11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

100 <strong>Linear</strong> <strong>Algebra</strong>, by Hefferon<br />

(c) We first find the image of each member of B, and then represent those images with respect to<br />

D. For the first step,<br />

(<br />

we<br />

)<br />

can<br />

(<br />

use the<br />

)<br />

matrix<br />

(<br />

developed<br />

) (<br />

earlier.<br />

) ( ( )<br />

1 −1 3 1 −4<br />

1 −4<br />

Rep E2<br />

( ) =<br />

=<br />

so t( ) =<br />

−1 0 0 −1 0<br />

−1)<br />

0<br />

E 2,E 2 E 2 E 2<br />

Actually, for the second member of B there is no need to apply the matrix because the problem<br />

statement gives its image.<br />

( (<br />

1 2<br />

t( ) =<br />

1)<br />

0)<br />

Now representing those images<br />

(<br />

with<br />

)<br />

respect<br />

( )<br />

to D is routine.<br />

( ( )<br />

−4 −1<br />

2 1/2<br />

Rep D ( ) = and Rep<br />

0 2<br />

D ( ) =<br />

0)<br />

−1<br />

D<br />

D<br />

Thus, the matrix is this.<br />

( ) −1 1/2<br />

Rep B,D (t) =<br />

2 −1<br />

B,D<br />

(d) We know the images of the members of the domain’s basis from the prior item.<br />

( ( ) ( ( 1 −4 1 2<br />

t( ) =<br />

t( ) =<br />

−1)<br />

0 1)<br />

0)<br />

We can compute the representation<br />

( )<br />

of those<br />

( )<br />

images with respect<br />

(<br />

to the<br />

(<br />

codomain’s basis.<br />

−4 −2<br />

2 1<br />

Rep B ( ) = and Rep<br />

0 −2<br />

B ( ) =<br />

0)<br />

1)<br />

B<br />

B<br />

Thus this is the matrix.<br />

( )<br />

−2 1<br />

Rep B,B (t) =<br />

−2 1<br />

B,B<br />

Three.III.1.23 (a) The images of the members of the domain’s basis are<br />

⃗β 1 ↦→ h( β ⃗ 1 ) β2 ⃗ ↦→ h( β ⃗ 2 ) . . . βn ⃗ ↦→ h( β ⃗ n )<br />

and those images are represented with respect to the codomain’s basis in this way.<br />

⎛ ⎞<br />

⎛ ⎞<br />

⎛ ⎞<br />

1<br />

0<br />

0<br />

Rep h(B) ( h( β ⃗ 0<br />

1 ) ) = ⎜<br />

⎝<br />

⎟<br />

. ⎠ Rep h(B)( h( β ⃗ 1<br />

2 ) ) = ⎜<br />

⎝<br />

⎟<br />

. ⎠ . . . Rep h(B)( h( β ⃗ 0<br />

n ) ) = ⎜<br />

⎝<br />

⎟<br />

. ⎠<br />

0<br />

0<br />

1<br />

Hence, the matrix is the identity.<br />

⎛<br />

⎞<br />

1 0 . . . 0<br />

0 1 0<br />

Rep B,h(B) (h) = ⎜<br />

⎝<br />

. ..<br />

⎟<br />

⎠<br />

0 0 1<br />

(b) Using the matrix in the prior item, the representation is this.<br />

⎛ ⎞<br />

1<br />

⎜<br />

Rep h(B) ( h(⃗v) ) = ⎝c<br />

.<br />

⎟<br />

⎠<br />

c n<br />

h(B)<br />

Three.III.1.24 The product<br />

⎛ ⎞<br />

⎛<br />

⎞ 0 ⎛ ⎞<br />

h 1,1 . . . h 1,i . . . h 1,n<br />

.<br />

h 1,i<br />

h 2,1 . . . h 2,i . . . h 2,n<br />

.<br />

⎜<br />

⎟<br />

⎝ .<br />

⎠<br />

1<br />

h 2,i<br />

= ⎜ ⎟<br />

⎜ ⎟ ⎝ . ⎠<br />

⎝<br />

h m,1 . . . h m,i . . . h 1,n<br />

. ⎠<br />

h m,i<br />

0<br />

gives the i-th column of the matrix.<br />

Three.III.1.25 (a) The images of the basis vectors for the domain are cos x d/dx<br />

↦−→ − sin x and sin x d/dx<br />

↦−→<br />

cos x. Representing those with respect to the codomain’s basis (again, B) and adjoining the representations<br />

gives this matrix.<br />

Rep B,B ( d ( )<br />

0 1<br />

dx ) = −1 0<br />

B,B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!