11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

112 <strong>Linear</strong> <strong>Algebra</strong>, by Hefferon<br />

to get this linear system.<br />

Apply Gaussian reduction.<br />

−(1/2)c 4 + (1/2)c 2 + ( √ 3/2)c 1 + c 0 = 0<br />

−( √ 3/2)c 4 − c 3 − ( √ 3/2)c 2 − (1/2)c 1 = 0<br />

( √ 3/2)c 4 + c 3 + ( √ 3/2)c 2 + (1/2)c 1 = 0<br />

−(1/2)c 4 + (1/2)c 2 + ( √ 3/2)c 1 + c 0 = 0<br />

−ρ 1+ρ 4<br />

−→<br />

ρ 2+ρ 3<br />

− √ 3ρ 1+ρ 2<br />

−(1/2)c 4 + (1/2)c 2 + ( √ 3/2)c 1 + c 0 = 0<br />

−( √ 3/2)c −→ 4 − c 3 − ( √ 3/2)c 2 − (1/2)c 1 = 0<br />

0 = 0<br />

0 = 0<br />

−(1/2)c 4 + (1/2)c 2 + ( √ 3/2)c 1 + c 0 = 0<br />

− c −→ 3 − √ 3c 2 − 2c 1 − √ 3c 0 = 0<br />

0 = 0<br />

0 = 0<br />

Setting c 4 , c 3 , and c 2 to zero makes c 1 and c 0 also come out to be zero so no degree one or degree<br />

zero polynomial will do. Setting c 4 and c 3 to zero (and c 2 to one) gives a linear system<br />

(1/2) + ( √ 3/2)c 1 + c 0 = 0<br />

− √ 3 − 2c 1 − √ 3c 0 = 0<br />

that can be solved with c 1 = − √ 3 and c 0 = 1. Conclusion: the polynomial m(x) = x 2 − √ 3x + 1 is<br />

minimal for the matrix T .<br />

Three.IV.2.35<br />

while<br />

The check is routine:<br />

a 0 + a 1 x + · · · + a n x n<br />

s<br />

↦−→ a 0 x + a 1 x 2 n+1 d/dx<br />

+ · · · + a n x ↦−→ a 0 + 2a 1 x + · · · + (n + 1)a n x n<br />

a 0 + a 1 x + · · · + a n x n d/dx<br />

↦−→ a 1 + · · · + na n x n−1 s<br />

↦−→ a 1 x + · · · + a n x n<br />

so that under the map (d/dx ◦ s) − (s ◦ d/dx) we have a 0 + a 1 x + · · · + a n x n ↦→ a 0 + a 1 x + · · · + a n x n .<br />

Three.IV.2.36 (a) Tracing through the remark at the end of the subsection gives that the i, j entry<br />

of (F G)H is this<br />

s∑ ( ∑<br />

r )<br />

s∑ r∑<br />

s∑ r∑<br />

f i,k g k,t ht,j = (f i,k g k,t )h t,j = f i,k (g k,t h t,j )<br />

t=1<br />

k=1<br />

t=1 k=1<br />

t=1 k=1<br />

=<br />

r∑<br />

k=1 t=1<br />

s∑<br />

f i,k (g k,t h t,j ) =<br />

r∑ ( ∑<br />

s )<br />

f i,k g k,t h t,j<br />

(the first equality comes from using the distributive law to multiply through the h’s, the second<br />

equality is the associative law for real numbers, the third is the commutative law for reals, and the<br />

fourth equality follows on using the distributive law to factor the f’s out), which is the i, j entry of<br />

F (GH).<br />

(b) The k-th component of h(⃗v) is<br />

n∑<br />

h k,j v j<br />

and so the i-th component of g ◦ h (⃗v) is this<br />

r∑ ( ∑<br />

n )<br />

r∑ n∑<br />

r∑ n∑<br />

g i,k h k,j v j = g i,k h k,j v j = (g i,k h k,j )v j<br />

k=1<br />

j=1<br />

k=1 j=1<br />

j=1<br />

k=1 j=1<br />

=<br />

n∑<br />

j=1 k=1<br />

r∑<br />

(g i,k h k,j )v j =<br />

k=1<br />

j=1 k=1<br />

t=1<br />

n∑ r∑<br />

( g i,k h k,j ) v j<br />

(the first equality holds by using the distributive law to multiply the g’s through, the second equality<br />

represents the use of associativity of reals, the third follows by commutativity of reals, and the fourth<br />

comes from using the distributive law to factor the v’s out).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!