

1 +ρ 3<br />

0 −6 −9 −2 0 1<br />

⎛<br />

−2ρ 2 +ρ 3<br />

−→ ⎝ 2 2 3 1 0 0<br />

⎞<br />

0 −3 −9/2 −1/2 1 0⎠<br />

0 0 0 −1 −2 1<br />

⎞<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!