11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Answers</strong> to <strong>Exercises</strong> 109<br />

( ) ( ) ( ) ( ) ( )<br />

1 −2<br />

1 −2 −2 3 6 1<br />

−18 17<br />

Three.IV.2.15 (a)<br />

(b)<br />

=<br />

(c)<br />

10 4<br />

10 4 −4 1 −36 34 −24 16<br />

( ) ( ) ( )<br />

1 −1 −18 17 6 1<br />

(d)<br />

=<br />

2 0 −24 16 −36 34<br />

Three.IV.2.16 (a) Yes. (b) Yes. (c) No. (d) No.<br />

Three.IV.2.17 (a) 2×1 (b) 1×1 (c) Not defined. (d) 2×2<br />

Three.IV.2.18 We have<br />

h 1,1 · (g 1,1 y 1 + g 1,2 y 2 ) + h 1,2 · (g 2,1 y 1 + g 2,2 y 2 ) + h 1,3 · (g 3,1 y 1 + g 3,2 y 2 ) = d 1<br />

h 2,1 · (g 1,1 y 1 + g 1,2 y 2 ) + h 2,2 · (g 2,1 y 1 + g 2,2 y 2 ) + h 2,3 · (g 3,1 y 1 + g 3,2 y 2 ) = d 2<br />

which, after expanding and regrouping about the y’s yields this.<br />

(h 1,1 g 1,1 + h 1,2 g 2,1 + h 1,3 g 3,1 )y 1 + (h 1,1 g 1,2 + h 1,2 g 2,2 + h 1,3 g 3,2 )y 2 = d 1<br />

(h 2,1 g 1,1 + h 2,2 g 2,1 + h 2,3 g 3,1 )y 1 + (h 2,1 g 1,2 + h 2,2 g 2,2 + h 2,3 g 3,2 )y 2 = d 2<br />

The starting system, and the system used for the substitutions, can be expressed in matrix language.<br />

( ) ⎛<br />

h1,1 h 1,2 h 1,3 ⎝ x ⎞ ⎛<br />

1<br />

x<br />

h 2,1 h 2,2 h 2<br />

⎠ = H ⎝ x ⎞<br />

⎛<br />

( )<br />

1<br />

x 2<br />

⎠ d1<br />

= ⎝ g ⎞<br />

⎛<br />

1,1 g 1,2<br />

( ) ( )<br />

g<br />

2,3 d 2,1 g 2,2<br />

⎠ y1 y1<br />

= G = ⎝ x ⎞<br />

1<br />

x<br />

x 3 x 2 y<br />

3 g 2 y 2<br />

⎠<br />

2<br />

3,2 x 3<br />

With this, the substitution is ⃗ d = H⃗x = H(G⃗y) = (HG)⃗y.<br />

Three.IV.2.19 Technically, no. The dot product operation yields a scalar while the matrix product<br />

yields a 1×1 matrix. However, we usually will ignore the distinction.<br />

Three.IV.2.20 The action of d/dx on B is 1 ↦→ 0, x ↦→ 1, x 2 ↦→ 2x, . . . and so this is its (n+1)×(n+1)<br />

matrix representation.<br />

⎛<br />

⎞<br />

0 1 0 0<br />

Rep B,B ( d<br />

0 0 2 0<br />

dx ) = . ..<br />

⎜<br />

⎟<br />

⎝0 0 0 n⎠<br />

0 0 0 0<br />

The product of this matrix with itself is defined because the matrix is square.<br />

⎛<br />

⎞<br />

⎛<br />

⎞2<br />

0 0 2 0 0<br />

0 1 0 0<br />

0 0 2 0<br />

0 0 0 6 0<br />

. ..<br />

. ..<br />

=<br />

⎜<br />

⎟<br />

⎝0 0 0 n⎠<br />

⎜0 0 0 n(n − 1)<br />

⎟<br />

⎝0 0 0 0 ⎠<br />

0 0 0 0<br />

0 0 0 0<br />

The map so represented is the composition<br />

which is the second derivative operation.<br />

p<br />

d<br />

dx<br />

↦−→ d p<br />

dx<br />

g 3,1<br />

d<br />

dx<br />

↦−→ d2 p<br />

dx 2<br />

Three.IV.2.21 It is true for all one-dimensional spaces. Let f and g be transformations of a onedimensional<br />

space. We must show that g ◦ f (⃗v) = f ◦ g (⃗v) for all vectors. Fix a basis B for the space<br />

and then the transformations are represented by 1×1 matrices.<br />

F = Rep B,B (f) = ( )<br />

f 1,1 G = Rep B,B (g) = ( )<br />

g 1,1<br />

Therefore, the compositions can be represented as GF and F G.<br />

GF = Rep B,B (g ◦ f) = ( g 1,1 f 1,1<br />

)<br />

F G = Rep B,B (f ◦ g) = ( f 1,1 g 1,1<br />

)<br />

These two matrices are equal and so the compositions have the same effect on each vector in the space.<br />

Three.IV.2.22<br />

It would not represent linear map composition; Theorem 2.6 would fail.<br />

Three.IV.2.23 Each follows easily from the associated map fact. For instance, p applications of the<br />

transformation h, following q applications, is simply p + q applications.<br />

Three.IV.2.24 Although these can be done by going through the indices, they are best understood<br />

in terms of the represented maps. That is, fix spaces and bases so that the matrices represent linear<br />

maps f, g, h.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!